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Abstract. According to fuzzy arithmetic, general dual fuzzy linear
system (GDFLS) cannot be replaced by a fuzzy linear system (FLS). In
this paper, we use new notation of fuzzy numbers and convert a GDFLS
to two linear systems in crisp case, then we discuss complexity of the
proposed method. Conditions for the existence of a unique fuzzy solution
to n× n GDFLS are derived.
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1. Introduction

Fuzzy linear systems arise in many branches of science and technology
such as economics, social sciences, telecommunications, image process-
ing etc. Friedman et al. [14] introduced a model for solving a fuzzy
linear system whose coefficient matrix is crisp and the right-hand side
column is an arbitrary fuzzy number vector. Also they studied duality
in fuzzy linear systems Ax = Bx + y where A and B are real n × n

matrices, the unknown vector x is a vector consisting of n fuzzy num-
bers and the constant y is a vector consisting of n fuzzy numbers, in
[15]. In [1, 3, 4, 9] the authors presented conjugate gradient and LU de-
composition method for solving general FLS or symmetric FLS. Then,
Allahviranloo has proposed iterative methods for solving a FLS [6, 7, 8].
In [5] Abbasbandy et al. investigated the existence of a minimal solution
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of general dual FLS of the form Ax+f = Bx+c, where A and B are real
m× n matrices, the unknown vector x is a vector consisting of n fuzzy
numbers and the constants f and c are vectors consisting of m fuzzy
numbers. In [19, 20] Otadi et al. has proposed fuzzy neural networks for
solving fully fuzzy linear systems.
Recently, the authors in [12, 13] proposed a method for solving a n× n

FLS whose coefficients matrix is crisp and the right-hand side column
is an arbitrary fuzzy number vector by using the embedding method
given in Cong-Xin and Min [10] and replace the original n × n fuzzy
linear system by two n× n crisp linear systems. It is clear that in large
systems, solving n × n linear system is better than solving 2n × 2n
linear system. Since perturbation analysis is very important in numerical
methods. In [22, 23] presented the perturbation analysis for a class of a
FLS which could be solved by an embedding method. Now, according
to the presented method in this paper, we can investigate perturbation
analysis in two n× n crisp linear systems.

2. Preliminaries

In [16, 17] a fuzzy number is defined as follows.

Definition 2.1. A fuzzy number u is a pair (u, u) of functions u(r) and
u(r), 0 6 r 6 1, which satisfy the following requirements:
i. u(r) is a bounded monotonically increasing, left continuous function
on (0, 1] and right continuous at 0.
ii. u(r) is a bounded monotonically decreasing, left continuous function
on (0, 1] and right continuous at 0.
iii. u(r) 6 u(r), 0 6 r 6 1.

Definition 2.2. [21] For arbitrary fuzzy numbers u = (u, u) and u =
(v, v) the quantity

D(u, v) = sup
06r61

{max[| u(r)− v(r) |, | u(r)− v(r) |]}

is the Hausdorff distance between u and v.
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The set of all these fuzzy numbers is denoted by E which is a complete
metric space with Hausdorff distance. A crisp number α is simply rep-
resented by u(r) = u(r) = α, 0 6 r 6 1.
For arbitrary fuzzy numbers u = (u(r), u(r)), v = (v(r), v(r)) and real
number k, we may define the addition and the scalar multiplication of
fuzzy numbers by using the extension principle as [17]

(i) u = v if and only if u(r) = v(r) and u(r) = v(r),

(ii) u+ v = (u(r) + v(r), u(r) + v(r)),

(iii) ku =
{

(ku, ku), k > 0,
(ku, ku), k < 0.

Remark 2.3. [2] Let u = (u(r), u(r)), 0 6 r 6 1 be a fuzzy number, we
take

uc(r) =
u(r) + u(r)

2
,

uh(r) =
u(r)− u(r)

2
.

It is clear that uh(r) > 0, u(r) = uc(r)−uh(r) and u(r) = uc(r)+uh(r),
also a fuzzy number u ∈ E1 is said symmetric if uc(r) is independent of
r for all 0 6 r 6 1.

Remark 2.4. Let u = (u(r), u(r)), v = (v(r), v(r)) and also k, s are
arbitrary real numbers. If w = ku+ sv then

wc(r) = kuc(r) + svc(r),
wh(r) = |k|uh(r) + |s|vh(r).

