Essential Submodules with respect to an Arbitrary Submodule

S. Safaeeyan∗
Yasouj university

N. Saboori Shirazi
Yasouj university

Abstract. The concept of essential submodules is a well known concept. In this paper we try to replace an arbitrary submodule of M, say T, instead of 0 in the definition of essential submodules. By this, essential submodules are precisely $\{0\}$-essential submodules. For a submodule K of right R-module M, we have $K \subseteq_{\text{ess}} M$ if and only if $(K : m)$ is $\text{ann}_M(m)$-essential right ideal of R, for each $m \in M \setminus \{0\}$. Among other things, this generalization of essential submodules gives a necessary and sufficient condition for $\frac{M}{T}$ being finitely co-generated.

AMS Subject Classification: 16D10; 16D60
Keywords and Phrases: Essential submodules, s-essential submodules, socle of a module

1. Introduction

Throughout this article, all rings are associative with identity and all modules are unitary right modules. We know that the submodule K of right R-module M is called essential, denoted by $K \subseteq_{\text{ess}} M$, provided that for each submodule L of M, $K \cap L = 0$ implies that $L = 0$. The right R-module M is called uniform provided that every non-zero submodule of M is an essential submodule. If K is a submodule of right R-module M, then by Zorn’s Lemma, $S = \{L \mid L \subseteq M \text{ and } K \cap L = 0\}$

Received: April 2013; Accepted: July 2013
∗Corresponding author
has a maximal element which is called the complement of \(K \) in \(M \) and is denoted by \(K^c \). For each \(m \in M \), \((K : m) = \{ r \in R \mid mr \in K \} \). In Section 2, first, the essentiality with respect to a submodule is defined and is shown, this concept is different from the concept of essentiality (Example 2.9). After that, for a submodule \(T \) of right \(R \)-module \(M \), the relationship between essential submodules of \(M \) with respect to \(T \) and essential right ideals of \(R \) with respect to \((T : m) \), for each \(m \in M \setminus \{0\} \), will be investigated (Theorem 2.7). Moreover, it will be answered, for a submodule \(K \) of \(M \), when is \(K^c \) the largest submodule of \(M \) which has zero intersection with \(K \)?

In Section 3, for a submodule \(T \) of right \(R \)-module \(M \), the intersection of all submodules of \(M \) which containing \(T \) and also are essential with respect to \(T \) will be investigated. All unexplained terminologies and basic results on modules that are used in the sequel can be found in [3], [4] and [5].

2. \(\{\} \)-essential submodules

The reader is reminded that a submodule \(K \) of right \(R \)-module \(M \) is essential provided that \(K \) has non-zero intersection to every non-zero submodule.

Definition 2.1. Let \(R \) be a ring and \(T \) be a proper submodule of right \(R \)-module \(M \). The submodule \(K \) of \(M \) is called \(T \)-essential provided that \(K \not\subseteq T \) and for each submodule \(L \) of \(M \), \(K \cap L \subseteq T \) implies that \(L \subseteq T \). In this case \(K \) is denoted by \(K \lessgeq \! T M \).

Proposition 2.2. For each \(m, n \in \mathbb{Z} \), \(m\mathbb{Z} \leq_{n\mathbb{Z}} m\mathbb{Z} + n\mathbb{Z} \).

Proof. Put \((n, m) = d \), \([n, m] = l \). Assume that \(k\mathbb{Z} \subseteq m\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z} \) such that \(m\mathbb{Z} \cap k\mathbb{Z} \subseteq n\mathbb{Z} \). Put \((k, m) = g \), \([k, m] = e \). It is clear that \(nm = dl \) and \(km = ge \). Since both \(d|k \) and \(d|m \), then \(d|(k, m) = g \).

On the other hand, since \(n|e \) and \(m|e \), then \(l = [n, m]|e \). Therefore \(d|g \) and \(l|e \) imply that \(dl|ge \). Thus \(nm|km \) and hence \(n|k \) which implies that \(k\mathbb{Z} \subseteq n\mathbb{Z} \). \(\square \)
At first glance, it seems that for submodules K and $T(\neq M)$ of M, $K \leq_T M$ if and only if $\frac{K + T}{T} \subseteq \text{ess } M$. But it is not true, generally. For this, we need some assertions.

