
Journal of Mathematical Extension
Vol. 7, No. 3, (2013), 95-106

Generalizations of ε-Fixed Point Theorems
in Partial Metric Spaces

S. A. M. Mohsenalhosseini∗

Vali-e-Asr University

H. Mazaheri
Yazd University

Abstract. We consider the dualistic partial metric spaces on a set X,
and we give necessary conditions for existence of fixed point and ε−fixed
point for some maps.

AMS Subject Classification: 54H25; 54E50; 54E99; 68Q55

Keywords and Phrases: Fixed points, ε− fixed point, partial metric
spaces, dualistic partial metric spaces

1. Introduction

The partial metric spaces has been introduced by Matthews in [5] as
a part of the study of denotational semantics of dataflow networks. In
particular, Matthews established the precise relationship between partial
metric spaces and the so-called weightable quasi-metric spaces. Indeed
he proved a partial metric generalization of Banach contraction mapping
theorem.
A partial metric [5] on a set X is a function p : X × X → [0,∞) such
that for all x, y, z ∈ X:
(1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(2) p(x, x) 6 p(x, y);
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(3) p(x, y) = p(y, x);
(4) p(x, z) 6 p(x, y) + p(y, z)− p(y, y).
A partial metric space is a pair (X, p), where p is a partial metric on X.
If p is a partial metric on X, then the function ps : X×X → [0,∞) given
by ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) is a (usual) metric on X. Each
partial metric p on X induces a T0 topology τp on X which has as a basis
of the family of open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) =
{y ∈ X : p(x, y) < p(x, x)+ ε} for all x ∈ X and ε > 0. Similarly, closed
p-ball is defined as Bp(x, ε) = {y ∈ X : p(x, y) 6 p(x, x) + ε}.
A sequence {xn}n∈N in a partial metric space (X, p) is called a Cauchy
sequence if there exists (and is finite) limn,mp(xn, xm) [5].
A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn}n∈N in X converges, with respect to τp to a point x ∈ X
such that p(x, x) = limn,mp(xn, xm) [5].
A mapping T : X → X is said to be continuous at x0 ∈ X, if for ε > 0,
there exists δ > 0 such that T (Bp(x0, δ)) ⊂ Bp(T (x0), ε). [1]

Definition 1.1. [5] An open ball for a partial metric p : X×X → [0,∞)
is a set of the form Bp

ε (x) ::= {y ∈ X : p(x, y) < ε} for each ε > 0 and
x ∈ X.
In [9], S. J. O’Neill proposed one significant change to Matthews defi-
nition of the partial metrics, and that was to extend their range from
R+to R. In the following, partial metrics in the O’Neill sense will
be called dualistic partial metrics and a pair (X, p) such that X is a
nonempty set and p is a dualistic partial metric on X will be called a
dualistic partial metric space.
A dualistic partial metric on a set X is a function p : X ×X → R such
that for all x, y, z ∈ X:
(1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(2) p(x, x) 6 p(x, y);
(3) p(x, y) = p(y, x);
(4) p(x, z) 6 p(x, y) + p(y, z) − p(y, y). A dualistic partial metric space
is a pair (X, p), where p is a dualistic partial metric on X.
A quasi-metric on a set X we mean a nonnegative real-valued function
d on X ×X such that for all x, y, z ∈ X :
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(i) d(x, y) = d(y, x) = 0 ⇔ x = y,
(ii) d(x, y) 6 d(x, z) + d(z, y).
A quasi-metric space is a pair (X, d) such that X is a (nonempty) set
and d is a quasi-metric on X.

Lemma 1.2. [5] If (X, p) is a dualistic partial metric space, then the
function dp : X ×X → R+ defined by dp(x, y) = p(x, y) − p(x, x), is a
quasi-metric on X such that τ(p) = τ(dp).

Lemma 1.3. [5] A dualistic partial metric space (X, p) is complete
if and only if the metric space (X, (dp)s) is complete . Furthermore
limn→∞(dp)s(a, xn) = 0 if and only if p(a, a) = limn→∞p(a, xn) =
limn,m→∞p(xn, xm).

