Journal of Mathematical Extension Vol. 7, No. 3, (2013), 95-106

Generalizations of ϵ -Fixed Point Theorems in Partial Metric Spaces

S. A. M. Mohsenalhosseini*

Vali-e-Asr University

H. Mazaheri

Yazd University

Abstract. We consider the dualistic partial metric spaces on a set X, and we give necessary conditions for existence of fixed point and ϵ -fixed point for some maps.

AMS Subject Classification: 54H25; 54E50; 54E99; 68Q55 **Keywords and Phrases:** Fixed points, ϵ - fixed point, partial metric spaces, dualistic partial metric spaces

1. Introduction

The partial metric spaces has been introduced by Matthews in [5] as a part of the study of denotational semantics of dataflow networks. In particular, Matthews established the precise relationship between partial metric spaces and the so-called weightable quasi-metric spaces. Indeed he proved a partial metric generalization of Banach contraction mapping theorem.

A partial metric [5] on a set X is a function $p: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$:

(1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y);$ (2) $p(x, x) \leq p(x, y);$

Received: April 2013; Accepted: July 2013 $^{\ast}\mathrm{Corresponding}$ author

(3) p(x, y) = p(y, x);(4) $p(x, y) \le p(y, x) + p(y, y)$

(4) $p(x,z) \leq p(x,y) + p(y,z) - p(y,y).$

A partial metric space is a pair (X, p), where p is a partial metric on X. If p is a partial metric on X, then the function $p^s : X \times X \to [0, \infty)$ given by $p^s(x, y) = 2p(x, y) - p(x, x) - p(y, y)$ is a (usual) metric on X. Each partial metric p on X induces a T_0 topology τ_p on X which has as a basis of the family of open p-balls $\{B_p(x, \epsilon) : x \in X, \epsilon > 0\}$, where $B_p(x, \epsilon) =$ $\{y \in X : p(x, y) < p(x, x) + \epsilon\}$ for all $x \in X$ and $\epsilon > 0$. Similarly, closed p-ball is defined as $B_p(x, \epsilon) = \{y \in X : p(x, y) \leq p(x, x) + \epsilon\}$.

A sequence $\{x_n\}_{n \in N}$ in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite) $\lim_{n \to \infty} p(x_n, x_m)$ [5].

A partial metric space (X, p) is said to be complete if every Cauchy sequence $\{x_n\}_{n \in N}$ in X converges, with respect to τ_p to a point $x \in X$ such that $p(x, x) = \lim_{n \to \infty} p(x_n, x_m)$ [5].

A mapping $T: X \to X$ is said to be continuous at $x_0 \in X$, if for $\epsilon > 0$, there exists $\delta > 0$ such that $T(B_p(x_0, \delta)) \subset B_p(T(x_0), \epsilon)$. [1]

Definition 1.1. [5] An open ball for a partial metric $p: X \times X \to [0, \infty)$ is a set of the form $B^p_{\epsilon}(x) ::= \{y \in X : p(x, y) < \epsilon\}$ for each $\epsilon > 0$ and $x \in X$.

In [9], S. J. O'Neill proposed one significant change to Matthews definition of the partial metrics, and that was to extend their range from R^+ to R. In the following, partial metrics in the O'Neill sense will be called dualistic partial metrics and a pair (X, p) such that X is a nonempty set and p is a dualistic partial metric on X will be called a dualistic partial metric space.

A dualistic partial metric on a set X is a function $p: X \times X \to \mathbb{R}$ such that for all $x, y, z \in X$:

(1) $x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y);$

(2) $p(x,x) \leq p(x,y);$

(3) p(x, y) = p(y, x);

(4) $p(x,z) \leq p(x,y) + p(y,z) - p(y,y)$. A dualistic partial metric space is a pair (X,p), where p is a dualistic partial metric on X.

A quasi-metric on a set X we mean a nonnegative real-valued function d on $X \times X$ such that for all $x, y, z \in X$: $\begin{array}{l} (i) \ d(x,y) = d(y,x) = 0 \ \Leftrightarrow x = y, \\ (ii) \ d(x,y) \leqslant d(x,z) + d(z,y). \end{array}$

A quasi-metric space is a pair (X, d) such that X is a (nonempty) set and d is a quasi-metric on X.

