
Journal of Mathematical Extension
Vol. 15, SI-NTFCA, (2021) (24)1-25
URL: https://doi.org/10.30495/JME.SI.2021.2148
ISSN: 1735-8299
Original Research Paper

Collocated Meshless Method for
Time-Fractional Diffusion-Wave Equations

B. F. Malidareh

Babol Branch, Islamic Azad University

Abstract. This paper goals to expand a meshless method using the
collocated discrete least squares meshless (CDLSM) approach for math-
ematical modeling of a category of time fractional diffusion-wave equa-
tion (TFDWE). First, moving least squares (MLS) method used to con-
struct the shape function is briefly described. Then, using the shape
function generated by the least squares method, the discrete shape of
the TFDWE is received in the strong form. Two-dimensional test prob-
lems with different nodes and collocations distributions are studied to
validate and look at the accuracy and performance of proposed method.
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1 Introduction

Numerous phenomena in different areas of applied mathematics and
mechanics can be simulated by equations with fractional derivatives.
Some recent research articles can be found in [33, 15, 16, 34]. A class of
these equations is the time fractional wave-diffusion equation, which is
used in many important physical phenomena. It is obtained by replacing
1 < α < 2 in the second-order diffusion wave equations. In this research,
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2 B. F. MALIDAREH

our studies and investigations focus on TFDWEs with Caputo derivative
as follows

∂αu(x, t)

∂tα
= µ∆u(x, t) + f(x, t), (1)

accompanied by the conditions,{
u(x, 0) = ϑ0(x),

∂u(x,t)
∂t

∣∣∣
t=0

= ϑ1(x),
x ∈ Ω, (2)

and appropriate Dirichlet and Neuman boundary conditions{
u = ū,
Lu = t̄,

x ∈ Γ, (3)

In which L is a (partial) differential operator, u(x, t) and α are unknown
variable and order of time derivative respectively. In this research,
f(x, t) is source term and ∂αu(x,t)

∂tα is the Caputo fractional derivative
with repect to ”t” defined as,

∂αu(x, t)

∂tα
=

1

Γ(2− α)

∫ t

0

∂2u(x, ζ)

∂ζ2

dζ

(t− ζ)α−1
, 1 < α < 2.

It must be noted that most wave-diffusion equations don’t have an-
alytical solution, and as a result, a lot of research has been done to
numerically solve such equations. The method of separation of vari-
ables, Sumudu transform approch, decomposition scheme, Finite dif-
ference method, radial point interpolation method, B-spline collocation
approach, Sinc-Chebyshev scheme introduce by Chen et al. [4], Darzi et
al. [6], Ray [30], Huang et al.[14], Hosseini et al. [13], Esen [10], Mao
[26] respectively are some of numerical schemes for solving the TFDWE
problems.
In the past decades, a number of meshless approaches have been de-
veloped that have been successfully considered by mathematicians and
the engineering community [22]. The meshless methods have gained
more attention not only by mathematicians but also in the engineering
community and numerous meshless methods have been developed due to
their easy implementation on complex geometries in the fields of applied
mathematics and computational mechanics. Some of meshless methods
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that use nodal interpolation techniques and can therefor be widely em-
ployed in various fields can be found in [23, 3, 36, 27, 8, 29, 28]. Nowdays,
method based on meshless approaches were introduced to deal with frac-
tional diffusion-wave equation [7, 31, 17]. One of the techniques used in
the meshless method is the collocation method, which was first intro-
duced by Slater [32] and then Barta [2], Frazer et al. [12] and Lanczos
[19] developed it in their works. In two past decades, a some of meshless
approaches using collocation have risen in studies [1, 9, 11, 35, 24, 25].
The diffusion-wave equation solve problems that occur in the computa-
tional mechanics and mathematical modeling. To simulate time-related
unusual diffusion procedure, we can use TFDWE by inserting a frac-
tional order time derivative in the classical diffusion-wave equation.
This study put to test TFDWEs using the CDLSM method and some
numerical cases are given to highlight the efficiency and accuracy of the
introduced approach.