Lemma 2.3. Let $T \subseteq K \subseteq M$ be submodules of right R-module M. Then $K \leq TM$ if and only if $\frac{K + T}{T} \subseteq \text{ess } M$.

Proof. The verification is immediate. □

Proposition 2.4. Let K and T be submodules of right R-module M. Then $K \leq TM$ implies that $\frac{K + T}{T} \subseteq \text{ess } M$.

Proof. Let $A = \frac{S}{T}$ be a non-zero submodule of $\frac{M}{T}$ such that $A \cap \frac{K + T}{T} = 0$. Therefore $K \cap A \subseteq T$ and hence the T-essentiality of K in M implies that $A \subseteq T$, as desired. □

Definition 2.5. Let K be a submodule and T be a proper submodule of right R-module M. A submodule K' of M is called T-complement to K if K' is maximal with respect to the property that $K \cap K' \subseteq T$.

Proposition 2.6. Let C and S be submodules of right R-module M and $T = C \cap S$. Then C is T-complement to S if and only if $\frac{S + C}{C} \subseteq \text{ess } M$.

Proof. Let $\frac{S + C}{C} \subseteq \text{ess } M$ and D be a submodule of M such that $C \subseteq D$ and $D \cap S \subseteq T$. It is clear that $\frac{D}{C} \cap \frac{S + C}{C} = 0$ because $d + C = s + C$, for $d \in D$ and $s \in S$, implies that $s \in D \cap S \subseteq T = C \cap S \subseteq C$. The essentiality $\frac{S + C}{C}$ in $\frac{M}{C}$ implies that $C = D$. Conversely, assume that D is a submodule of M containing C such that $\frac{D}{C} \cap \frac{S + C}{C} = 0$. If $x \in D \cap S$, then $x + C \in \frac{D}{C} \cap \frac{S + C}{C}$ and hence $x + C = C$. Therefore $D \cap S \subseteq C \cap S = T$. By assumption, $D = C$. □

By the above definition, it is easy to see that K is an essential submodule of right R-module M if and only if $K \leq_{\{0\}} M$. It is well known that if $K \subseteq \text{ess } M$, then $(K : m) \subseteq \text{ess } R$, for each $m \in M$. But the converse is not true. For an example $K = \{\bar{0}, \bar{2}, \bar{4}\}$ is not essential in \mathbb{Z}_6 as a \mathbb{Z}-module but for each $\bar{x} \in \mathbb{Z}_6$, $(K : \bar{x}) \subseteq \text{ess } \mathbb{Z}$ because \mathbb{Z} is uniform. Now consider the following theorem.
Theorem 2.7. Let M be an R-module and K, T be submodules of M. The following assertions are equivalent

1. $K \Delta_T M$;

2. For each $m \in M \setminus T$, there exists $r \in R$ such that $mr \in K \setminus T$.

3. $(K : m) \leq (T : m) R$, for each $m \in M \setminus T$.

Proof. $1 \Rightarrow 2$ Let $m \in M \setminus T$. Since $K \Delta_T M$, then $K \cap mR \not\subseteq T$. Hence there exists $r \in R$ such that $mr \in K \setminus T$.

$2 \Rightarrow 1$ By hypotheses, $K \not\subseteq T$. Assume that L is a submodule of M such that $K \cap L \subseteq T$. If $L \not\subseteq T$, there exists $a \in L \setminus T$. By assumption, there is an $r \in R$ such that $ar \in K \setminus T$. On the other hand $ar \in K \cap L \subseteq T$, a contradiction.