Lemma 1.2. [5] If (X, p) is a dualistic partial metric space, then the function $d_p : X \times X \to R^+$ defined by $d_p(x, y) = p(x, y) - p(x, x)$, is a quasi-metric on X such that $\tau(p) = \tau(d_p)$.

Lemma 1.3. [5] A dualistic partial metric space (X, p) is complete if and only if the metric space $(X, (d_p)^s)$ is complete. Furthermore $\lim_{n\to\infty} (d_p)^s(a, x_n) = 0$ if and only if $p(a, a) = \lim_{n\to\infty} p(a, x_n) = \lim_{n\to\infty} p(x_n, x_m)$.

Before stating our main results we establish some (essentially known) correspondences between dualistic partial metric spaces and quasi-metric spaces. Our basic references for quasi-metric spaces are [3] and [4] and for ϵ - fixed point is [6].

Each quasi-metric d on X generates a T_0 -topology T(d) on X which has as a base the family of open d-balls $\{B_d(x,\epsilon), x \in X, \epsilon > 0\}$, where $B_d(x,\epsilon) = \{y \in X : d(x,y) < \epsilon\}$ for all $x \in X$ and $\epsilon > 0$.

If d is a quasi-metric on X, then the function d^s defined on $X \times X$ by $d^s(x, y) = max\{d(x, y), d(y, x)\}$, is a metric on X.

Theorem 1.4. [6] Let (X, p) be a dualistic partial metric space and $T: X \to X$ be a map, $x_0 \in X$ and $\epsilon > 0$. If $d_p(T^n(x_0), T^{n+k}(x_0)) \to 0$ as $n \to \infty$ for some k > 0, then T^k has an ϵ -fixed point.

2. Main Results

In this section, we give some results on fixed point and ϵ - fixed point in dualistic partial metric space and its diameter.

Definition 2.1. An open ball for a dualistic partial metric $p: X \times X \rightarrow \mathbb{R}$ is a set of the form $B^p_{\epsilon}(x) ::= \{y \in X : p(x,y) < \epsilon\}$ for each $\epsilon > 0$ and $x \in X$.

Theorem 2.2. Let (X, p) be a dualistic partial metric space and K, Y be subsets of X. Also, let $\alpha : K \to Y$ and $\beta : Y \to K$ be two maps. Then $T = \beta \alpha : K \to K$ has a fixed point if and only if $S = \alpha \beta : Y \to Y$, has a fixed point. In other words, given the commutative diagrams:

we have: $F(T) \neq \emptyset \Leftrightarrow F(S) \neq \emptyset$.

Proof. If y_0 is a fixed point of $\beta \alpha$ then it follows that $\alpha(y_0) = \alpha \beta[\alpha(y_0)]$. \Box

Definition 2.3. [6] Let (X, p) be a dualistic partial metric space and $T: X \to X$ be a map. Then $x_0 \in X$ is ϵ -fixed point for T if

$$d_p(Tx_0, x_0) \leqslant \epsilon.$$

We say T has the ϵ -fixed point property if for some $\epsilon > 0$, $AF(T) \neq \emptyset$ where

$$AF(T) = \{x_0 \in X : d_p(Tx_0, x_0) \leq \epsilon\}.$$

Theorem 2.4. Let (X, p) be a dualistic partial metric space and K, Y be subsets of X. Also, let $\alpha : K \to Y$ and $\beta : Y \to K$ be two maps and $AF(T) = AF(\alpha)$. Then $T = \beta \alpha : K \to K$ has an approximate fixed point if and only if $S = \alpha\beta : Y \to Y$, has an approximate fixed point. In order words, given the commutative diagrams:

we have: $AF(T) \neq \emptyset \Leftrightarrow AF(S) \neq \emptyset$.

Proof. Since $AF(T) \neq \emptyset$, by Definition 2.3:

$$d(Ty_0, y_0) \leqslant \epsilon \quad \Leftrightarrow \quad d(\beta \alpha(y_0), y_0) \leqslant \epsilon$$

$$\Leftrightarrow \quad d(\alpha[\beta \alpha(y_0)], \alpha(y_0)) \leqslant \epsilon$$

$$\Leftrightarrow \quad d(Sy_0, y_0) \leqslant \epsilon.$$

Thus $AF(T) \neq \emptyset \Leftrightarrow AF(S) \neq \emptyset$. \Box

Theorem 2.5. Let (X, p) be a complete dualistic partial metric space and $T: X \to X$ be a map such that for all $x, y \in X$

$$p(Tx, Ty) \leqslant cp(x, y) \ ; \ 0 \leqslant c < 1.$$

Then T has a unique fixed point u, and $T^n(x) \to u$ as $n \to \infty$ for each $x \in X$.

