Generalizations of ϵ-Fixed Point Theorems in Partial Metric Spaces

S. A. M. Mohsenalhosseini*
Vali-e-Asr University

H. Mazaheri

Yazd University

Abstract

We consider the dualistic partial metric spaces on a set X, and we give necessary conditions for existence of fixed point and ϵ-fixed point for some maps.

AMS Subject Classification: 54H25; 54E50; 54E99; 68Q55
Keywords and Phrases: Fixed points, ϵ - fixed point, partial metric spaces, dualistic partial metric spaces

1. Introduction

The partial metric spaces has been introduced by Matthews in [5] as a part of the study of denotational semantics of dataflow networks. In particular, Matthews established the precise relationship between partial metric spaces and the so-called weightable quasi-metric spaces. Indeed he proved a partial metric generalization of Banach contraction mapping theorem.
A partial metric [5] on a set X is a function $p: X \times X \rightarrow[0, \infty)$ such that for all $x, y, z \in X$:
(1) $x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$;
(2) $p(x, x) \leqslant p(x, y)$;

[^0](3) $p(x, y)=p(y, x)$;
(4) $p(x, z) \leqslant p(x, y)+p(y, z)-p(y, y)$.

A partial metric space is a pair (X, p), where p is a partial metric on X. If p is a partial metric on X , then the function $p^{s}: X \times X \rightarrow[0, \infty)$ given by $p^{s}(x, y)=2 p(x, y)-p(x, x)-p(y, y)$ is a (usual) metric on X. Each partial metric p on X induces a T_{0} topology τ_{p} on X which has as a basis of the family of open p-balls $\left\{B_{p}(x, \epsilon): x \in X, \epsilon>0\right\}$, where $B_{p}(x, \epsilon)=$ $\{y \in X: p(x, y)<p(x, x)+\epsilon\}$ for all $x \in X$ and $\epsilon>0$. Similarly, closed p-ball is defined as $B_{p}(x, \epsilon)=\{y \in X: p(x, y) \leqslant p(x, x)+\epsilon\}$.
A sequence $\left\{x_{n}\right\}_{n \in N}$ in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite) $\lim _{n, m} p\left(x_{n}, x_{m}\right)$ [5].
A partial metric space (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}_{n \in N}$ in X converges, with respect to τ_{p} to a point $x \in X$ such that $p(x, x)=\lim _{n, m} p\left(x_{n}, x_{m}\right)$ [5].
A mapping $T: X \rightarrow X$ is said to be continuous at $x_{0} \in X$, if for $\epsilon>0$, there exists $\delta>0$ such that $T\left(B_{p}\left(x_{0}, \delta\right)\right) \subset B_{p}\left(T\left(x_{0}\right), \epsilon\right)$. [1]

Definition 1.1. [5] An open ball for a partial metric p : X×X $\rightarrow[0, \infty)$ is a set of the form $B_{\epsilon}^{p}(x)::=\{y \in X: p(x, y)<\epsilon\}$ for each $\epsilon>0$ and $x \in X$.
In [9], S. J. O'Neill proposed one significant change to Matthews definition of the partial metrics, and that was to extend their range from R^{+}to R. In the following, partial metrics in the O^{\prime} Neill sense will be called dualistic partial metrics and a pair (X, p) such that X is a nonempty set and p is a dualistic partial metric on X will be called a dualistic partial metric space.
A dualistic partial metric on a set X is a function $p: X \times X \rightarrow \mathbb{R}$ such that for all $x, y, z \in X$:
(1) $x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$;
(2) $p(x, x) \leqslant p(x, y)$;
(3) $p(x, y)=p(y, x)$;
(4) $p(x, z) \leqslant p(x, y)+p(y, z)-p(y, y)$. A dualistic partial metric space is a pair (X, p), where p is a dualistic partial metric on X.
A quasi-metric on a set X we mean a nonnegative real-valued function d on $X \times X$ such that for all $x, y, z \in X$:
(i) $d(x, y)=d(y, x)=0 \Leftrightarrow x=y$,
(ii) $d(x, y) \leqslant d(x, z)+d(z, y)$.

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a quasi-metric on X.

