Journal of Mathematical Extension
Vol. 7, No. 3, (2013), 77-93

1.

Many problems in science and engineering field such as heat transfer, dif-
fusion process, neurosciences, etc. give rise to Volterra-Fredholm integral
equations (VFIE). Usually, evaluating the exact solution of these equa-
tions may be difficult. So the numerical methods have a great appeal for
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mathematicians [1].
The aim of this work is to present a numerical method for approximating
the solution of nonlinear integral equations of the form

s 1
f(s)=g(s)+ [ k(s )Gu(t, f(1))dt + | ko(s,t)Ga(t, f(2))dt, 0<s<1,
0 0

(1)
where f(s) is an unknown function defined on [0, 1], and g(s), ki (s, 1),
ko(s,t), Gi(t, f(t)), and Ga(t, f(t)) are given L£? functions. We suppose
that G1(t, f(t)) = [f(£)]* and Ga(t, f(t)) = [f(t)]?, with arbitrary posi-
tive integers v and J.
Several numerical methods have been proposed for solving Eq. (1), us-
ing various orthogonal basis functions [9, 11-13].
In recent years, the hybrid functions of Legendre polynomials and block-
pulse functions have been applied in solving various types of integral
equations, control problems, time-varying descriptor systems and etc.,
[6-8, 10]. By these functions, the computational advantages of Legendre
polynomials are combined with the simplicity of block-pulse functions,
and a powerful set of basis functions is made. A numerical solution for
the linear case of Eq. (1), was presented by Hsiao, using the hybrid
functions [5]. Also, Maleknejad et al. used the hybrid functions to com-
pute an approximate solution for this equation when G; and Gs be the
positive integer powers of f, [4].
In this paper, a novelty method based on hybrid functions in a Galerkin
approach, is proposed. The method converts Eq. (1) to a system of
mere algebraic equations. In this manner, only the unknown function in
Eq. (1) is expanded by using hybrid functions, and the exact forms of
all known functions in this equation are used. So, the proposed method
is more accurate than the methods used in [4] and [5].
In the next sections, a description of the Legendre hybrid functions and
some of their properties are mentioned. Some theorems regarding the
convergence of function expansion with respect to the Legendre hybrid
functions are also proved. Then, a method for computing numerical so-
lutions of nonlinear Volterra-Fredholm integral equations by using Leg-
endre hybrid functions and Galerkin conditions is proposed. Finally, The
method is applied for solving several numerical examples, which follows
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some conclusions.
2. Review on Legendre Hybrid Functions

Definition 2.1. The Legendre polynomials on the interval [—1,1] are
given by the following recursive formula

Lo(s) = 1,
Ll(s) = t,
2m+1 m
Lpt1(s) = 1 sLpy(s) — THLm‘l(S)’ m=1,2,3,---.

The set of {Ly(s) : m = 0,1,---} in the Hilbert space L*[—1,1] is a
complete orthogonal set. Orthogonality of Legendre polynomials on the
interval [—1,1] implies that

1 2 . .
2i+1> =17
< Li(s), Lj(s) >= /_ Li(s)Ly(s)ds = { o
fori,j=0,1,---, such that < -,- > denotes the inner product [2].

Definition 2.2. In an N-set of block-pulse functions over the interval
[0,1), each component is defined as
1 ntlls<
— ) N N
on(s) { 0, otherwise, (3)
wheren =1,2,--- | N, for arbitrary positive integer N. Block-pulse func-

tions have several important properties such as disjointness, orthogonal-
ity, and completeness [3].

Definition 2.3. Let {Lm(s)}f\f:_o1 be an M -set of Legendre polynomials,
and {¢pn(3)}N_, be an N-set of block-pulse functions over the interval
[0,1), too. An M N-set of Legendre hybrid functions (LHFs) is defined
over the interval [0,1) as

n:1727"'1N7

hym(s) = Lin(2Ns—2n+1)¢n(s), 01 M—1. (4)
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In the above definition, N and M are the order of block-pulse func-
tions and the order of Legendre polynomials, respectively. So, the in-
terval [0,1) is divided to N-subintervals and M Legendre polynomials
constructed on each of them. It is clear that hym(s) can be written as

_f Ln(2Ns—2n+1), pd <s< 2,
finm(5) = { 0, otherwise, (5)

forn=1,2,--- ,Nand m=0,1,--- ,M — 1.