Proof. We shall show that for any given $x \in X$, the sequence $\{T^n(x)\}$ of iterates convergent to a fixed point. For this purpose, first of all observe that $p(Tx, T^2x) \leq cp(x, Tx)$ and by induction, $p(T^nx, T^{n+1}x) \leq c^n p(x, Tx)$ for all n > 0. Thus, for any n > 0 and any k > 0, we have

$$\begin{aligned} d_p(T^n(x), T^{n+k}(x)) &\leqslant \sum_{i=n}^{n+k-1} d_p(T^i(x), T^{i+1}(x)) \\ &\leqslant (c^n + \dots + c^{n+k-1})(p(x, T(x)) - p(x, x)) \\ &\leqslant \frac{c^n}{1-c}(p(x, T(x)) - p(x, x)) \\ &= \frac{c^n}{1-c} d_p(x, T(x)). \end{aligned}$$

Since c < 1, then $c^n \to 0$. So by Lemma 1.3, $\{T^n(x)\}$ is a cauchy sequence in (X, d_p) . Hence $T^n(x) \to u$ for some $u \in X$. By continuity of T, we should have $T(T^n(x)) \to Tu$. But $\{T^{n+1}(x)\}$ is a subsequence of $\{T^n(x)\}$, so Tu = u and u is a fixed point for T. Therefore, we have shown that for each $x \in X$, the limit of the sequence $\{T^n(x)\}$ exists and is a fixed point, since we will show that T has at most one fixed point, and so every sequence $\{T^n(x)\}$ should be convergent to the same point. At the end we show the uniqueness of the fixed point of T: for if $T(x_0) = x_0$ and $T(y_0) = y_0$. Then $x_0 \neq y_0$ gives the contradiction:

$$d_p(x_0, y_0) = d_p(T(x_0), T(y_0))$$

= $p(T(x_0), T(y_0)) - p(T(x_0), T(x_0))$
 $\leqslant c(p(x_0, y_0) - p(x_0, x_0))$
 $< p(x_0, y_0) - p(x_0, x_0)$
= $d_p(x_0, y_0)$. \Box

Corollary 2.6. Let (X, p) be a complete dualistic partial metric space and $B_p = B_p(y_0, r) = \{y : d_p(y, y_0) < r\}$. Let $T : B_p \to X$ be a map such that for all $x, y \in X$

$$p(Tx, Ty) \leq cp(x, y) ; 0 < c < 1.$$
 (1)

If $d_p(Ty_0, y_0) < (1-c)r$, then T has a fixed point.

Proof. Choose $\epsilon > r$, so that $d_p(Ty_0, y_0) \leq (1-c)r < (1-c)\epsilon$. We show that T maps the closed ball $K = \{y : d_p(y, y_0) \leq \epsilon\}$ into itself: for if $y \in K$, then

$$\begin{aligned} d_p(T(y), y_0) &\leqslant d_p(T(y), T(y_0)) + d_p(T(y_0), y_0) \\ &\leqslant cp(y, y_0) + (1 - c)\epsilon \\ &\leqslant c\epsilon + \epsilon - c\epsilon = \epsilon. \end{aligned}$$

Since K is complete and $T: K \to K$ satisfies in (1) thus by Theorem 2.5, T has a fixed point. \Box