Before stating our main results we establish some (essentially known)
correspondences between dualistic partial metric spaces and quasi-metric
spaces. Our basic references for quasi-metric spaces are [3] and [4] and
for ε− fixed point is [6].
Each quasi-metric d on X generates a T0-topology T (d) on X which has
as a base the family of open d-balls {Bd(x, ε), x ∈ X, ε > 0}, where
Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.
If d is a quasi-metric on X, then the function ds defined on X ×X by
ds(x, y) = max{d(x, y), d(y, x)}, is a metric on X.

Theorem 1.4. [6] Let (X, p) be a dualistic partial metric space and
T : X → X be a map, x0 ∈ X and ε > 0 . If dp(Tn(x0), Tn+k(x0)) → 0
as n→∞ for some k > 0, then T k has an ε− fixed point.

2. Main Results

In this section, we give some results on fixed point and ε− fixed point
in dualistic partial metric space and its diameter.

Definition 2.1. An open ball for a dualistic partial metric p : X×X →
R is a set of the form Bp

ε (x) ::= {y ∈ X : p(x, y) < ε} for each ε > 0
and x ∈ X.



98 S. A. M. MOHSENALHOSSEINI AND H. MAZAHERI

Theorem 2.2. Let (X, p) be a dualistic partial metric space and K,Y
be subsets of X. Also, let α : K → Y and β : Y → K be two maps. Then
T = βα : K → K has a fixed point if and only if S = αβ : Y → Y, has
a fixed point. In other words, given the commutative diagrams:

we have: F (T ) = ∅⇔ F (S) = ∅.

Proof. If y0 is a fixed point of βα then it follows that α(y0) = αβ[α(y0)]. 

Definition 2.3. [6] Let (X, p) be a dualistic partial metric space and
T : X → X be a map. Then x0 ∈ X is − fixed point for T if

dp(Tx0, x0)  .

We say T has the -fixed point property if for some  > 0, AF (T ) = ∅
where

AF (T ) = {x0 ∈ X : dp(Tx0, x0)  }.

Theorem 2.4. Let (X, p) be a dualistic partial metric space and K,Y
be subsets of X. Also, let α : K → Y and β : Y → K be two maps and
AF (T ) = AF (α). Then T = βα : K → K has an approximate fixed
point if and only if S = αβ : Y → Y, has an approximate fixed point. In
order words, given the commutative diagrams:

3
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


Y
β

 K

Y

S


β






K α
 Y

we have: AF (T ) = ∅⇔ AF (S) = ∅.

Proof: Since AF (T ) = ∅, by Definition 2.3:

d(Ty0, y0) ≤  ⇔ d(βα(y0), y0) ≤ 

⇔ d(α[βα(y0)], α(y0)) ≤ 

⇔ d(Sy0, y0) ≤ .

Thus AF (T ) = ∅⇔ AF (S) = ∅.

Theorem 2.5. Let (X, p) be a complete dualistic partial metric space and T : X →
X be a map such that for all x, y ∈ X

p(Tx, Ty) ≤ cp(x, y) ; 0 ≤ c < 1.

Then T has a unique fixed point u, and Tn(x)→ u as n→∞ for each x ∈ X.

Proof: We shall show that for any given x ∈ X, the sequence {Tn(x)} of iterates
convergent to a fixed point. For this purpose, first of all observe that p(Tx, T 2x) ≤
cp(x, Tx) and by induction, p(Tnx, Tn+1x) ≤ cnp(x, Tx) for all n > 0. Thus, for any
n > 0 and any k > 0, we have

dp(Tn(x), Tn+k(x)) ≤
n+k−1

i=n

dp(T i(x), T i+1(x))

≤ (cn + · · ·+ cn+k−1)(p(x, T (x))− p(x, x))

≤ cn

1− c
(p(x, T (x))− p(x, x))

=
cn

1− c
dp(x, T (x)).

Since c < 1, then cn → 0. So by lemma 1.3, {Tn(x)} is a cauchy sequence in
(X, dp). Hence Tn(x) → u for some u ∈ X. By continuity of T, we should have
T (Tn(x)) → Tu. But {Tn+1(x)} is a subsequence of {Tn(x)}, so Tu = u and u is
a fixed point for T. Therefore, we have shown that for each x ∈ X, the limit of the
sequence {Tn(x)} exists and is a fixed point, since we will show that T has at most
one fixed point, and so every sequence {Tn(x)} should be convergent to the same
point. At the end we show the uniqueness of the fixed point of T : for if T (x0) = x0
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we have: AF (T ) 6= ∅ ⇔ AF (S) 6= ∅.