$1 \Rightarrow 3$ Assume that $K \Delta_T M$ and $m \in M \setminus T$. By 2, there exists $r \in R$ such that $mr \in K \setminus T$ or equivalently $(K : m) \not\subseteq (T : m)$. Suppose that I is a right ideal of R such that $(K : m) \cap I \subseteq (T : m)$. It is clear that $K \cap mI \subseteq T$ and hence $mI \subseteq T$ because $K \Delta_T M$. Now, $mI \subseteq T$ implies that $I \subseteq (T : m)$, as desired.

$3 \Rightarrow 1$ Suppose that L is a submodule of M such that $K \cap L \subseteq T$. If $L \not\subseteq T$, there exists $x \in L \setminus T$. By hypotheses, there exists $r \in R$ such that $xr \in K \setminus T$. It is a contradiction because $xr \in K \cap L \subseteq T$. □

Proposition 2.8. Let $\{N_i\}_{i \in I}$, $\{M_i\}_{i \in I}$ and T be submodules of right R-module M such that $N_i \triangleleft_T M_i$ for every $i \in I$. Then $\oplus_{i \in I} N_i \triangleleft \oplus_{i \in I} T \oplus M_i$.

Proof. By Theorem 2.7, assume that $\{m_i\}_{i \in I} \in \oplus M_i \setminus \oplus T$. Since $N_i \triangleleft_T M_i$ for every $i \in I$, there exists an $r \in R$ such that $\{m_i r\} \in \oplus N_i \setminus \oplus T$, as desired. □

The following example shows that the converse of Proposition 2.4, is not true, generally.

Example 2.9. It is easy to check that $\frac{6\mathbb{Z} + 12\mathbb{Z}}{12\mathbb{Z}} = \frac{6\mathbb{Z}}{12\mathbb{Z}}$ is an essential \mathbb{Z}-submodule of $\frac{\mathbb{Z}}{12\mathbb{Z}}$, but $6\mathbb{Z}$ is not $12\mathbb{Z}$-essential \mathbb{Z}-submodule of \mathbb{Z}. To the
contrary, assume that $6\mathbb{Z} \subseteq 12\mathbb{Z}$ \mathbb{Z}$. By Theorem 2.7, for $8 \in \mathbb{Z} \setminus 12\mathbb{Z}$ there exists an $n \in \mathbb{Z}$ such that $8n \in 6\mathbb{Z}$. Therefore $3|n$ and hence $8n \in 12\mathbb{Z}$, a contradiction.

Corollary 2.10. Let K be a submodule of right R-module M. Then $N \subseteq_{\text{ess}} M$ if and only if $(K : m) \subseteq \text{ann}_r(m) R$, for each $m \in M \setminus \{0\}$.

Proof. It is clear that for each $m \in M$, $\text{ann}_r(m) = (\{0\} : m)$. By Theorem 2.7, we have $N \subseteq_{\text{ess}} M$ if and only if $N \subseteq_{\{0\}} M$ if and only if $(N : m) \subseteq_{\{0\}} R$, for each $m \in M$. □

Let R be a ring. An element $x \in R$ is said to be regular provided that $\text{ann}_r(x) = \text{ann}_l(x) = 0$ and the set of all regular elements of R is denoted by \mathcal{C}_R. For a right R-module M, put $T(M) = \{m \in M | \text{ann}_r(m) \cap \mathcal{C}_R \neq \emptyset\}$. If $T(M) = 0$, M is called torsion free and if $T(M) = M$, M is called torsion R-module. See [4, §10, Exercise 19].

Corollary 2.11. Let R be a domain, M be a right R-module and K be a non-zero submodule of M. Then K is an essential submodule of M if and only if M_K is a torsion R-module.