Theorem 2.7. Let (X, p) be a complete dualistic partial metric space and $T: X \to X$ be a map, not necessarily continuous. For each $\epsilon > 0$ there is a $\theta(\epsilon) > 0$ such that if $d_p(x, Tx) < \theta(\epsilon)$, then $T[B_d(x, \epsilon)] \subset$ $B_d(x, \epsilon)$. Also, if $d_p(T^n(p_0), T^{n+1}(p_0)) \to 0$ for some $p_0 \in X$, the sequence $\{T^n(p_0)\}$ converges to a fixed point of T. **Proof.** We consider $T^n(p_0) = x_n$. First we show that $\{x_n\}$ is a Cauchy sequence. since $d_p(x_N, Tx_N) < \theta(\epsilon)$, we have $T[B_d(x_N, \epsilon)] \subset B_d(x_N, \epsilon)$. So $Tx_N = x_{N+1} \in B(x_N, \epsilon)$ and, by induction, $Tx_N = x_{N+k} \in B(x_N, \epsilon)$ for all $k \ge 0$. Thus, $d_p(x_m, x_n) < 2\epsilon$ for all $m, n \ge N$ and $\{x_n\}$ is Cauchy sequence. Therefore it converges to some $x_0 \in X$. Now we show that x_0 is a fixed point for T. Let $d_p(x_0, Tx_0) = b > 0$, we can choose $x_n \in B(x_0, \frac{b}{3})$ such that $d_p(x_n, x_{n+1}) < \theta \frac{b}{3}$: we have $T[B_d(x_N, \frac{b}{3})] \subset B_d(x_N, \frac{b}{3})$ by hypothesis, so $Tx_0 \in B(x_n, \frac{b}{3})$. But this is impossible because $d_p(Tx_0, x_n) \ge d_p(Tx_0, x_0) - d_p(x_n, x_0) \ge \frac{2b}{3}$. Thus $Tx_0 \notin B(x_n, \frac{b}{3})$ and so $d_p(x_0, Tx_0) = 0$. \Box

Theorem 2.8. Let (X, p) be a complete dualistic partial metric space and $T: X \to X$ be a map satisfying

$$p(Tx, Ty) \leqslant \eta[p(x, y)],$$

where $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ is any nondecrasing (not necessarily continuous) function such that $\eta^n(t) \to 0$ as $n \to \infty$ for each t > 0. Then T has a unique fixed point p_0 , and $T^n(x) \to p_0$ as $n \to \infty$ for $x \in X$.

Proof. Observe that $\eta(t) < t$ for each t > 0, for if $t \leq \eta(t)$ for some t > 0, then monotonicity of η gives that $\eta(t) \leq \eta[\eta(t)]$ and by induction, $t \leq \eta^n(t)$ for all n > 0. So we have $p(Tx, T^2x) \leq cp(x, Tx)$ and by induction $p(T^nx, T^{n+1}x)| \leq c^n p(x, Tx)$ for all n > 0. Fix $x \in X$. Then clearly for each $x \in N$

$$|p(T^n x, T^n x)| \leqslant c^n |p(x, x)|$$

and

$$|p(T^n x, T^{n+1} x)| \leq c^n |p(x, Tx)|.$$

Also,

$$d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) = p(T^n x, T^{n+1} x).$$

Hence we deduce that

$$d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) \leqslant c^n |p(x, Tx)|.$$

Thus we get

$$d_{p}(T^{n}(x), T^{n+1}(x)) \leq \eta^{n} |p(x, Tx)| - |p(T^{n}x, T^{n}x)| \\ \leq \eta^{n} |p(x, Tx)| + |p(T^{n}x, T^{n}x)| \\ \leq \eta^{n} (|p(x, Tx)| - |p(x, x)|) \\ \leq \eta^{n} [d_{p}(x, Tx)].$$

So $d_p(T^n(x), T^{n+1}(x)) \to 0$ as $n \to \infty$ for each $x \in X$. Now let $\epsilon > 0$ be given, and choose $\theta(\epsilon) = \epsilon - \eta(\epsilon)$; if $d_p(x, Tx) < \theta(\epsilon)$, then for any $x_0 \in B_d(x, \epsilon)$ we have

$$d_p(Tx_0, x) \leqslant d_p(Tx_0, Tx) + d_p(Tx, x) < \eta[d_p(x_0, x)] + \theta(\epsilon) \leqslant \eta(\epsilon) + \epsilon - \eta(\epsilon) = \epsilon + \frac{1}{2} + \frac{1}$$

So $Tx_0 \in B_d(x, \epsilon)$. Hence by Theorem 2.7, T has a fixed point. The remainder of the proof is obvious. \Box

Theorem 2.9. Let (X, p) be a complete dualistic partial metric space and $T: X \to X$ be a map satisfying

$$p(Tx, Ty) \leqslant \beta(x, y)p(x, y),$$

where $\beta: X \times X \to \mathbf{R}^+$ has the property for any closed interval $[a, b] \subset \mathbf{R}^+ - \{\not\models\},\$

$$\sup\{\beta(x,y): a \leqslant d_p(x,y) \leqslant b\} = \lambda(a,b) < 1$$

Then T has an unique fixed point p, and $T^n(x) \to p$ as $n \to \infty$ for each $x \in X$.