The set of {hpm(s) :n=1,2,--- N, m=0,1,--- ,M—1} is a complete
orthogonal set in the Hilbert space £2[0,1), and its components can be
considered in the following LHF's vector

H(S) = [hLo(S), to ’hl,M—l(S)v R hN,O(S)a to ’hN,M—l(S)]T' (6)

It is simple to verify that the function hy m(s) is attached in k-th com-
ponent of vector H where k = (n — 1)M + m.

Function Expansion: The truncated LHF's expansion of any function
f(s) € £2[0,1) is defined as

N M-1

Z Z Cn,mhn,m(s)

n=1 m=0

= FT.H(s), (7)

f(s)

1

where H(s) defined in (6) and the N M-vector F' contains the coefficients
cn,m that are defined as

Fk:cn,m =

< f(8), hpm(s) >
< hnm(8), hpm(s) >

= N@m+1) - [ f(S)hnm(s)ds,

n

N

for k=1,2,--- ,NM, and called LHFs coefficients vector.

The uniform convergence and the expected error for (7) are showed in
[14], and the results can be summarized in the following theorem.
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Theorem 2.4. Let f(s) be a continuous function defined on [0,1), and

f(s) be its truncated LHFs expansion. If | f"(s)| < Ma, then we have the
following error estimation

_ 3 oo o0 1
17(s) = F(s)I13 < §M22 > > @m

n=N+1m=M

Proof. See [14].
The above theorem guarantees the uniform convergence of the function
expansion with respect to LHFs. [

The Integration of Cross Products: In continuation of this section,
we will encounter to the product of H(s) and H7 (s), which is called the
product matrix of the Legendre hybrid functions. It is clear that

Py i (8) gy m (8) Np = Mg,
Ty s (3) iy o, (5) :{ 0 (8)hnym; (5) ni %”Z»

for np,ng =1,2,--- ,N, and m;,m; =0,1,--- , M — 1. Therefore

H 0 --- 0
Hes) M5y =| O 2] ®)

RV

0 --- 0 Hy

in which the M x M matrices Hy, are as follows

np:1727'” )N7

(an)mi,mj = hnp7mi (S)hnp7mj (S)’ mg, mj = O7 1’ e ’M — 1. (9)
So,
L 0 0
1
D= / Hs)-H (s)ds= | O F , (10)
0 0
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where L is an M x M diagonal matrix that is given by

1 0 . 0
1
L:i 0 3
1
0 0 2M—1

Evaluation of cross products: Let F' be an arbitrary N M-vector of
the form

F= [01,07 e 7CI,M71(5)7 e 7CN,0(5)7 e 7CN,M71(S)]T- (]-]-)
If 4 = (np, — 1)M + my;, the uth component of H(s) - H (s) - F can be
computed as

M—-1

(H(s) - H" () F),y =D Py () By 1(8)Cny -
k=

=]

By expanding the components of H(s) - H (s) - F in terms of LHFs, we
have

H(s)-HT(s)- F ~F-H(s). (12)

It is remarkable that the (NM x N M)-matrix F' is a block matrix too,
and we have

Fl 0 --- 0

po| VP , (13)
: . .0
0 --- 0 Fy

in which the components of the M x M matrices F},, can be computed
as follows

(7-.)
P Mg, Mg

Mz—:l < By ()P, 6 (8) 5 Py ms (8) >

Pt < Py (8), Py m; () >

cnp,k:

M-1T .me
Z l Py s (8) iy k() iy om; (8)dsS | Cnpoey (14)

np—1
k=0 N
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forn, =1,2,--- N, and m;,m; =0,1,--- ,M — 1.

The components of vector F' may be considered as the expansion coeffi-
cients in Eq. (7). In this situation F is called the coefficients matrix. The
calculation procedure of Eq. (12) for N = 2 and M = 8 can be found in
[5].

Approximation for Power of Functions: Now, a truncated expan-
sion of [f(s)]%, for positive integer o > 2 and f(s) € £2[0, 1) is computed.
This idea comes from [8], and is indicated in the following lemma.

Lemma 2.5. Let NM-vectors F' and F, be the LHF's coefficients of f(s)
and [f(s)]”, respectively. Then F, can be computed from the following
recursive formula

Fop=FT.FT | a=3,4,---,

F,=FT.F.

where F defined in Eq. (13).

Proof. see [8]. O

3. Solving Nonlinear Volterra-Fredholm Integral
Equations

The results obtained in the previous section are applied to present an
effective method for solving the nonlinear Volterra—Fredholm integral
equations, numerically.