Proof. Since AF (T ) 6= ∅, by Definition 2.3:

d(Ty0, y0) 6 ε ⇔ d(βα(y0), y0) 6 ε

⇔ d(α[βα(y0)], α(y0)) 6 ε

⇔ d(Sy0, y0) 6 ε.

Thus AF (T ) 6= ∅ ⇔ AF (S) 6= ∅. �

Theorem 2.5. Let (X, p) be a complete dualistic partial metric space
and T : X → X be a map such that for all x, y ∈ X

p(Tx, Ty) 6 cp(x, y) ; 0 6 c < 1.

Then T has a unique fixed point u, and Tn(x) → u as n → ∞ for each
x ∈ X.

Proof. We shall show that for any given x ∈ X, the sequence {Tn(x)}
of iterates convergent to a fixed point. For this purpose, first of all
observe that p(Tx, T 2x) 6 cp(x, Tx) and by induction, p(Tnx, Tn+1x) 6
cnp(x, Tx) for all n > 0. Thus, for any n > 0 and any k > 0, we have

dp(Tn(x), Tn+k(x)) 6
n+k−1∑
i=n

dp(T i(x), T i+1(x))

6 (cn + · · ·+ cn+k−1)(p(x, T (x))− p(x, x))

6
cn

1− c
(p(x, T (x))− p(x, x))

=
cn

1− c
dp(x, T (x)).

Since c < 1, then cn → 0. So by Lemma 1.3, {Tn(x)} is a cauchy
sequence in (X, dp). Hence Tn(x) → u for some u ∈ X. By continuity
of T, we should have T (Tn(x)) → Tu. But {Tn+1(x)} is a subsequence
of {Tn(x)}, so Tu = u and u is a fixed point for T. Therefore, we have
shown that for each x ∈ X, the limit of the sequence {Tn(x)} exists
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and is a fixed point, since we will show that T has at most one fixed
point, and so every sequence {Tn(x)} should be convergent to the same
point. At the end we show the uniqueness of the fixed point of T : for if
T (x0) = x0 and T (y0) = y0. Then x0 6= y0 gives the contradiction:

dp(x0, y0) = dp(T (x0), T (y0))

= p(T (x0), T (y0))− p(T (x0), T (x0))

6 c(p(x0, y0)− p(x0, x0))

< p(x0, y0)− p(x0, x0)

= dp(x0, y0). �

Corollary 2.6. Let (X, p) be a complete dualistic partial metric space
and Bp = Bp(y0, r) = {y : dp(y, y0) < r}. Let T : Bp → X be a map
such that for all x, y ∈ X

p(Tx, Ty) 6 cp(x, y) ; 0 < c < 1. (1)

If dp(Ty0, y0) < (1− c)r, then T has a fixed point.

Proof. Choose ε > r, so that dp(Ty0, y0) 6 (1−c)r < (1−c)ε. We show
that T maps the closed ball K = {y : dp(y, y0) 6 ε} into itself: for if
y ∈ K, then

dp(T (y), y0) 6 dp(T (y), T (y0)) + dp(T (y0), y0)

6 cp(y, y0) + (1− c)ε

6 cε+ ε− cε = ε.

Since K is complete and T : K → K satisfies in (1) thus by Theorem
2.5, T has a fixed point. �

Theorem 2.7. Let (X, p) be a complete dualistic partial metric space
and T : X → X be a map , not necessarily continuous. For each ε > 0
there is a θ(ε) > 0 such that if dp(x, Tx) < θ(ε), then T [Bd(x, ε)] ⊂
Bd(x, ε). Also, if dp(Tn(p0), Tn+1(p0)) → 0 for some p0 ∈ X, the se-
quence {Tn(p0)} converges to a fixed point of T.
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Proof. We consider Tn(p0) = xn. First we show that {xn} is a Cauchy
sequence. since dp(xN , TxN ) < θ(ε), we have T [Bd(xN , ε)] ⊂ Bd(xN , ε).
So TxN = xN+1 ∈ B(xN , ε) and, by induction, TxN = xN+k ∈ B(xN , ε)
for all k > 0. Thus, dp(xm, xn) < 2ε for all m,n > N and {xn}
is Cauchy sequence. Therefore it converges to some x0 ∈ X. Now
we show that x0 is a fixed point for T. Let dp(x0, Tx0) = b > 0,
we can choose xn ∈ B(x0,

b
3) such that dp(xn, xn+1) < θ b3 : we have

T [Bd(xN , b3)] ⊂ Bd(xN , b3) by hypothesis, so Tx0 ∈ B(xn, b3). But this
is impossible because dp(Tx0, xn) > dp(Tx0, x0)− dp(xn, x0) > 2b