2 The MLS Approximation

The moving least squares (MLS) approach, the radial point approxi-
mation, and kriging interpolation are only a few strategies to construct
meshless shape functions. Among those methods, The MLS approxi-
mation is now broadly utilized in meshless approach to generate shape
functions. The MLS was inroduced by mathematicians to fit data and
construct surfaces [18, 5]. It may be classified as a manner to show a set
of functions. Assume the approximation of u(x) to be uh(x) as shown
in Figure 1 and can be defined as,

uh(x) =
m∑
i=1

pi(x)a(x) = pT (x)a(x). (4)

In Eq.(4), coefficients vector a(x) is written as

aT(x) = {a1 a2 ... am}.

Note that the coefficient vector a(x) in Eq.(4) is function of x and it
can be obtained by minimizing the following weighted discrete L2 norm

J =
n∑
i=0

W (x− xi)(p
T(xi)a(x)− ui)2.
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Figure 1: Approximate solutions u(x) and nodal values ui in the MLS
interpolation

In the above equation, n is the number of nodal points in the support
domain so that the weight function in this domain is opposite of zero
and ui is values of u at nodes. Since the number of nodal points n is
greater than the number of unknown coefficients in the MLS interpo-
lation, the approximation function uh does not pass through all nodes.
In this paper, the quadratic spline weighted function has been used and
explained in more details in [21, 20]. The stationary of J with respect
to a(x) gives

∂J

∂a
= 2

n∑
i=1

W (x− xi) p (xi)
(

pT (xi) a (x)− ui
)

= 0→

n∑
i=1

Wi (x) p (xi) pT (xi) a (x) =

n∑
i=1

Wi (x) p (xi)ui,

(5)

where

W (x− xi) = Wi (x) , D (x) =

n∑
i=1

Wi (x) p (xi) pT (xi) ,

and

E(x) = [W1 (x) p (x1) W2 (x) p (x2) . . . . . . . Wn (x) p (xn) ].
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Eq.(4) and Eq.(5) yield familiar form of

uh (x) =

n∑
i=1

Ni (x)ui = N (x) us, (6)

Where NT (x) is the vector of MLS shape functions and us is Vector
corresponding to nodal values where defined as follow

N (x) = pTD−1 (x) E (x) = [N1 (x) N2 (x) . . . . Nn (x)] . (7)

As shown in Figure 1, the ui is not equal to the values of the approx-
imation solutions in the MLS interpolation, so it does not satisfy the
Kronecker delta condition (uh(xi) 6= ui). The quartic spline function
(W ) is defined as follows

Wi(x) =

{
1− 6ri

2 + 8ri
3 − 3ri

4 ri ≤ 1

0 ri > 1

in which Wi (x) has 3rd order continuity and r= |x−xi|ds
. As shown in

Figure 2, ds is the size of the support domain which is as follows

ds = αsdc.

In the above equation, αs is the dimensionless coefficient of the size of
the support domain, and dc is the nodal distance around the point at
xl. If the distribution of nodal points is uniform, then dc is the distance
between two adjacent points. When the distribution is non-uniform, dc
is the average distance between nodes within the support domain of xl.
Generally, αs = 2.0 ∼ 3.0 yields accurate results for many problems [21].
Here, αs= 2.5 has been considered. To obtain the spatial derivatives of
the unknown variable, we must first obtain the derivatives of the shape
function. For this purpose and based on Eqs.(6)-(7), we have

N (x) = ΘT (x) D(x),

Where Θ (x) is determined by

E (x) Θ (x) = p(x).
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Figure 2: Field and boundary support domain

The partial derivatives of Θ (x) can be obtained as follows

EΘ,x=p,x−E,xΘ,

EΘ,xx=p,xx−E,xxΘ−2E,xΘ,x,

EΘ,y=p,y−E,yΘ,

EΘ,yy=p,yy−E,yyΘ−2E,yΘ,y.

The numerical solution of u (x, t) and its derivatives at a collocation
point xl can be obtained by the following linear combination

u (x) = N (x) us, (8)

ux(x) = Nx (x) us, (9)

uy(x) = Ny (x) us, (10)

uxx(x) = Nxx (x) us, (11)

uyy(x) = Nyy (x) us, (12)

where Nx , Nxx , Ny and Nyy are vector of first and second derivative
of Eq.(8) with respect to x and y respectively as follows

Nx(x) =

[
∂N1 (x)

∂x

∂N2 (x)

∂x
. . . .