Lemma 1.2. [5] If (X, p) is a dualistic partial metric space, then the function $d_{p}: X \times X \rightarrow R^{+}$defined by $d_{p}(x, y)=p(x, y)-p(x, x)$, is a quasi-metric on X such that $\tau(p)=\tau\left(d_{p}\right)$.

Lemma 1.3. [5] A dualistic partial metric space (X, p) is complete if and only if the metric space $\left(X,\left(d_{p}\right)^{s}\right)$ is complete. Furthermore $\lim _{n \rightarrow \infty}\left(d_{p}\right)^{s}\left(a, x_{n}\right)=0$ if and only if $p(a, a)=\lim _{n \rightarrow \infty} p\left(a, x_{n}\right)=$ $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$.

Before stating our main results we establish some (essentially known) correspondences between dualistic partial metric spaces and quasi-metric spaces. Our basic references for quasi-metric spaces are [3] and [4] and for $\epsilon-$ fixed point is [6].
Each quasi-metric d on X generates a T_{0}-topology $T(d)$ on X which has as a base the family of open d-balls $\left\{B_{d}(x, \epsilon), x \in X, \epsilon>0\right\}$, where $B_{d}(x, \epsilon)=\{y \in X: d(x, y)<\epsilon\}$ for all $x \in X$ and $\epsilon>0$.
If d is a quasi-metric on X, then the function d^{s} defined on $X \times X$ by $d^{s}(x, y)=\max \{d(x, y), d(y, x)\}$, is a metric on X.

Theorem 1.4. [6] Let (X, p) be a dualistic partial metric space and $T: X \rightarrow X$ be a map, $x_{0} \in X$ and $\epsilon>0$. If $d_{p}\left(T^{n}\left(x_{0}\right), T^{n+k}\left(x_{0}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for some $k>0$, then T^{k} has an $\epsilon-$ fixed point.

2. Main Results

In this section, we give some results on fixed point and ϵ - fixed point in dualistic partial metric space and its diameter.

Definition 2.1. An open ball for a dualistic partial metric $p: X \times X \rightarrow$ \mathbb{R} is a set of the form $B_{\epsilon}^{p}(x)::=\{y \in X: p(x, y)<\epsilon\}$ for each $\epsilon>0$ and $x \in X$.

Theorem 2.2. Let (X, p) be a dualistic partial metric space and K, Y be subsets of X. Also, let $\alpha: K \rightarrow Y$ and $\beta: Y \rightarrow K$ be two maps. Then $T=\beta \alpha: K \rightarrow K$ has a fixed point if and only if $S=\alpha \beta: Y \rightarrow Y$, has a fixed point. In other words, given the commutative diagrams:

we have: $F(T) \neq \varnothing \Leftrightarrow F(S) \neq \varnothing$.
Proof. If y_{0} is a fixed point of $\beta \alpha$ then it follows that $\alpha\left(y_{0}\right)=\alpha \beta\left[\alpha\left(y_{0}\right)\right]$.

Definition 2.3. [6] Let (X, p) be a dualistic partial metric space and $T: X \rightarrow X$ be a map. Then $x_{0} \in X$ is $\epsilon-$ fixed point for T if

$$
d_{p}\left(T x_{0}, x_{0}\right) \leqslant \epsilon
$$

We say T has the ϵ-fixed point property if for some $\epsilon>0, A F(T) \neq \emptyset$ where

$$
A F(T)=\left\{x_{0} \in X: d_{p}\left(T x_{0}, x_{0}\right) \leqslant \epsilon\right\}
$$

Theorem 2.4. Let (X, p) be a dualistic partial metric space and K, Y be subsets of X. Also, let $\alpha: K \rightarrow Y$ and $\beta: Y \rightarrow K$ be two maps and $A F(T)=A F(\alpha)$. Then $T=\beta \alpha: K \rightarrow K$ has an approximate fixed point if and only if $S=\alpha \beta: Y \rightarrow Y$, has an approximate fixed point. In order words, given the commutative diagrams:

and

we have: $A F(T) \neq \varnothing \Leftrightarrow A F(S) \neq \varnothing$.
Proof. Since $A F(T) \neq \varnothing$, by Definition 2.3:

$$
\begin{aligned}
d\left(T y_{0}, y_{0}\right) \leqslant \epsilon & \Leftrightarrow d\left(\beta \alpha\left(y_{0}\right), y_{0}\right) \leqslant \epsilon \\
& \Leftrightarrow d\left(\alpha\left[\beta \alpha\left(y_{0}\right)\right], \alpha\left(y_{0}\right)\right) \leqslant \epsilon \\
& \Leftrightarrow d\left(S y_{0}, y_{0}\right) \leqslant \epsilon .
\end{aligned}
$$