Consider the following nonlinear Volterra—Fredholm integral equation

s 1
f6) =99+ [ misolf@1d+ [ kaolfoPd 0<s<1,
0 0
(16)
where o, 3 > 1 and £? functions ky(s,t), k2(s,t) and g(s) are known
but f(s) is not [1]. We can Approximate the functions f, [f(s)]“, and
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[f(5)]? with respect to the Legendre hybrid functions as follows

f(s) = FT-H(s)=HI(s) F
[f(s)]* = FI-H(s)=H"(s) Fa, (17)
[f(s)” ~ FI-H(s)=H(s) Fp,

where H(s) is defined in Eq. (6), and NM-vectors F, Fy, and Fj are
LHFs coefficients of f, [f(s)]%, and [f(s)]?, respectively. Elements of
F,, and Fj are nonlinear combinations of the elements F'.

By substituting Egs. (17) in Eq. (16), we have

s 1
FTH(s) ~ g(s)+ FT / ki(s, t)H(t)dt + F} / ko(s, t)H(t)dt
0 0
= g(s) + Fa Ki(s) + Fj Ka(s),

in which C;(s) and Ky(s) are two N M-vectors with the following com-
ponents

(Ki(8)nm = /Oskzl(s?t)hn,m(t)dt

0, s < "T_l,
_ f% k1 (s, t)hnm (t)dt, pd << 1,
N k(s 0) hym(t)dt, s> R
\ N

! %
(Ka())mam = /O ko (5, 1)y () dt = / " a(s, Ohnn(8)dt,

forn = 1,2,--- N, and m = 0,1,--- ,M — 1. Now, let r(s) be the
residual of Eq. (16) when using the approximate solution (17), that is

r(s) = FTH(s) — FTK1(s) — FFKa(s)g(s),

In order to obtain unknown vectors, we use the orthogonality conditions
of {hpm(s):n=1,2,--- N, m=0,1,--- ,M — 1} to r(s), that means

<T(S),hn,m(8)>:0, n:1)2)”' 7N7 m:071)"' 7M_1)
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S0,

1 1
) /0 H(s)HT (s)ds — FT /0 Kr (sYHT (s)ds

1 1
- FBT/ Ka(s)HT (s)ds = / g(s)HT (s)ds,
0 0
and symbolically
F'"D-Fl A-F] - B=aG, (18)

where D is defined in Eq. (10), and A is an NM x NM matrix of the
form

[ AD; AU, AUy 3 AUy N |
0 ADy; AUsgs AU N
A=1| o 0 AD, AUs 5 (19)
0 0 0 ADy i

in which AD,,, and AUy, », are M x M matrices and can be computed

as follow

(AD”P)mi,m]- - ﬁ

(AU, 1) =

mq,m;

forn, =1,2,--- N, ng=np+1,--- ,N and m;,m; =0,1,---

Similarly,

Byymxnyv =

and M x M matrices BD,,, », can be computed as follows

(DBnp,nq)mi’m]. = ﬁ

N

q—1
N

n
P

ng np

N

np—1
N

BDy11 BD1s
BDy1 BDss
BDNn1 BDnp

BDi N
BDy n

BDn N

> s
-1 /np1 kl(s’t)h”pvmi (t)hnp,mj (S)dtdS,
N N

/ﬂql /npl k1(5,) Py m, (8) g m; (5)dtds,
N N

M —1.

)

ka(s,t) Py m; (£) hngm; (s)dtds,
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for np,ng =1,2,--- ,N, and m;,m; =0,1,--- , M — 1.

Eq. (18) is a nonlinear system of NM algebraic equations. The NM
components of F' are unknown and can be computed by solving this
system using Newton method or other iterative methods. Hence, an ap-
proximate solution

f(s) = FT-H(s),

can be computed for Eq. (16). If an approximate value for f(a), 0 < a <
1 required, we can evaluate it as

M—
f(a) = Cn,mhn,m(a)7

m=0

[y

providing a belongs into the interval [”771, %)

4. Convergance Analysis

In the following theorem, we show that the solution obtained by our
method converges to the exact solution of Eq. (16).

Theorem 4.1. Let f(s) be the exact solution of Eq. (16), and f,,(s)
be its approzimate solution obtained by the proposed method. If K1 =
lk1(s,t)]| < 0o and Ko = ||ka(s,t)|| < oo, then f,,5(s) converges to f(s)
when M, N — oco.