Proof. For each $0 \neq m \in M$, we have $\text{ann}_r(m) = 0$ because $\mathcal{C}_R = R \setminus \{0\}$ and

$$T(M) = \{x \in M | \text{ann}_r(x) \cap (R \setminus \{0\}) \neq \emptyset\} = \{x \in M | \text{ann}_r(x) \neq 0\} = \{0\}.$$

By Theorem 2.7, $K \subseteq_{\text{ess}} M$ if and only if $K \subseteq_{\{0\}} M$ if and only if $(K : m) \subseteq (0 : m), \forall m \in M \setminus \{0\}$ if and only if $(K : m) \subseteq \text{ann}_r(m) = 0, \forall m \in M \setminus \{0\}$ if and only if M_K is a torsion R-module. □

Proposition 2.12. Let K, L and T be submodules of right R-module M. Then
1. If K and L are T-essential submodules of M, then $K \cap L$ is T-essential too.
2. Let $K \subseteq L \subseteq M$. Then $K \preceq_T M$ if and only if $K \preceq_T L$ and $L \preceq_T M$.

Proof. The verification is immediate. □

Theorem 2.13. Let $T_1 \leq K_1 \leq M_1 \leq M$ and $T_2 \leq K_2 \leq M_2 \leq M$.
such that \(M_1 \cap M_2 = T_1 \cap T_2 \). Then, \(K_1 + K_2 \leq_{(T_1 + T_2)} M_1 + M_2 \) if and only if \(K_1 \leq_{T_1} M_1 \) and \(K_2 \leq_{T_2} M_2 \).

Proof. Assume that \(K_1 + K_2 \leq_{(T_1 + T_2)} M_1 + M_2 \) and \(L_1 \) is a submodule of \(M_1 \) such that \(K_1 \cap L_1 \subseteq T_1 \). It is clear that \((K_1 + K_2) \cap L_1 \subseteq T_1 + T_2\). If \(x \in K_1 \), \(y \in K_2 \) and \(z \in L_1 \) such that \(x + y = z \), then \(x - z = -y \in M_1 \cap M_2 = T_1 \cap T_2 \). Hence \(y \in T_1 \subseteq K_1 \). Therefore \(z = x + y \in K_1 \cap L_1 \subseteq T_1 \). In the other hand \(x - z \in T_1 \) implies that \(x \in T_1 \). Thus \(x + y \in T_1 + T_2 \). By hypothesis, \(L_1 \subseteq T_1 + T_2 \). It implies that \(L_1 \subseteq T_1 \). Similarly, we can show that \(K_2 \leq_{T_2} M_2 \). Conversely, suppose that \(x + y \in M_1 + M_2 \setminus T_1 + T_2 \), where \(x \in M_1 \) and \(y \in M_2 \). Either \(x \notin T_1 \) or \(y \notin T_2 \). Assume that \(x \in M_1 \setminus T_1 \). There exists \(r \in R \) such that \(xr \in K_1 \setminus T_1 \). If \(yr \in K_2 \), then the proof is completed (\((x+y)r \in K_1 + K_2 \setminus T_1 + T_2 \)). If \(yr \in M_2 \setminus K_2 \subseteq M_2 \setminus T_2 \), then there exists \(s \in R \) such that \(yrs \in K_2 \setminus T_2 \). Hence \((x+y)rs \in K_1 + K_2 \setminus T_1 + T_2 \). \(\square \)

Theorem 2.14. Let \(M \) and \(N \) be \(R \)-modules, \(T \subseteq N \) and \(f \in \text{Hom}_R(M, N) \) such that \(\text{Im}f \not\subseteq T \). Then \(\text{Im}f \leq_T N \) if and only if, for each homomorphism \(h \), if \(\ker h \cap \text{Im}f \subseteq T \), then \(\ker h \subseteq T \).

Proof. The “only if” part is clear. Conversely, let \(K \) be a submodule of \(N \) such that \(\text{Im}f \cap K \subseteq T \). Define the map \(h : (\text{Im}f + K) \longrightarrow \frac{M}{f^{-1}(T)} \), with \(h(f(m) + k) = m + f^{-1}(T) \), for each \(m \in M \) and \(k \in K \). It is clear that \(h \) is an \(R \)-homomorphism such that \(\ker h \cap \text{Im}f \subseteq T \). By hypotheses, \(K \subseteq \ker h \subseteq T \). \(\square \)

Lemma 2.15. Let \(M \) and \(N \) be right \(R \)-modules, \(T \) and \(K \) be submodules of \(N \) and \(f \in \text{Hom}_R(M, N) \). If \(\leq_T N \), then \(f^{-1}(K) \leq_{f^{-1}(T)} M \).