Thus $A F(T) \neq \varnothing \Leftrightarrow A F(S) \neq \varnothing$.
Theorem 2.5. Let (X, p) be a complete dualistic partial metric space and $T: X \rightarrow X$ be a map such that for all $x, y \in X$

$$
p(T x, T y) \leqslant c p(x, y) ; 0 \leqslant c<1 .
$$

Then T has a unique fixed point u, and $T^{n}(x) \rightarrow u$ as $n \rightarrow \infty$ for each $x \in X$.

Proof. We shall show that for any given $x \in X$, the sequence $\left\{T^{n}(x)\right\}$ of iterates convergent to a fixed point. For this purpose, first of all observe that $p\left(T x, T^{2} x\right) \leqslant c p(x, T x)$ and by induction, $p\left(T^{n} x, T^{n+1} x\right) \leqslant$ $c^{n} p(x, T x)$ for all $n>0$. Thus, for any $n>0$ and any $k>0$, we have

$$
\begin{aligned}
d_{p}\left(T^{n}(x), T^{n+k}(x)\right) & \leqslant \sum_{i=n}^{n+k-1} d_{p}\left(T^{i}(x), T^{i+1}(x)\right) \\
& \leqslant\left(c^{n}+\cdots+c^{n+k-1}\right)(p(x, T(x))-p(x, x)) \\
& \leqslant \frac{c^{n}}{1-c}(p(x, T(x))-p(x, x)) \\
& =\frac{c^{n}}{1-c} d_{p}(x, T(x)) .
\end{aligned}
$$

Since $c<1$, then $c^{n} \rightarrow 0$. So by Lemma 1.3, $\left\{T^{n}(x)\right\}$ is a cauchy sequence in $\left(X, d_{p}\right)$. Hence $T^{n}(x) \rightarrow u$ for some $u \in X$. By continuity of T, we should have $T\left(T^{n}(x)\right) \rightarrow T u$. But $\left\{T^{n+1}(x)\right\}$ is a subsequence of $\left\{T^{n}(x)\right\}$, so $T u=u$ and u is a fixed point for T. Therefore, we have shown that for each $x \in X$, the limit of the sequence $\left\{T^{n}(x)\right\}$ exists
and is a fixed point, since we will show that T has at most one fixed point, and so every sequence $\left\{T^{n}(x)\right\}$ should be convergent to the same point. At the end we show the uniqueness of the fixed point of T : for if $T\left(x_{0}\right)=x_{0}$ and $T\left(y_{0}\right)=y_{0}$. Then $x_{0} \neq y_{0}$ gives the contradiction:

$$
\begin{aligned}
d_{p}\left(x_{0}, y_{0}\right) & =d_{p}\left(T\left(x_{0}\right), T\left(y_{0}\right)\right) \\
& =p\left(T\left(x_{0}\right), T\left(y_{0}\right)\right)-p\left(T\left(x_{0}\right), T\left(x_{0}\right)\right) \\
& \leqslant c\left(p\left(x_{0}, y_{0}\right)-p\left(x_{0}, x_{0}\right)\right) \\
& <p\left(x_{0}, y_{0}\right)-p\left(x_{0}, x_{0}\right) \\
& =d_{p}\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

Corollary 2.6. Let (X, p) be a complete dualistic partial metric space and $B_{p}=B_{p}\left(y_{0}, r\right)=\left\{y: d_{p}\left(y, y_{0}\right)<r\right\}$. Let $T: B_{p} \rightarrow X$ be a map such that for all $x, y \in X$

$$
\begin{equation*}
p(T x, T y) \leqslant c p(x, y) ; 0<c<1 \tag{1}
\end{equation*}
$$