Proof. We have

S 1
£(s) = g(s) + / (s, DL (D]t + / Fa(s, B[ (D),

and

S 1
Fuun () =~ g(s) + /0 1 (5, 8) [fron (1))°E + /0 (s, 1) fyo (1))
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So

Cun = Hf fMN( )HQ

< | / (5, (L (] = [ (D))t
o / ka5, D (£ = [fan 1)
< K / IFOI = [ (012t
b K / 1F@) = [ (D)o,

Suppose that

IF @) = a0 Nl2 < Call f(E) = frunw @) l2,
HF @) = fan 02 < Call F(£) = farn B)]2-

Then, using theorem 2., we have

S 1
eun < KiC /0 1FE) = Farn (D)2t + KaC / 1F(E) = Farn (B)]adl

2
< <8K10a + KQCﬁ) : M Z Z n5 2m 3
n=N+1m=M

Hence e,,,, — 0 when M, N — oo, and the proof is completed. [J

MN

5. Numerical Examples

In this section, we implement the proposed method on some examples. In
example 1, a simple integral equation is considered to illustrate the vec-
tor G and the matrices A, B, and F in details.

Examples 2 and 3 are selected from [5, 13]. So, we can compare our
results with the results obtained by another method based on Legendre
hybrid functions [5], and rationalized Haar functions method [13]. The
results of these methods and the exact solution of integral equations are
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compared for 17 terms and reported in Tables 1 and 2.

Furthermore, the accuracy of the method is studied by computing

1
2

_ Nk
e = F(s) ~ f(s)ll> = [Z JACOR f(S))2d8] @
n=1 N

where f(s) and f(s) are the exact and approximate solutions of the
integral equation, respectively. The results are tabulated for N = 2 and
different values of M in Table 3.

The computations associated with the examples were performed using
Matlab 7.0 software on a personal computer.

Example 5.1. Consider the following nonlinear Volterra—Fredholm in-
tegral equation

15 11 ° !
F(s) = 233—1232+s+1+/ (s—3t)f(t)dt+/ 2AF(E2d, 0<s <1,
0 0
(22)
with the exact solution f(s) = s+ 1. Choosing N = 2 and M = 4, we
have

—1 —1 1
oW 0 0 & 0 0
=L -1 =1 -1 =1 0 0
48 60 172? iﬁ? 8
Lo L =L 5 0 0 0
48 1%0 4%0 %8{)
A—1] 9 21 20 T2 o0 00
21 0 0 0 0 AR _()1
L s . v TR oW
0 0 0 0 4 o
L0 0 0 0 0 o5 555 150
ro1 1 1 7 1 1 T
9% T2 o 0 9% @& 960 0
Lo L 1 g 1 L L
288 576 2880 288 192 2880
0O 0 O 0 0 0 0 0
1l o o 0o 0 0 0 0 0
B=51 1 1 1 g 72 3 1 ¢]f>
32 64 320 372 64 32
A 11 9 7 L _1 |
288 576 2880 288 192 2880
0O 0 0 0 0 0 0 0
.o 0o 0 0 0 0O 0 O
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- | F o
0 |’
[ cio Cil Cip i3 i
1 2 2 3 3
N 3Ci1  Cio+ 3Ci2  3Ci1 1 %Ci3 £Ci)2
F, = . i=1,2
1 2 9 2 3 4
5Ci2 5Ci1 +35Ci,3  CioT 7C2  EC1 T 18Ci3
1 9 3 4 4
L 7¢i,3 35Ci2 ZCi1 + 37Ci3  Cio T {5Ci2
and
G — [ 685 157  —13 1 835 13 1 1 ]T
= | T152 5760 5760 4480 1152 640 1152 4480

Solving the nonlinear system (18), the unknown vector F' is obtained as

0 0]

F=[3 400

IS

)

S

which confirms that the proposed method gives the analytical solution
of Eq. (22).

Example 5.2. [5, 13] Consider the following Volterra—Fredholm integral
equation

1

1

F(s) = et3 —/ gezs’%tf(t)dt, 0<s<1, (23
0

with the exact solution f(s) = €2*. The comparison between the results

of presented method, and two other methods are shown in Table 1,

which confirms that our method is more efficient than Haar method [2]
and another hybrid method [10].
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Table 1: The results for Example 5.2.