∂Nn (x)

∂x

]
,
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Ny(x) =

[
∂N1 (x)

∂y

∂N2 (x)

∂y
. . . .

∂Nn (x)

∂y

]
,

Nxx(x) =

[
∂2N1 (x)

∂x2

∂2N2 (x)

∂x2 . . . .
∂2Nn (x)

∂x2

]
,

Nyy(x) =

[
∂2N1 (x)

∂y2

∂2N2 (x)

∂y2 . . . .
∂2Nn (x)

∂y2

]
.

3 Discretization of Time Fractional Derivative

The fractional derivative with respect to time at t=tk+1 is defined by

∂αu(x, t)

∂tα
=

1

Γ(2−α)

∫ t

0

∂2u(x, ζ)

∂ζ2

dζ

(t−ζ)α−1 , (13)

where tk=k∆t , k= 1, 2, . . . ,m and ∆t is time step
Let z (x, t) =∂u(x,t)

∂t , then Eq.(13) can be written as

w (x, t) =
1

Γ(2−α)

∫ t

0

∂z(x, ζ)

∂ζ

dζ

(t−ζ)α−1 .

w (x, t) can be obtained at t = tk+1 as follow

w(x, tk+1)=
1

Γ(2−α)

k∑
j=0

∫ tj+1

tj

∂z(x, ζ)

∂ζ

dζ

t(tk+1−ζ)α−1

=
1

Γ(2−α)

k∑
j=0

[
z(x, tj+1)−z(x, tj)

∆t
+O(∆t)] ×

∫ tj+1

tj

(tk+1−ζ)1−αdζ.

(14)

By defining bj = (j + 1)2−α− j2−α, then Eq.(14) can be writen as follow

w (x, tk+1) =
(∆t)1−α

Γ(3−α)

k∑
j=0

bk−j [z (x, tj+1)− z (x, tj)] +O((∆t)3−α).

(15)
By definition of z (x, t) as follow

∂u(x, tj+1)

∂t
=z (x, tj+1) ,
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and
∂u(x, tj)

∂t
=z (x, tj) .

Then using Taylor’s expansion, we have

u (x, tj−1) =u (x, tj)−∆t
∂u (x, tj)

∂t
+

∆t2

2!

∂u (x, tj)

∂t
− . . .

u (x, tj) =u (x, tj+1)−∆t
∂u (x, tj+1)

∂t
+

∆t2

2!

∂u (x, tj+1)

∂t
− . . .

Hence

∂u(x, tj+1)

∂t
− ∂u(x, tj)

∂t
=

u(x, tj+1)− 2u(x, tj) + u(x, tj−1)

∆t
+O(∆t),

or

z (x, tj+1)− z (x, tj) =
u (x, tj+1)− 2u (x, tj) + u (x, tj−1)

∆t
+O(∆t).

(16)
Substitution Eq.(16) into Eq.(15) yields

w(x, tk+1) =
(∆t)−α

Γ(3−α)

k∑
j=0

bk−j [u(x, tj+1)− 2u(x, tj) + u(x, tj−1)

+O(∆t)] +O((∆t)3−α),

or

w(x, tk+1) =
(∆t)−α

Γ(3− α)

k∑
j=0

bj [u(x, tk−j+1)− 2u(x, tk−j) + u(x, tk−j−1)]

+O((∆t)1−∝) +O((∆t)3−α).

Now omitting truncation error terms, we have

w (x, tk+1) =
(∆t)−α

Γ(3−α)

k∑
j=0

bj [u (x, tk−j+1)− 2u (x, tk−j) + u (x, tk−j−1)].

(17)
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4 Numerical Scheme

Eq.(1) was discretized by the θ-method with respect to time using Eq.(17)
as follows:

(∆t−α

Γ(3− α)

k∑
j=0

bj [u(x, tk−j+1)− 2u(x, tk−j) + u(x, tk−j−1)]

− θµ∆u(x, tk+1)− (1− θ)× µ∆u(x, tk)+F (u(x, tk))−f(x, tk+1) = 0.