If $d_{p}\left(T y_{0}, y_{0}\right)<(1-c) r$, then T has a fixed point.
Proof. Choose $\epsilon>r$, so that $d_{p}\left(T y_{0}, y_{0}\right) \leqslant(1-c) r<(1-c) \epsilon$. We show that T maps the closed ball $K=\left\{y: d_{p}\left(y, y_{0}\right) \leqslant \epsilon\right\}$ into itself: for if $y \in K$, then

$$
\begin{aligned}
d_{p}\left(T(y), y_{0}\right) & \leqslant d_{p}\left(T(y), T\left(y_{0}\right)\right)+d_{p}\left(T\left(y_{0}\right), y_{0}\right) \\
& \leqslant c p\left(y, y_{0}\right)+(1-c) \epsilon \\
& \leqslant c \epsilon+\epsilon-c \epsilon=\epsilon .
\end{aligned}
$$

Since K is complete and $T: K \rightarrow K$ satisfies in (1) thus by Theorem 2.5, T has a fixed point.

Theorem 2.7. Let (X, p) be a complete dualistic partial metric space and $T: X \rightarrow X$ be a map, not necessarily continuous. For each $\epsilon>0$ there is a $\theta(\epsilon)>0$ such that if $d_{p}(x, T x)<\theta(\epsilon)$, then $T\left[B_{d}(x, \epsilon)\right] \subset$ $B_{d}(x, \epsilon)$. Also, if $d_{p}\left(T^{n}\left(p_{0}\right), T^{n+1}\left(p_{0}\right)\right) \rightarrow 0$ for some $p_{0} \in X$, the sequence $\left\{T^{n}\left(p_{0}\right)\right\}$ converges to a fixed point of T.

Proof. We consider $T^{n}\left(p_{0}\right)=x_{n}$. First we show that $\left\{x_{n}\right\}$ is a Cauchy sequence. since $d_{p}\left(x_{N}, T x_{N}\right)<\theta(\epsilon)$, we have $T\left[B_{d}\left(x_{N}, \epsilon\right)\right] \subset B_{d}\left(x_{N}, \epsilon\right)$. So $T x_{N}=x_{N+1} \in B\left(x_{N}, \epsilon\right)$ and, by induction, $T x_{N}=x_{N+k} \in B\left(x_{N}, \epsilon\right)$ for all $k \geqslant 0$. Thus, $d_{p}\left(x_{m}, x_{n}\right)<2 \epsilon$ for all $m, n \geqslant N$ and $\left\{x_{n}\right\}$ is Cauchy sequence. Therefore it converges to some $x_{0} \in X$. Now we show that x_{0} is a fixed point for T. Let $d_{p}\left(x_{0}, T x_{0}\right)=b>0$, we can choose $x_{n} \in B\left(x_{0}, \frac{b}{3}\right)$ such that $d_{p}\left(x_{n}, x_{n+1}\right)<\theta \frac{b}{3}$: we have $T\left[B_{d}\left(x_{N}, \frac{b}{3}\right)\right] \subset B_{d}\left(x_{N}, \frac{b}{3}\right)$ by hypothesis, so $T x_{0} \in B\left(x_{n}, \frac{b}{3}\right)$. But this is impossible because $d_{p}\left(T x_{0}, x_{n}\right) \geqslant d_{p}\left(T x_{0}, x_{0}\right)-d_{p}\left(x_{n}, x_{0}\right) \geqslant \frac{2 b}{3}$. Thus $T x_{0} \notin B\left(x_{n}, \frac{b}{3}\right)$ and so $d_{p}\left(x_{0}, T x_{0}\right)=0$.

Theorem 2.8. Let (X, p) be a complete dualistic partial metric space and $T: X \rightarrow X$ be a map satisfying

$$
p(T x, T y) \leqslant \eta[p(x, y)],
$$

where $\eta: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is any nondecrasing (not necessarily continuous) function such that $\eta^{n}(t) \rightarrow 0$ as $n \rightarrow \infty$ for each $t>0$. Then T has a unique fixed point p_{0}, and $T^{n}(x) \rightarrow p_{0}$ as $n \rightarrow \infty$ for $x \in X$.