Definition 2.5. The n× n linear system
a11x1 + · · ·+ a1nxn = b11x1 + · · ·+ b1nxn + y1,
a21x1 + · · ·+ a2nxn = b21x1 + · · ·+ b2nxn + y2,
...
an1x1 + · · ·+ annxn = bn1x1 + · · ·+ bnnxn + yn,

(1)
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where the given matrices of coefficients A = (aij), 1 6 i, j 6 n and
B = (bij), 1 6 i, j 6 n are real n × n matrices, the given yi ∈ E,
1 6 i 6 n, with the unknowns xj ∈ E, 1 6 j 6 n is called a GDFLS.
In the sequel, we will call the GDFLS (1) where bij = 0, 1 6 i, j 6 n, a
fuzzy linear system (FLS).

Definition 2.6. [15] A fuzzy number vector (x1, x2, ..., xn)t given by

xj = (xj(r), xj(r)); 1 6 j 6 n, 0 6 r 6 1,

is called a solution of the GDFLS (1) if
∑n

j=1 aijxj =
∑n

j=1 bijxj + y
i
,

∑n
j=1 aijxj =

∑n
j=1 bijxj + yi.

If, for a particular i, aij , bij > 0, for all j, we simply get
n∑
j=1

aijxj =
n∑
j=1

bijxj + y
i
,

n∑
j=1

aijxj =
n∑
j=1

bijxj + yi.

Finally, we conclude this section by a reviewing on the proposed method
for solving FLS in [14].
Let bij = 0 for all i, j. Friedman et al. [14] wrote the FLS of Eq.(1) as
follows:

SX = Y, (2)

where sij are determined as follows:

aij > 0 =⇒ sij = aij , si+m,j+n = aij ,
aij < 0 =⇒ si,j+n = −aij , si+m,j = −aij ,

(3)

and any sij which is not determined by (3) is zero and

X =



x1
...
xn

−x1
...

−xn


, Y =



y
1

...
y
m

−y1
...

−ym


.
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The structure of S implies that sij > 0, 1 6 i 6 2m, 1 6 j 6 2n and
that

S =
(
H C
C H

)
, (4)

where H contains the positive entries of A, and C contains the absolute
values of the negative entries of A, i.e., A = H − C.

Theorem 2.7. [14] The matrix S is nonsingular if and only if the mat-
rices A = H − C and H + C are both nonsingular.

Theorem 2.8. [14] If S−1 exists it must have the same structure as S,
i.e.

S−1 =
(
D E
E D

)
, (5)

where

D =
1
2
[(H + C)−1 + (H − C)−1], E =

1
2
[(H + C)−1 − (H − C)−1].

We know that if S is nonsingular then

X = S−1Y. (6)

Recently, Ezzati [12] considered FLS and solved by using the embed-
ding approach. Unfortunately he has not indicated conditions for the
existence of a unique fuzzy solution to n× n linear system. Ezzati [12]
wrote the linear system of Eq.(1) as follows:

A(x+ x) = y + y, (7)

where h = (x + x) = (x1 + x1, x2 + x2, . . . , xn + xn)T and y + y =
(y

1
+ y1, y2

+ y2, . . . , yn + yn)T .

Theorem 2.9. [12] Suppose the inverse of matrix A in Eq.(1) exists
and x = (x1, x2, . . . , xn)T is a fuzzy solution of this equation. Then
x(r) + x(r) is the solution of the following system

A(x(r) + x(r)) = y(r) + y(r). (8)
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We know that if A is a nonsingular real matrix then

h = A−1(y(r) + y(r)).

Let matrices B and C have defined as Eq.(4). Now using matrix notation
for Eq.(1), we get {

Hx(r)− Cx(r) = y(r),
Hx(r)− Cx(r) = y(r).

By substituting of x(r) = h− x(r) and x(r) = h− x(r) in the first and
second equation of above system, respectively, we have

(H + C)x(r) = y(r) + Ch (9)

and
(H + C)x(r) = y(r) + Ch.

If H + C is nonsingular then

x(r) = (H + C)−1(y(r) + Ch),

and
x(r) = (H + C)−1(y(r) + Ch).

Therefore, we can solve FLS Eq.(1) by solving Eqs. (8)-(9).