(18)

Eq.(18) can be written as follow

u(x, tk+1)− θµχ∆u(x, tk+1)− 2u(x, tk) + u(x, tk−1) +

k∑
j=1

bj [u(x, tk−j+1)− 2u(x, tk−j) + u(x, tk−j−1)]−

(1− θ)µχ∆u(x, tk) + χF (u(x, tj))− χf(x, tj+1)= 0,

(19)

where χ = (∆t)−α Γ (3−α)
It must be noted that, to evaluation unknown variable u in Eq.(19)
at each time, we must calculate t−1. Based on Eq.(2), using central
differences method with respect to t= 0 gives

u (x, t1)− u (x, t−1)

2∆t
=ϑ1(x),

Hence
u (x, t−1) = u (x, t1)− 2∆tϑ1(x).

The substitution of Eqs.(8)-(12) into Eq.(19) yields residual equation
(RΩ ) at collocations of xl as follows

RΩ
l = N(xl)us − θµχ(Nxx(xl) + Nyy(xl))us − 2u(xl, tk) + u(xl, tk−1)

+

k∑
j=1

bj [u(xl, tk−j+1)− 2u(xl, tk−j) + u(xl, tk−j−1)]

− (1− θ)µχ∆u(xl, tk) + χF (u(xl, tk))− χf(xl, tk+1)

l = 1, 2, . . . . , nd.

(20)
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By substitution Eqs.(8)-(12) into Eq.(3)

Ru
l = N (xl) us − u (xl) l = 1, 2, . . . . , nu, (21)

Rt
l = LN (xl) us − t (xl) l = 1, 2, . . . . , nt, (22)

where nd, nu and nt are the number of collocations in the domain and on
Dirichlet and Neuman boundary conditions respectively. Eqs.(20)-(22)
can be written as follow

RΩ = Lus − b,

Ru = Aus − c,

Rt = Bus − d,

Where

Llj = N (xl)− θµχ
(
∂2Nj (xl)

∂x2 +
∂2Nj (xl)

∂y2

)
, l = 1, 2, . . . . , nd and j = 1, 2, . . . . , n,

bl = −2u(xl, tk) + u(xl, tk−1)+

k∑
j=1

bj [u(xl, tk−j+1)− 2u(xl, tk−j) + u(xl, tk−j−1)]

− (1− θ)µχ∆u(xl, tk) + χF (u(xl, tk))− χf(xl, tk+1)

, l = 1, 2, . . . . , nd,

Alj = Nj (xl) l = 1, 2, . . . . , nu and j = 1, 2, . . . . , n,

cl = u(xl) l = 1, 2, . . . . , nu,

Blj = LNj (xl) l = 1, 2, . . . . , nt and j = 1, 2, . . . . , n,

dl = t (xl) l = 1, 2, . . . . , nt.

Using penalty techniques, we define discrete L2 norm as

I = ‖Lus − b‖22 + α‖Aus − c‖22 + β‖Bus − d‖22, (23)
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Where α and β are penalty coefficients that present the ratio of the
residual on the boundary to the residual of the computational domain.
Optimizing Eq.(23) with respect to ui yields

∇I = LT (Lus − b) + αAT (Aus − c) + βBT (Bus − d) = 0,

Kus = F. (24)

The stiffness matrix K and load vector F can be calculated as

K =
(
LTL + αATA + βBTB

)
, (25)

F = b + αc + βd.

Matrix K in Eq.(25) is a symmetric and and positive-definite that can
be solved using a suitable method using the direct or iterative method.
Solving system Eq.(24) leads to quantities of ui and then approximation
function uh(x) at any collocation point of xl is calculated by Eq.(6).
Using collocations (additional points) can increase the accuracy of the
problem without increasing the dimension of the stiffness matrix, and it
causes approach being more efficient.