Proof. Observe that $\eta(t)<t$ for each $t>0$, for if $t \leqslant \eta(t)$ for some $t>0$, then monotonicity of η gives that $\eta(t) \leqslant \eta[\eta(t)]$ and by induction, $t \leqslant \eta^{n}(t)$ for all $n>0$. So we have $p\left(T x, T^{2} x\right) \leqslant c p(x, T x)$ and by induction $p\left(T^{n} x, T^{n+1} x\right) \mid \leqslant c^{n} p(x, T x)$ for all $n>0$. Fix $x \in X$. Then clearly for each $x \in N$

$$
\left|p\left(T^{n} x, T^{n} x\right)\right| \leqslant c^{n}|p(x, x)|
$$

and

$$
\left|p\left(T^{n} x, T^{n+1} x\right)\right| \leqslant c^{n}|p(x, T x)| .
$$

Also,

$$
d_{p}\left(T^{n} x, T^{n+1} x\right)+p\left(T^{n} x, T^{n} x\right)=p\left(T^{n} x, T^{n+1} x\right) .
$$

Hence we deduce that

$$
d_{p}\left(T^{n} x, T^{n+1} x\right)+p\left(T^{n} x, T^{n} x\right) \leqslant c^{n}|p(x, T x)| .
$$

Thus we get

$$
\begin{aligned}
d_{p}\left(T^{n}(x), T^{n+1}(x)\right) & \leqslant \eta^{n}|p(x, T x)|-\left|p\left(T^{n} x, T^{n} x\right)\right| \\
& \leqslant \eta^{n}|p(x, T x)|+\left|p\left(T^{n} x, T^{n} x\right)\right| \\
& \leqslant \eta^{n}(|p(x, T x)|-|p(x, x)|) \\
& \leqslant \eta^{n}\left[d_{p}(x, T x)\right] .
\end{aligned}
$$

So $d_{p}\left(T^{n}(x), T^{n+1}(x)\right) \rightarrow 0$ as $n \rightarrow \infty$ for each $x \in X$. Now let $\epsilon>0$ be given, and choose $\theta(\epsilon)=\epsilon-\eta(\epsilon)$; if $d_{p}(x, T x)<\theta(\epsilon)$, then for any $x_{0} \in B_{d}(x, \epsilon)$ we have
$d_{p}\left(T x_{0}, x\right) \leqslant d_{p}\left(T x_{0}, T x\right)+d_{p}(T x, x)<\eta\left[d_{p}\left(x_{0}, x\right)\right]+\theta(\epsilon) \leqslant \eta(\epsilon)+\epsilon-\eta(\epsilon)=\epsilon$.
So $T x_{0} \in B_{d}(x, \epsilon)$. Hence by Theorem 2.7, T has a fixed point. The remainder of the proof is obvious.

Theorem 2.9. Let (X, p) be a complete dualistic partial metric space and $T: X \rightarrow X$ be a map satisfying

$$
p(T x, T y) \leqslant \beta(x, y) p(x, y)
$$

where $\beta: X \times X \rightarrow \boldsymbol{R}^{+}$has the property for any closed interval $[a, b] \subset$ $\boldsymbol{R}^{+}-\{\nvdash\}$,

$$
\sup \left\{\beta(x, y): a \leqslant d_{p}(x, y) \leqslant b\right\}=\lambda(a, b)<1
$$

Then T has an unique fixed point p, and $T^{n}(x) \rightarrow p$ as $n \rightarrow \infty$ for each $x \in X$.

Proof. For $x \in X$, the sequence $\left\{d_{p}\left(T^{n}(x), T^{n+1}(x)\right)\right\}$ is nonincreasing, therefore it is convergent to some $a \geqslant 0$. We should have $a=0$: otherwise, $d_{p}\left(T^{n}(x), T^{n+1}(x)\right) \in[a, a+1]$ for all large n; then by choosing n and $q=\lambda(a, a+1)$, by induction we have

$$
a \leqslant d_{p}\left(T^{n+k}(x), T^{n+k+1}(x)\right) \leqslant q^{k} d_{p}\left(T^{n}(x), T^{n+1}(x)\right) \leqslant q^{k}(a+1)
$$

for all $k>0$, but $q<1$, and is a contradiction. Now, suppose $\epsilon>0$, $\lambda=\lambda\left(\frac{\epsilon}{2}, \epsilon\right)$ and choose $\theta=\min \left\{\frac{\epsilon}{2}, \epsilon(1-\lambda)\right\}$. Let $d_{p}(x, T x)<\theta(\epsilon)$ and $x_{0} \in B_{p}(x, \epsilon)$ then

$$
d_{p}\left(T x_{0}, x\right) \leqslant d_{p}\left(T x_{0}, T x\right)+d_{p}(T x, x) .
$$