3. The Model

In this section, we propose a new method for solving GDFLS.
Consider GDFLS Eq.(1). Usually, there is no inverse element for an
arbitrary fuzzy number u ∈ E1, i.e., there exists no element v ∈ E1 such
that

u+ v = 0.

Actually, for all non-crisp fuzzy number u ∈ E1 we have

u+ (−u) 6= 0.
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Therefore, the fuzzy linear equation system

Ax = Bx+ y,

cannot be equivalently replaced by the fuzzy linear equation system

(A−B)x = y,

which had been investigated. By referring to remark 2 we have{
Axc(r) = Bxc(r) + yc(r),
A1x

h(r) = B1x
h(r) + yh(r),

(10)

where xc(r) = (xc1(r), . . . , x
c
n(r))

T , xh(r) = (xh1(r), . . . , xhn(r))
T , yc(r) =

(yc1(r), . . . , y
c
n(r))

T , yh(r) = (yh1 (r), . . . , yhn(r))
T , A1 and B1 contains the

absolute values of A and B, respectively. We known that if A − B and
A1 −B1 are nonsingular then{

xc(r) = (A−B)−1yc(r),
xh(r) = (A1 −B1)−1yh(r).

(11)

Therefore, we can solve GDFLS Eq. (1) by solving Eqs. (10) and we
have {

x(r) = xc(r)− xh(r),
x(r) = xc(r) + xh(r).

(12)

Theorem 3.1. [11]. A square crisp matrix is inverse-nonnegative if and
only if it is the product of a permutation matrix by a diagonal matrix.
And a square crisp matrix is inverse-nonnegative if and only if its entries
are all zero except for a single positive entry in each row and column.
The following result provides necessary conditions for the unique solution
vector to be a fuzzy vector, given arbitrary input fuzzy vector y.

Theorem 3.2. The Eq. (1) have a unique fuzzy vector solution if (A1−
B1)−1 > 0, (A1−B1)−1+(A−B)−1 > 0 and (A1−B1)−1−(A−B)−1 > 0.

Proof. Let (A1 −B1)−1 > 0, then

x(r) = (A−B)−1yc(r)− (A1 −B1)−1yh(r), (13)
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x(r) = (A−B)−1yc(r) + (A1 −B1)−1yh(r), (14)

and by subtracting Eq. (13) from Eq. (14) we get

x(r)− x(r) = 2(A1 −B1)−1yh(r). (15)

Thus, if y is arbitrary input vector which represents a fuzzy vector,
i.e y(r) − y(r) > 0, then yh(r) > 0, therefore a necessary condition
x(r)− x(r) > 0. By using Eq. (13) and Eq. (14), we have

x(r) = ((A−B)−1 +(A1−B1)−1)
y(r)
2
−((A1−B1)−1−(A−B)−1)

y(r)
2
,

(16)

x(r) = ((A−B)−1 +(A1−B1)−1)
y(r)
2
−((A1−B1)−1−(A−B)−1)

y(r)
2
.

(17)
Since y(r) is monotonically decreasing and y(r) is monotonically in-
creasing, the previous condition due to Eqs.(16)-(17) is also necessary
for x(r) and x(r) to be monotonically decreasing and increasing, respec-
tively. The bounded left continuity of x(r) and x(r) is obvious since
they are linear combinations of y(r) and y(r). �

Consider FLS similar to Eq.(1), i.e. bij = 0, 1 6 i, j 6 n. Therefor, we
have the following theorem.

Theorem 3.3. Assume that Fn, En and On are the number of multi-
plication operations that are required to calculate

X = (x1, x2, . . . , xn,−x1,−x2, . . . ,−xn)T = S−1Y

(the proposed method in Friedman et al. [14]),

X = (x1, x2, . . . , xn, x1, x2, . . . , xn)T

from Eqs. (8)-(9) (the proposed method in Ezzati [12]) and

X = (x1, x2, . . . , xn, x1, x2, . . . , xn)T

from Eqs. (10) and Eqs. (12), respectively. Then On 6 En 6 Fn and
Fn − En = En −On = n2.
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Proof. According to section 2, we have

S−1 =
(
D E
E D

)
,

where

D =
1
2
[(H + C)−1 + (H − C)−1], E =

1
2
[(H + C)−1 − (H − C)−1].