5 Numerical Examples

We now utilize a variety of problems to clarify the theoretical concepts
that we discussed in the previous sections. To realize the accuracy and
efficiency of the proposed approach, we adopt the L2 and L∞ norms,
defined as,

L2 =

√√√√∑M
i=0 (uexact

i − uappi )
2∑M

i=0 (uexact
i )

2 ,

L∞ = max|uexact
i − uappi |1≤i≤M ,

uexact and uapp represent exact and numerical solutions respectively and
M is number of collocations used in computational domain Ω and on
boundary conditions Γ.
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Example 5.1. we assume following test problem

∂αu(x, t)

∂tα
= ∆u(x, t) + f(x, t).

We deduce the boundary and initial condition of the following analytical
result
u(x, t) = t2 sin(x+ y).

The linear source term is assumed as f(x, t) =
(

2t2−α

Γ(3−α) + 2t2
)

sin(x+y).

The above test problem is solved in the range of [0, 1]2 for different
numbers of ∆t and α. The results can be seen in Table 1. Nodes and
collocations arrangement are illustrated in Figure 3. In Figure 4, a plot
of the numerical solution at t = 3 is presented. Figure 5 shows that this
method can model the problem with high accuracy. Table 2 summarizes
L2 and L∞ between approximated results with respect to analytical
solutions with different the number of points at t = 3. As shown in
Table 2, the accuracy of the problem has increased as the number of
points increases.

Figure 3: Nodal and collocation points arrangements.
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(a) Approximated result for
Case A; nodes=30, colloca-
tions=44

(b) Contour plot for Case A;
nodes=30, collocations=44

(c) Approximated result for
Case B; nodes=74, colloca-
tions=98

(d) Contour plot for Case B;
nodes=74, collocations=98

(e) Approximated result for
Case C; nodes=142, colloca-
tions=198

(f) Contour plot for Case C;
nodes=142, collocations=198

Figure 4: Approximated result and contour plot at t = 3 for different
nodes and collocation points; α = 1.85 and ∆t = 0.05
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(a) Absolute error for Case A;
nodes=30, collocations=44

(b) Contour plot for Case A;
nodes=30, collocations=44

(c) Absolute error for Case B;
nodes=74, collocations=98

(d) Contour plot for Case B;
nodes=74, collocations=98

(e) Absolute error for Case C;
nodes=142, collocations=198

(f) Contour plot for Case C;
nodes=142, collocations=198

Figure 5: Absolute error and contour plot at t = 3 for different nodes
and collocation points; α = 1.85 and ∆t = 0.05
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∆t
α = 1.85 α = 1.15

CPU time(s)
L2 L∞ L2 L∞

0.01 9.8438e− 5 2.9576e− 3 9.9798e− 5 3.0345e− 3 58.46 s

0.025 1.2101e− 4 5.4276e− 3 1.2767e− 4 5.7549e− 3 28.25 s

0.05 2.8488e− 4 7.4516e− 3 3.0750e− 4 7.6618e− 3 9.84 s

0.1 6.5234e− 4 1.0224e− 2 7.4335e− 3 1.4516e− 2 5.54 s

Table 1: error values at different numbers of α and ∆t at time t = 3,
nodal points=142 and collocation points=198

Case No. of Nodes No. of collocations L2 L∞ CPU time

A 30 44 8.4155e− 3 5.2187e− 2 1.99 s

B 74 98 7.7233e− 3 1.4969e− 2 4.29 s

C 142 198 2.8488e− 4 7.4516e− 3 9.85 s

Table 2: Approximated results of the problem using different points at
t = 3 and ∆t = .05.

Example 5.2. Consider following test problem

∂αu(x, t)

∂tα
= ∇u(x, t) + f(x, t).

The boundary and initial conditions are obtained from the following
equation u(x, t) = t2e−(x2+y2). The source terms is f(x, t) = ( 2t2−α

Γ(3−α1) +

4t2(x2 + y2) − 4t2)e−(x2+y2). The above problem has been solved in
range [−1, 1]2 with α = 1.85. The numerical results at t = 1 with
∆t = 0.05 are listed in Table 3. In Figures 6 and 7, we illustrated the
approximated solution and absolute error for different number of nodes
and collocations.