If $d\left(x_{0}, x\right)<\frac{\epsilon}{2}$: then

$$
d_{p}\left(T x_{0}, x\right) \leqslant d_{p}\left(x_{0}, x\right)+d_{p}(T x, x)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon ;
$$

and if $\frac{\epsilon}{2} \leqslant d\left(x_{0}, x\right)<\epsilon$: then

$$
d_{p}\left(T x_{0}, x\right) \leqslant \beta(x, y) d_{p}\left(x_{0}, x\right)+d_{p}(T x, x)<\lambda \epsilon+(1-\lambda) \epsilon=\epsilon .
$$

Hence, $T\left[B_{p}(x, \epsilon) \subset B_{p}(x, \epsilon)\right.$, and by Theorem 2.7, T has a fixed point. The remainder of the proof is obvious.

Proposition 2.10. Let (X, p) be a dualistic partial metric space and $T: X \rightarrow X$ be a map such that T is asymptotic regular, i.e., for all $x \in X$

$$
d_{p}\left(T^{n}\left(x_{0}\right), T^{n+1}\left(x_{0}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Then T has an $\epsilon-$ fixed point.
Proof. Since $d_{p}\left(T^{n}\left(x_{0}\right), T^{n+1}\left(x_{0}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ then for $\epsilon>0$, there exists $n_{0}>0$ such that for all $n \geqslant n_{0}$,

$$
d_{p}\left(T^{n}\left(x_{0}\right), T^{n+1}\left(x_{0}\right)\right)<\epsilon
$$

Then $d_{p}\left(T^{n_{0}}\left(x_{0}\right), T\left(T^{n_{0}}\left(x_{0}\right)\right)\right)<\epsilon$. Therefore $T^{n_{0}}\left(x_{0}\right)$ is an ϵ - fixed point of T.

Theorem 2.11. Let T be a mapping of a dualistic partial metric space (X, p) into itself such that

$$
|p(T x, T y)| \leqslant c|p(x, y)| \quad 0<c<d\left(\alpha\left(y_{0}\right), y_{0}\right)
$$

for all $x, y \in X$, and $\epsilon>0$. Then T^{k} has a ϵ-fixed point, for all k.
Proof. Fix $x \in X$. It is clear that for each $x \in N$

$$
\left|p\left(T^{n} x, T^{n} x\right)\right| \leqslant c^{n}|p(x, x)|
$$

also

$$
\left|p\left(T^{n} x, T^{n+1} x\right)\right| \leqslant c^{n}|p(x, T x)|,
$$

and

$$
d_{p}\left(T^{n} x, T^{n+1} x\right)+p\left(T^{n} x, T^{n} x\right)=p\left(T^{n} x, T^{n+1} x\right)
$$

We deduce that

$$
d_{p}\left(T^{n} x, T^{n+1} x\right)+p\left(T^{n} x, T^{n} x\right) \leqslant c^{n}|p(x, T x)|
$$

Hence

$$
\begin{aligned}
d_{p}\left(T^{n}(x), T^{n+1}(x)\right) & \leqslant c^{n}|p(x, T x)|-\left|p\left(T^{n} x, T^{n} x\right)\right| \\
& \leqslant c^{n}|p(x, T x)|+\left|p\left(T^{n} x, T^{n} x\right)\right| \\
& \leqslant c^{n}(|p(x, T x)|+|p(x, x)|) .
\end{aligned}
$$

Therefore for $k, n \in N$

$$
\begin{aligned}
d_{p}\left(T^{n}(x), T^{n+k}(x)\right) & \leqslant d_{p}\left(T^{n}(x), T^{n+1}(x)\right)+\ldots+d_{p}\left(T^{n+k-1}(x), T^{n+k}(x)\right) \\
& \leqslant\left(c^{n}+\ldots+c^{n+k-1}\right)(|p(x, T x)|+|p(x, x)|) \\
& \leqslant \frac{c^{n}}{1-c}(|p(x, T x)|+|p(x, x)|) \\
& \leqslant \frac{c^{n}}{1-c}\left[d_{p}(x, T x)\right] .
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} d_{p}\left(T^{n+k}(x), T^{n}(x)\right)=0$ as $n \rightarrow \infty$. Therefore by Proposition $2.10 T^{k}$ has an ϵ-fixed point.
If we take $T: X \rightarrow X$ in Theorem 2.2 of [7], we have the following corollary.