Proof. For $x \in X$, the sequence $\{d_p(T^n(x), T^{n+1}(x))\}$ is nonincreasing, therefore it is convergent to some $a \ge 0$. We should have a = 0: otherwise, $d_p(T^n(x), T^{n+1}(x)) \in [a, a+1]$ for all large n; then by choosing n and $q = \lambda(a, a+1)$, by induction we have

$$a \leq d_p(T^{n+k}(x), T^{n+k+1}(x)) \leq q^k d_p(T^n(x), T^{n+1}(x)) \leq q^k(a+1)$$

for all k > 0, but q < 1, and is a contradiction. Now, suppose $\epsilon > 0$, $\lambda = \lambda(\frac{\epsilon}{2}, \epsilon)$ and choose $\theta = min\{\frac{\epsilon}{2}, \epsilon(1 - \lambda)\}$. Let $d_p(x, Tx) < \theta(\epsilon)$ and $x_0 \in B_p(x, \epsilon)$ then

$$d_p(Tx_0, x) \leqslant d_p(Tx_0, Tx) + d_p(Tx, x).$$

102

If $d(x_0, x) < \frac{\epsilon}{2}$: then

$$d_p(Tx_0, x) \leqslant d_p(x_0, x) + d_p(Tx, x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon;$$

and if $\frac{\epsilon}{2} \leq d(x_0, x) < \epsilon$: then

$$d_p(Tx_0, x) \leqslant \beta(x, y) d_p(x_0, x) + d_p(Tx, x) < \lambda \epsilon + (1 - \lambda)\epsilon = \epsilon.$$

Hence, $T[B_p(x, \epsilon) \subset B_p(x, \epsilon)]$, and by Theorem 2.7, T has a fixed point. The remainder of the proof is obvious. \Box

Proposition 2.10. Let (X,p) be a dualistic partial metric space and $T: X \to X$ be a map such that T is asymptotic regular, i.e., for all $x \in X$

$$d_p(T^n(x_0), T^{n+1}(x_0)) \to 0 \text{ as } n \to \infty.$$

Then T has an ϵ -fixed point.

Proof. Since $d_p(T^n(x_0), T^{n+1}(x_0)) \to 0$ as $n \to \infty$ then for $\epsilon > 0$, there exists $n_0 > 0$ such that for all $n \ge n_0$,

$$d_p(T^n(x_0), T^{n+1}(x_0)) < \epsilon.$$

Then $d_p(T^{n_0}(x_0), T(T^{n_0}(x_0))) < \epsilon$. Therefore $T^{n_0}(x_0)$ is an ϵ - fixed point of T. \Box

Theorem 2.11. Let T be a mapping of a dualistic partial metric space (X, p) into itself such that

$$|p(Tx, Ty)| \leq c|p(x, y)| \quad 0 < c < d(\alpha(y_0), y_0)$$

for all $x, y \in X$, and $\epsilon > 0$. Then T^k has a ϵ -fixed point, for all k.

Proof. Fix $x \in X$. It is clear that for each $x \in N$

$$|p(T^n x, T^n x)| \leqslant c^n |p(x, x)|$$

also

$$|p(T^n x, T^{n+1} x)| \leq c^n |p(x, Tx)|,$$

and

104

$$d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) = p(T^n x, T^{n+1} x).$$

We deduce that

$$d_p(T^n x, T^{n+1} x) + p(T^n x, T^n x) \leqslant c^n |p(x, Tx)|.$$

Hence

$$d_p(T^n(x), T^{n+1}(x)) \leq c^n |p(x, Tx)| - |p(T^n x, T^n x)| \\ \leq c^n |p(x, Tx)| + |p(T^n x, T^n x)| \\ \leq c^n (|p(x, Tx)| + |p(x, x)|).$$