Therefore, for determining S−1, we need to compute (H + C)−1 and
(H −C)−1. Now, assume that M is n× n matrix and denote by pn(M)
the number of multiplication operations that are required to calculate
M−1. It is clear that

p2n(S) = pn(H + C) + pn(H − C) = 2pn(A)

and hence
Fn = 2pn(A) + 4n2.

For computing x + x = (x1 + x1, x2 + x2, . . . , xn + xn)T from Eq.(8)
and x = (x1, x2, . . . , xn)T from Eq.(9), the number of multiplication
operations are pn(A) + n2 and pn(H + C) + 2n2, respectively. Clearly
pn(H + C) = pn(A), so

En = 2pn(A) + 3n2

and hence En−Fn = n2. For computingX = (x1, x2, . . . , xn, x1, x2, . . . , xn)T ,
from Eqs. (10) and Eqs. (12), the number of multiplication operations
are pn(A) + n2 and pn(A1) + n2. Therefore

On = 2pn(A) + 2n2

and hence Fn − En = En −On = n2. This proves theorem. �

4. Numerical Examples

In this section we provide three examples illustrating the model in Sec-
tion 3.
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Example 4.1. An example of economic application
When some micro and macro problem are studied in the economic field,
people often builds some equations or linear systems. And, when some
parameters are not precise, fuzzy linear system appears. Here, we will
give an economic application of general fuzzy linear systems [18].
The market price of a good and the quantity produced are determined
by the equality between supply and demand. Suppose that demand and
supply are linear functions of the price:{

qd = a.p+ b,
qs = c.p+ d,

where qs is the quantity supplied, which is required to be equal to qd,
the quantity requested, p is the price and a, b, c and d are coefficients
to be estimated, where the coefficients b and d are represented by fuzzy
triangular numbers, a and c are crisp numbers. By imposing the equality
between quantity supplied and requested, the following GDFLS should
be solved: {

x1 = −1
2x2 + (18 + r, 20− r),

x1 = 1
2x2 + (−4 + r,−2− r).

We obtain the exact solution by using Eqs. (10)[
xc1(r)
xc2(r)

]
=

[
8
22

]
and [

xh1(r)
xh2(r)

]
=

[
2− 2r
2− 2r

]
,

and hence x1(r) = (6 + 2r, 10− 2r), x2(r) = (20 + 2r, 24− 2r).

Example 4.2. Consider the 2× 2 GDFLS{
2x1 − 2x2 = x1 − x2 + (−1 + 2r, 4− 3r),
3x1 + 4x2 = 2x1 + x2 + (1 + 4r, 10− 5r).

By using Eqs. (10), we have:[
xc1(r)
xc2(r)

]
=

[
5
2 −

r
2

1

]
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and [
xd1(r)
xd2(r)

]
=

[
3
2 −

3
2r

1− r

]
,

hence x1(r) = (1 + r, 4 − 2r) and x2(r) = (r, 2 − r). According to this
fact that xi 6 xi, i = 1, 1, are monotonic decreasing functions then the
solution xi(r) = (xi(r), xi(r)), i = 1, 2, is a fuzzy solution.

Example 4.3. Consider the 3× 3 GDFLS
5x1 + x2 − 2x3 = x1 − x3 + (6r, 14− 8r),
−x1 + 4x2 + x3 = x2 + (7 + 6r, 21− 8r),
2x1 + 3x2 + 5x3 = 2x2 + x3 + (3 + 11r, 22− 8r),

We obtain the exact solution by using Eqs. (10) xc1(r)
xc2(r)
xc3(r)

 =

 1
9
2 −

r
2

3
2 + r

2


and  xh1(r)

xh2(r)
xh3(r)

 =

 1− r
3
2 −

3
2r

3
2 −

3
2r

 ,
hence x1(r) = (r, 2− r), x2(r) = (3 + r, 6− 2r) and x3(r) = (2r, 3− r).

5. Conclusions

In this paper, we proposed a new model for solving a GDFLS with n

fuzzy variables. The original fuzzy linear system with coefficient matri-
ces A and B are replaced by two n × n crisp linear systems. Then, we
discussed complexity of the proposed method. Also, we derived condi-
tions for the existence of a unique fuzzy solution to n× n GDFLS.
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