Corollary 2.12. Let (X, p) be a dualistic partial metric space and T : $X \rightarrow X$ be a mapping and $\epsilon>0$. Also, let

$$
d_{p}(T x, T y) \leqslant \alpha d_{p}(x, y)+\beta\left[d_{p}(x, T x)+d_{p}(y, T y)\right]
$$

for all $x, y \in X$, where $\alpha, \beta \geqslant 0$ and $\alpha+2 \beta<1$. Then T has a ϵ-fixed point.

Example 2.13. Let $X=(-\infty, 2]$, and let p be the dualistic metric on X given by

$$
p(x, y)=\operatorname{Max}\{x, y\}
$$

for all $x, y \in X$.
Let T be the mapping from X into itself defined by $T(x)=x-1$, for all $X=(-\infty, 2]$. It is immediate to see that

$$
p(T(x), T(y)) \leqslant \frac{1}{2} p(x, y)
$$

for all $x, y \in X$. However T does not have any fixed point. But by Proposition 2.10, for some $\epsilon>0$, T has a ϵ-fixed point.

Definition 2.14. Let (X, p) be a dualistic partial metric space, $T: X \rightarrow$ X, be continues map and $\epsilon>0$. We define diameter $A F(T)$ by

$$
\operatorname{diam} A F(T)=\sup \left\{d_{p}(x, y): \quad x, y \in A F(T)\right\}
$$

If we take $T: X \rightarrow X$ in Theorem 2.8 of [7], we have the following corollary.

Corollary 2.15. Let $T: X \rightarrow X$ and $\epsilon>0$. If there exists $\alpha \in[0,1]$ such that for all $x, y \in X$

$$
d_{p}(T x, T y) \leqslant \alpha d_{p}(x, y),
$$

then

$$
\operatorname{diam} A F(T) \leqslant \frac{2 \epsilon}{1-\alpha}
$$

References

[1] I. Altun and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, (2011).
[2] M. Berinde, Approximate fixed point Theorems, Stud. Univ. Babes Bolyai, Math., 51 (1) (2006), 11-25.
[3] P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, (1982).
[4] H. P. A. Kunzi, Handbook of the History of General Topology, ch. Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, Kluwer Acad. Publ., (2001), 853-968.
[5] S. G. Matthews, Partial metric topology, In Proceedings of the 11th Summer Conference on General Topology and Applications, The New York Academy of Sciences, Gortham, Me, USA, Augusts, 728 (1995), 183-197.
[6] S. A. M. Mohsenalhosseini, H. Mazaheri, M. A. Dehghan, and A. Zareh, Fixed point for Partial Metric Spaces, ISRN Applied Mathematics, Special section, (2011), 1-6.
[7] S. A. M. Mohsenalhosseini, H. Mazaheri, and M. A. Dehghan, Approximate best proximity pairs in metric space, Abstract and Applied Analysis, (2011).
[8] S. Oltra and O. Valero, Banachs fixed point Theorem for Partial Metric Spaces, Rend. Istit. Mat. Univ. Trieste, 5 (2004), 17-26.
[9] S. J. O'Neill, Partial metrics, valuations and domain theory, Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 806 (1996), 304-315.

Seyed Ali Mohammad Mohsenalhosseini

Department of Mathematics
Faculty of Mathematics
Assistant Professor of Mathematics
Vali-e-Asr University
Rafsanjan, Iran
E-mail: amah@vru.ac.ir
Hamid Mazaheri
Department of Mathematics
Faculty of Mathematics
Associate Professor of Mathematics
Yazd University
Yazd, Iran
E-mail: hmazaheri@yazduni.ac.ir

[^0]: Received: April 2013; Accepted: July 2013

 * Corresponding author