Proof. Assume that \(L \) be a submodule of \(M \) such that \(f^{-1}(K) \cap L \subseteq f^{-1}(T) \). It is clear that \(K \cap f(L) \subseteq T \) and hence \(f(L) \subseteq T \). Thus \(L \subseteq f^{-1}(T) \), as desired. \(\square \)

Corollary 2.16. Let \(M \) and \(N \) be right \(R \)-modules, \(K \) be a submodule of \(N \) and \(f \in \text{Hom}_R(M, N) \). If \(K \subseteq_{\text{ess}} N \), then \(f^{-1}(K) \leq_{\text{ker} f} M \). Moreover, if \(f \) is an epimorphism, then \(K \subseteq_{\text{ess}} N \) if and only if \(f^{-1}(K) \leq_{\text{ker} f} M \).
Proof. The first part is immediate consequence of Lemma 2.15, because $f^{-1}(0) = \ker f$. Now suppose that L be a submodule of N such that $K \cap L = 0$. It is obvious that $f^{-1}(K) \cap f^{-1}(L) \subseteq \ker f$. Thus $f^{-1}(L) \subseteq \ker f$ since $f^{-1}(K) \subseteq \ker f$. If $y \in L$, there exists $x \in M$ such that $y = f(x)$. Therefore $x \in f^{-1}(L) \subseteq \ker f$ and hence $y = f(x) = 0$. □

Lemma 2.17. Let K and T be submodules of right R-module M. If $K \trianglelefteq_T M$, then $K^c \subseteq T$. Moreover, if $K \trianglelefteq_T M$ and $K \cap T = 0$, then $K^c = T$.

Proof. The verification is immediate. □

The following proposition shows that when the complement of the submodule K of a right R-module M, is the largest submodule which has zero intersection with K.

Proposition 2.18. Let K be a submodule of right R-module M. The following assertions are equivalent.

1. K is K^c-essential in M;

2. For each submodule N of M, $K \cap N = 0$ implies that $N \subseteq K^c$;

3. For each $x \in M \setminus K^c$ there exists $r \in R$ such that $0 \neq xr \in K$.

Proof. 1\Rightarrow2 It is clear by definition.

1\Rightarrow3 By Theorem 2.7, For each $x \in M \setminus K^c$ there exists $r \in R$ such that $xr \in K \setminus K^c = K \setminus \{0\}$.

2\Rightarrow1 Let N be a submodule of M such that $K \cap N \subseteq K^c$. Then $K \cap N \subseteq K \cap K^c = \{0\}$ and by hypotheses $N \subseteq K^c$.

3\Rightarrow1 it is clear by Theorem 2.7. □

As an application of the Proposition 2.18, we have the following theorem.

Theorem 2.19. Let R be a commutative ring and $M = \oplus_{i \in F} M_i$ be an R-module, where M_i’s are non-isomorphic simple submodules of M and $F = \{1, 2, \cdots, n\}$. Then, for each $I \subseteq F$, $\oplus_{i \in I} M_i \trianglelefteq_T M$, where $T = \oplus_{j \in F \setminus I} M_j$.
Proof. Let K be a submodule of M such that $(\oplus_{i \in I} M_i) \cap K = 0$. We must show that $K \subseteq T$. By [1, Lemma 9.2], there exists a subset $J \subseteq F$ such that $M = (\oplus_{i \in I} M_i) \oplus K \oplus (\oplus_{j \in J} M_j)$. Hence
\[
\text{ann}(K) = \text{ann}(\oplus_{t \in F \setminus (I \cup J)} M_t) \supseteq \text{ann}(\oplus_{i \in I} M_i) = \bigcap_{t \in F \setminus I} \text{ann}(M_t).
\]
In the other hand for each disjoint $i, j \in F \setminus I$, ann(M_i) and ann(M_j) are coprime and hence
\[
\bigcap_{t \in F \setminus I} \text{ann}(M_t) = \prod_{t \in F \setminus I} \text{ann}(M_t),
\]
by [2, Proposition 1.10]. Therefore for each $x \in K$, $x = m_1 + m_2 + \cdots + m_r$, where $0 \neq m_i \in M_{j_i}$. Hence
\[
\prod_{t \in F \setminus I} \text{ann}(M_t) \subseteq \text{ann}(x) \subseteq \text{ann}(m_i) \ (\forall i),
\]
therefore there exists $t_i \in F \setminus I$ such that ann$(M_{t_i}) \subseteq \text{ann}(m_i) = \text{ann}(M_{j_i})$. By maximality of ann$(M_{t_i})$’s we have ann$(M_{t_i}) = \text{ann}(M_{j_i})$. Thus $M_{t_i} \cong M_{j_i}$ and hence $M_{t_i} = M_{j_i}$. Therefore $x \in \oplus_{i \in F \setminus I} M_i$, as desired. □