Example 5.3. Assume following test problem

∂αu(x, t)

∂tα
= ∆u(x, t) + f(x, t).

This example is adopted from [17]. The analytical solution is used to
deduce initial and boundary conditions, u(x, t) = cos(πx) cos(πy)t3+α.
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(a) Approximated result for
Case A; nodes=58, colloca-
tions=98

(b) Contour plot for Case A;
nodes=58, collocations=98

(c) Approximated result for
Case B; nodes=144, colloca-
tions=258

(d) Contour plot for Case B;
nodes=144, collocations=258

(e) Approximated result for
Case C; nodes=514, colloca-
tions=790

(f) Contour plot for Case C;
nodes=514, collocations=790

Figure 6: Approximated result and contour plot at t = 1 for different
nodes and collocation points; α = 1.85 and ∆t = 0.05
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(a) Absolute error for Case A;
nodes=58, collocations=98

(b) Contour plot for Case A;
nodes=58, collocations=98

(c) Absolute error for Case B;
nodes=144, collocations=258

(d) Contour plot for Case B;
nodes=144, collocations=258

(e) Absolute error for Case C;
nodes=514, collocations=790

(f) Contour plot for Case C;
nodes=514, collocations=790

Figure 7: Absolute error and contour plot at t = 1 for different nodes
and collocation points; α = 1.85 and ∆t = 0.05
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Case No. of Nodes No. of collocations L2 L∞ CPU time

A 58 98 9.1945e− 3 1.0901e− 2 1.96 s

B 144 258 3.3013e− 3 5.3810e− 3 4.87 s

C 514 790 8.9051e− 4 1.4972e− 3 22.45 s

Table 3: Approximated results of the problem using different points at
t = 1 and ∆t = 0.05.

The linear source term is assumed as
f(x, t) = (Γ(4+α)

6 t3 + 2π2t3+α) cos(πx) cos(πy).

To show that this method can model irregular domain as well as New-
man boundaries with high accuracy, the computational domain shown
in Figure 8 is used. We approximate the solution of this problem with
α = 1.50 and ∆t = 0.05 at time t = 1, the results are summarized in
Table 4. In Figures 9 and 10, we display the results for different number
of nodes and collocations.

Figure 8: computational domain with Dirichlet and Neumann boundary condi-
tions.
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(a) Approximated result for
Case A; nodes=42, colloca-
tions=106

(b) Contour plot for Case A;
nodes=42, collocations=106

(c) Approximated result for
Case B; nodes=106, colloca-
tions=172

(d) Contour plot for Case B;
nodes=106, collocations=172

(e) Approximated result for
Case C; nodes=420, colloca-
tions=658

(f) Contour plot for Case C;
nodes=420, collocations=658

Figure 9: Approximated result and contour plot at T = 1 for different
nodes and collocation points; α = 1.50 and ∆t = 0.05
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(a) Absolute error for Case A;
nodes=42, collocations=106

(b) Contour plot for Case A;
nodes=42, collocations=106

(c) Absolute error for Case B;
nodes=106, collocations=172

(d) Contour plot for Case B;
nodes=106, collocations=172

(e) Absolute error for Case C;
nodes=420, collocations=658

(f) Contour plot for Case C;
nodes=420, collocations=658

Figure 10: Absolute error and contour plot at T = 1 for different nodes
and collocation points; α = 1.50 and ∆t = 0.05
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Case No. of Nodes No. of collocations L2 L∞ CPU time

A 42 106 9.4163e− 2 1.8758e− 1 1.82 s

B 106 172 1.7614e− 2 3.3777e− 2 4.89 s

C 420 658 7.3304e− 3 9.9280e− 3 19.75 s

Table 4: Approximated results of the problem using different points at
t = 1 and ∆t = 0.05.

6 Conclusion

A numerical scheme based on the CDLSM method was investigated to
solve TFDWEs. We described how we construct shape functions by
applying the least squares method. It is evident from the problems con-
sidered that if the number of collocation points exceeds the field point
numbers, then the suggested approach yields improved results and ascer-
tains stability. Finally, three test examples were implemented to high-
light the efficiency and accuracy of the introduced method.
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