Therefore for $k, n \in N$

$$d_p(T^n(x), T^{n+k}(x)) \leqslant d_p(T^n(x), T^{n+1}(x)) + \dots + d_p(T^{n+k-1}(x), T^{n+k}(x)))$$

$$\leqslant (c^n + \dots + c^{n+k-1})(|p(x, Tx)| + |p(x, x)|)$$

$$\leqslant \frac{c^n}{1-c}(|p(x, Tx)| + |p(x, x)|)$$

$$\leqslant \frac{c^n}{1-c}[d_p(x, Tx)].$$

Thus $\lim_{n\to\infty} d_p(T^{n+k}(x), T^n(x)) = 0$ as $n \to \infty$. Therefore by Proposition 2.10 T^k has an ϵ -fixed point. \Box

If we take $T: X \to X$ in Theorem 2.2 of [7], we have the following corollary.

Corollary 2.12. Let (X,p) be a dualistic partial metric space and $T : X \to X$ be a mapping and $\epsilon > 0$. Also, let

$$d_p(Tx, Ty) \leqslant \alpha d_p(x, y) + \beta [d_p(x, Tx) + d_p(y, Ty)]$$

for all $x, y \in X$, where $\alpha, \beta \ge 0$ and $\alpha + 2\beta < 1$. Then T has a ϵ -fixed point.

Example 2.13. Let $X = (-\infty, 2]$, and let p be the dualistic metric on X given by

$$p(x,y) = Max\{x,y\}$$

105

for all $x, y \in X$.

Let T be the mapping from X into itself defined by T(x) = x - 1, for all $X = (-\infty, 2]$. It is immediate to see that

$$p(T(x), T(y)) \leqslant \frac{1}{2}p(x, y)$$

for all $x, y \in X$. However T does not have any fixed point. But by Proposition 2.10, for some $\epsilon > 0$, T has a ϵ -fixed point.

Definition 2.14. Let (X, p) be a dualistic partial metric space, $T : X \to X$, be continues map and $\epsilon > 0$. We define diameter AF(T) by

$$diamAF(T) = \sup\{d_p(x, y) : x, y \in AF(T)\}.$$

If we take $T : X \to X$ in Theorem 2.8 of [7], we have the following corollary.

Corollary 2.15. Let $T : X \to X$ and $\epsilon > 0$. If there exists $\alpha \in [0,1]$ such that for all $x, y \in X$

$$d_p(Tx, Ty) \leqslant \alpha d_p(x, y),$$

then

$$diamAF(T) \leqslant \frac{2\epsilon}{1-\alpha}.$$

References

- [1] I. Altun and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, *Fixed Point Theory and Applications*, (2011).
- [2] M. Berinde, Approximate fixed point Theorems, Stud. Univ. Babes Bolyai, Math., 51 (1) (2006), 11-25.
- [3] P. Fletcher and W. F. Lindgren, *Quasi-Uniform Spaces*, Marcel Dekker, New York, (1982).
- [4] H. P. A. Kunzi, Handbook of the History of General Topology, ch. Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, *Kluwer Acad.* Publ., (2001), 853-968.

- [5] S. G. Matthews, Partial metric topology, In Proceedings of the 11th Summer Conference on General Topology and Applications, The New York Academy of Sciences, *Gortham, Me, USA*, Augusts, 728 (1995), 183-197.
- [6] S. A. M. Mohsenalhosseini, H. Mazaheri, M. A. Dehghan, and A. Zareh, Fixed point for Partial Metric Spaces, *ISRN Applied Mathematics*, Special section, (2011), 1-6.
- [7] S. A. M. Mohsenalhosseini, H. Mazaheri, and M. A. Dehghan, Approximate best proximity pairs in metric space, *Abstract and Applied Analysis*, (2011).
- [8] S. Oltra and O. Valero, Banachs fixed point Theorem for Partial Metric Spaces, *Rend. Istit. Mat. Univ. Trieste*, 5 (2004), 17-26.
- [9] S. J. O'Neill, Partial metrics, valuations and domain theory, Proc. 11th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 806 (1996), 304-315.

Seyed Ali Mohammad Mohsenalhosseini

Department of Mathematics Faculty of Mathematics Assistant Professor of Mathematics Vali-e-Asr University Rafsanjan, Iran E-mail: amah@vru.ac.ir

Hamid Mazaheri

Department of Mathematics Faculty of Mathematics Associate Professor of Mathematics Yazd University Yazd, Iran E-mail: hmazaheri@yazduni.ac.ir