Hybrid method

Haar method

Proposed method

Analytic solution

[5] (13]

N=2M=11 m=64 N=2 M=11
0.0000  1.0000000000 1.0000000000  1.00000000000000  1.000000000000000
0.0625 1.1331484528 1.1311579430  1.13314845306683 1.133148453066826
0.1250  1.2840254167 12837603834  1.28402541668774  1.284025416687741
0.1875 1.4549914143 1.4527005824  1.45499141461820 1.454991414618201
0.2500 1.6487212706 1.6481159278  1.64872127070013  1.648721270700128
0.3125 1.8682459571 1.8655695040  1.86824595743222  1.868245957432222
0.3750  2.1170000165 2.1159577076  2.11700001661268  2.117000016612675
0.4375  2.3988752936 2.3957036931  2.39887529396710  2.398875293967098
0.5000 2.7182818283 2.7166784439  2.71828182845904  2.718281828459046
0.5625 3.0802168485 3.0764094661  3.08021684891803  3.080216848918031
0.6250  3.4903429572 3.4880191376  3.49034295746184  3.490342957461841
0.6875  3.9550767224 3.9504529800  3.95507672292058  3.955076722920577
0.7500 4.4816890699 4.4784401932  4.48168907033806  4.481689070338065
0.8125 5.0784190365 5.0727470670  5.07841903718008 5.078419037180082
0.8750  5.7546026755 5.7501660019  5.75460267600573  5.754602676005730
0.9375 6.5208191195 6.5138011998  6.52081912033011  6.520819120330113
1.0000  7.3890560982 7.3830942633  7.38905609893065  7.389056098930650

Table 2: The results for Example 5.3.

s Hybrid method Haar method  Proposed method — Analytic solution

5] [13]

N=2M=11 m=064 N=2 M=11
0.0000  1.00000000000  1.00000000000 1.000000000000000 1.0000000000000000
0.0625 0.99902225265  0.99499092661 0.996097563207461  0.9960975632074611
0.1250  0.98440552375  0.97582086257 0.984435939868604  0.9844359398686043
0.1875 0.96801596822  0.95627379531 0.965151656227364  0.9651516562273642
0.2500  0.93835060930  0.92441288933  0.938470479377739  0.9384704793777390
0.3125 0.90745186009  0.88989178359  0.904704774138347  0.9047047741383467
0.3750  0.86398669789  0.84418099810 0.864249846100545 0.8642498461005446
0.4375 0.82015918128  0.80152307757 0.817579313663175 0.8175793136631750
0.5000 0.76478771780  0.74919674323  0.765239563234971  0.7652395632349713
0.5625 0.71021580511  0.68888550827 0.707843352519283  0.7078433525192829
0.6250  0.64538775011  0.62093763904 0.646062636769458  0.6460626367694575
0.6875 0.58275778520  0.56004085150 0.580620702000130  0.5806207020001298
0.7500 0.51136461677  0.49332917634 0.512283697253356  0.5122836972533560
0.8125 0.44373937747  0.43081228158 0.441851665053983  0.4418516650539831
0.8750  0.36897929214  0.36370557901 0.370149175063496  0.3701491750634954
0.9375  0.29965494014  0.30573454224  0.298015670587060  0.2980156705870596
1.0000 0.22488345576  0.24264748419  0.226295640950206  0.2262956409502063
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Table 3:The values of ey for Examples 5.2. and 5.3.

M N Example 5.2. Example 5.3.
4 2 6.7848e — 04 4.9436e — 05
6 2 1.4204e — 06 7.8036e — 08
8 2 1.5892¢ — 09 6.5687¢ — 11
10 2 1.1053e — 12 3.4333e — 14
12 2 7.5409¢ — 16 3.4333e — 14
Example 5.3. [5, 13] For the following Volterra—Fredholm integral
equation
f(s) = cos(s) —/ (s —t)cos(s —t)f(t)dt, 0<t<s<, (24)
0

with the exact solution f(s) = £(2cosV/3s + 1), the results for various
methods are reported in table 2.

6. Comments on the Results

In this approach, applying the hybrid Legendre polynomials and block-
pulse functions, a nonlinear Volterra—Fredholm integral equation can be
reduced to a system of algebraic equations. Since Eq. (18) is set up in
a simple manner, the suggested method can be used easily in practical
cases.

The accuracy and applicability of method is checked on some exam-
ples. Example 1 shows that the exact solution of the integral equation
can be computed by the method with suitable choice of M and N, when
the kernel and the known term is selected by polynomials. The function
approximation with respect to LHFs is uniformly converges to the func-
tion. Furthermore, Since in this method, only the unknown function is
expanded by LHFs, it provides more accurate solutions than some of
other existing methods.
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