3. The $\{\}$-Socle

In this section, for a proper submodule T of right R-module M, the intersection of all submodules of M which containing T and simultaneously are T-essential is investigated.

Lemma 3.1. Let K and $T(\neq M)$ be submodules of right R-module M such that $T \subseteq K$. Then there exists a submodule K' of M such that $K + K' \subseteq_T M$ and $\frac{K + K'}{T} = \frac{K}{T} \oplus \frac{K' + T}{T}$.

Proof. Define $S = \{N \mid N$ is a submodule of M and $N \cap K \subseteq T\}$. By Zorn’s Lemma, S has a maximal element, say K'. Assume that L is a submodule of M such that $(K + K') \cap L \subseteq T$. We clime that $K \cap (K' + L) \subseteq T$. For, suppose that $x \in K$, $y \in K'$, and $z \in L$ such that
x = y + z. Thus \(x - y = z \in (K + K') \cap L \subseteq T \subseteq K \). Hence \(y = x - z \in K \cap K' \subseteq T \) and hence \(x \in T \), as desired. The maximality of \(K' \) in \(S \) implies that \(L \subseteq K' \) and hence \(L \subseteq T \). For the second part it is enough to show that \(\frac{K}{T} \cap \frac{K' + T}{T} = 0 \). Assume that \(x \in K \) and \(y \in K' \) such that \(x + T = y + T \). Thus \(x - y \in T \subseteq K \) and hence \(y \in K \cap K' \subseteq T \), as desired. □

Definition 3.2. Let \(K \) and \(T \) be submodules of right \(R \)-module \(M \). \(K \) is called \(T \)-simple submodule of \(M \) provided that \(\frac{K + T}{T} \) is a simple \(R \)-module. Moreover,

\[
\text{Soc}_T(M) = \sum \{ K : K \text{ is a } T \text{-simple submodule of } M \}.
\]

Lemma 3.3. Let \(T \) be a submodule of right \(R \)-module \(M \) and

\[
\text{S}_T(M) = \bigcap \{ L : T \subseteq L \text{ and } L \preceq_T M \}.
\]

Then \(\frac{\text{S}_T(M)}{T} \) is a semisimple right \(R \)-module.

Proof. Let \(H \) be a submodule of \(\frac{\text{S}_T(M)}{T} \). By Lemma 3.1, there exists a submodule \(H' \) of \(M \) such that \(H + H' \preceq_T M \). Then \(H \preceq H' + H' + T \). Then

\[
\text{S}_T(M) = \frac{\text{S}_T(M)}{T} \cap \left(\frac{H}{T} \oplus \frac{H' + T}{T} \right) = \frac{H}{T} \oplus \left(\frac{\text{S}_T(M)}{T} \cap \frac{H' + T}{T} \right). \quad \Box
\]

Proposition 3.4. Let \(T \) be a submodule of right \(R \)-module \(M \). Then

\[
\text{Soc}_T(M) = \bigcap \{ L : T \subseteq L \text{ and } L \preceq_T M \}.
\]

Proof. Let \(S \) be a \(T \)-simple submodule of \(M \) and \(L \) be a submodule of \(M \) containing \(T \) such that \(L \preceq_T M \). Since \((\frac{S}{T} \cap L + T) \) is a submodule of \(\frac{S + T}{T} \), then either \((S \cap L) + T = T \) or \((S \cap L) + T = S + T \). But \((S \cap L) + T = T \) and \(L \preceq_T M \) imply that \(S \subseteq T \), a contradiction. Thus \((S \cap L) + T = S + T \). At the other hand \(L \cap (T + S) = T + (L \cap S) \) and
hence $S + T \subseteq L$. Therefore $S \subseteq L$ and hence $\text{Soc}_T(M) \subseteq \bigcap\{L : T \subseteq L \text{ and } L \unlhd_T M\} = S_T(M)$. In the other hand by Lemma 3.3,

$$\frac{S_T(M)}{T} = \sum_{i \in I} \frac{S_i}{T} = \frac{\sum_{i \in I} S_i}{T},$$

where S_i's are simple R-modules. Then for each $i \in I$, S_i is a T-simple submodule of M and hence $S_T(M) \subseteq \text{Soc}_T(M)$. □

The following theorem gives a necessary and sufficient condition under which $\frac{M}{T}$ is finitely co-generated.

Theorem 3.5. Let T be a submodule of right R-module M. Then $\frac{M}{T}$ is finitely co-generated if and only if $\frac{\text{Soc}_T(M)}{T}$ is finitely co-generated and $\text{Soc}_T(M) \unlhd_T M$.

Proof. Let $\{\frac{L_i}{T}\}_{i \in I}$ be a family of submodules of $\frac{M}{T}$ such that $\bigcap_{i \in I} \frac{L_i}{T} = 0$. Then $\bigcap_{i \in I} \frac{L_i \cap \text{Soc}_T(M)}{T} = 0$. since $\frac{\text{Soc}_T(M)}{T}$ is finitely co-generated, then $\bigcap_{i \in I_0} \frac{L_i \cap \text{Soc}_T(M)}{T} = 0$, for some finite subset I_0 of I. Therefore $(\bigcap_{i \in I_0} L_i) \cap \text{Soc}_T(M) \subseteq T$. Since $\text{Soc}_T(M) \unlhd_T M$, then $(\bigcap_{i \in I_0} L_i) \subseteq T$ or equivalently $\bigcap_{i \in I_0} \frac{L_i}{T} = 0$. Conversely, assume that K be a submodule of M such that $\text{Soc}_T(M) \cap K \subseteq T$. By Proposition 3.4, we have $(\bigcap\{L : T \subseteq L \text{ and } L \unlhd_T M\}) \cap K \subseteq T$. Since $\frac{M}{T}$ is finitely co-generated, then so $(\bigcap_{i=1}^n L_i) \cap K \subseteq T$ for finite number $L_i \in \{L : T \subseteq L \text{ and } L \unlhd_T M\}$. By Proposition 2.12, $\bigcap_{i=1}^n L_i \unlhd_T M$ and hence $K \subseteq T$. □

Corollary 3.6. Let T be a submodule of right R-module M. Then $\frac{M}{T}$ is finitely co-generated if and only if $\frac{\text{Soc}_T(M)}{T}$ is finitely generated and $\text{Soc}_T(M) \unlhd_T M$.

Proof. By [1, Corllary 10.16], finitely co-generated semisimple R-modules are precisely finitely generated semisimple R-modules. Now by Lemma 3.3 and Proposition 3.4, $\frac{\text{Soc}_T(M)}{T}$ is semisimple, hence $\frac{\text{Soc}_T(M)}{T}$ is finitely co-generated if and only if it is finitely generated. □

Definition 3.7. Let T be a proper submodule of right R-module M. M is called T-uniform provided that for each submodule K of M, if $K \not\subseteq T$, then $K \unlhd_T M$.

Lemma 3.8. Let T be a proper submodule of right R-module M. Then M is T-uniform if and only if for each two submodules K and N of M, $K \cap N \subseteq T$ implies that either $K \subseteq T$ or $N \subseteq T$.

Proof. Let K and N be two submodules of M such that $K \cap N \subseteq T$ and $K \not\subseteq T$. By hypotheses, $K \subseteq_T M$ and hence $L \subseteq T$. Conversely, assume that K and N are submodules of M such that $K \not\subseteq T$ and $K \cap L \subseteq T$. Then $L \subseteq T$, as desired. □

The right R-module M is said to be uniserial provided that the lattice of all submodules of M is totally ordered with inclusion.

Proposition 3.9. The right R-module M is uniserial if and only if for each proper submodule T, M is T-uniform.

Proof. Let T be proper submodule of M. Assume that N and K are submodules of M such that $K \cap N \subseteq T$. Since M is uniserial, either $N \subseteq K$ or $K \subseteq N$. Hence either $K \cap N = K$ or $K \cap N = N$. Conversely, assume that N and K are submodules of M such that $K \not\subseteq T$. Hence $K \not\subseteq (K \cap N)$ and by assumption $K \not\subseteq_{(K \cap N)} M$. On the other hand $K \cap N \subseteq K \cap N$. Thus $N \subseteq K \cap N$ and hence $N \subseteq K$. □

Note that if R-module M is T-uniform, then $\frac{M}{T}$ is a uniform R-module but the converse is not true. For instance, assume that $R = \mathbb{Z}_2$ and $M = R \oplus R$ as an R-module. We know that $T = \{ (x, x) | x \in R \}$ is a maximal submodule of M, hence $\frac{M}{T}$ is uniform. But $R \oplus 0 \not\subseteq T$ and $R \oplus 0$ is not T-essential submodule of M because $(0, 1) \in M \setminus T$ and for each $r \in R$, $(0, 1)r \not\in (R \oplus 0) \setminus T$.

Example 3.10. 1. Uniform R-modules are precisely 0-uniform R-module.
2. If P is a prime ideal of a commutative ring R, then R is a P-uniform R-module. Moreover, P is a prime ideal of R if and only if R is a P-uniform R-module. Moreover, P is a semi-prime ideal of R if and only if $\frac{R}{P}$ is uniform and P is a semi-prime ideal of R.

Proposition 3.11. For each positive integer number n, $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a uniform \mathbb{Z}-module if and only if \mathbb{Z} is an $n\mathbb{Z}$-uniform \mathbb{Z}-module.
Proof. The “if” part is always true. For the “only if” part, assume that $\frac{\mathbb{Z}}{n\mathbb{Z}}$ is a uniform \mathbb{Z}-module. It is clear that there exist a positive integer number k and a prime number p such that $n = p^k$. Suppose that $m \in \mathbb{Z}$ such that $m\mathbb{Z} \not\subseteq n\mathbb{Z}$ (or equivalently $n \nmid m$). If $t \in \mathbb{Z} \setminus n\mathbb{Z}$, then there exist integer numbers $0 \leq r, s < k$ and prime numbers p_1, p_2, \ldots, p_a such that

$$m = p^r p_1^{m_1} p_2^{m_2} \cdots p_a^{m_a} \quad \text{and} \quad t = p^s p_1^{m_1} p_2^{m_2} \cdots p_a^{m_a}.$$

It is clear that there exists integer number b such that $tb \in m\mathbb{Z} \setminus n\mathbb{Z}$ and by Lemma 2.7, proof is complete. □

References

Saeed Safaeeyan
Department of mathematical Sciences
Assistant of Mathematics
Yasouj University
P.O. Box 75918-74831
Yasouj, Iran
E-mail: safaeeyan@mail.yu.ac.ir
Najmeh Saboori Shirazi
Department of mathematical Sciences
M.Sc Student of Mathematics
Yasouj University
P.O. Box 75918-74831
Yasouj, Iran
E-mail: saboori@stu.yu.ac.ir