3 . Thus
Tx0 /∈ B(xn, b3) and so dp(x0, Tx0) = 0. �

Theorem 2.8. Let (X, p) be a complete dualistic partial metric space
and T : X → X be a map satisfying

p(Tx, Ty) 6 η[p(x, y)],

where η : R+ → R+ is any nondecrasing (not necessarily continuous)
function such that ηn(t) → 0 as n → ∞ for each t > 0. Then T has a
unique fixed point p0, and Tn(x) → p0 as n→∞ for x ∈ X.

Proof. Observe that η(t) < t for each t > 0, for if t 6 η(t) for some
t > 0, then monotonicity of η gives that η(t) 6 η[η(t)] and by induction,
t 6 ηn(t) for all n > 0. So we have p(Tx, T 2x) 6 cp(x, Tx) and by
induction p(Tnx, Tn+1x)| 6 cnp(x, Tx) for all n > 0. Fix x ∈ X. Then
clearly for each x ∈ N

|p(Tnx, Tnx)| 6 cn|p(x, x)|

and
|p(Tnx, Tn+1x)| 6 cn|p(x, Tx)|.

Also,
dp(Tnx, Tn+1x) + p(Tnx, Tnx) = p(Tnx, Tn+1x).

Hence we deduce that

dp(Tnx, Tn+1x) + p(Tnx, Tnx) 6 cn|p(x, Tx)|.
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Thus we get

dp(Tn(x), Tn+1(x)) 6 ηn|p(x, Tx)| − |p(Tnx, Tnx)|
6 ηn|p(x, Tx)|+ |p(Tnx, Tnx)|
6 ηn(|p(x, Tx)| − |p(x, x)|)
6 ηn[dp(x, Tx)].

So dp(Tn(x), Tn+1(x)) → 0 as n → ∞ for each x ∈ X. Now let ε > 0
be given, and choose θ(ε) = ε − η(ε); if dp(x, Tx) < θ(ε), then for any
x0 ∈ Bd(x, ε) we have

dp(Tx0, x) 6 dp(Tx0, Tx)+dp(Tx, x) < η[dp(x0, x)]+θ(ε) 6 η(ε)+ε−η(ε) = ε.

So Tx0 ∈ Bd(x, ε). Hence by Theorem 2.7, T has a fixed point. The
remainder of the proof is obvious. �

Theorem 2.9. Let (X, p) be a complete dualistic partial metric space
and T : X → X be a map satisfying

p(Tx, Ty) 6 β(x, y)p(x, y),

where β : X ×X → R+ has the property for any closed interval [a, b] ⊂
R+ − {0},

sup{β(x, y) : a 6 dp(x, y) 6 b} = λ(a, b) < 1.

Then T has an unique fixed point p, and Tn(x) → p as n→∞ for each
x ∈ X.

Proof. For x ∈ X, the sequence {dp(Tn(x), Tn+1(x))} is nonincreasing,
therefore it is convergent to some a > 0. We should have a = 0 : other-
wise, dp(Tn(x), Tn+1(x)) ∈ [a, a+ 1] for all large n; then by choosing n
and q = λ(a, a+ 1), by induction we have

a 6 dp(Tn+k(x), Tn+k+1(x)) 6 qkdp(Tn(x), Tn+1(x)) 6 qk(a+ 1)

for all k > 0, but q < 1, and is a contradiction. Now, suppose ε > 0,
λ = λ( ε2 , ε) and choose θ = min{ ε2 , ε(1 − λ)}. Let dp(x, Tx) < θ(ε) and
x0 ∈ Bp(x, ε) then

dp(Tx0, x) 6 dp(Tx0, Tx) + dp(Tx, x).
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If d(x0, x) < ε
2 : then

dp(Tx0, x) 6 dp(x0, x) + dp(Tx, x) <
ε

2
+
ε

2
= ε;

and if ε
2 6 d(x0, x) < ε : then

dp(Tx0, x) 6 β(x, y)dp(x0, x) + dp(Tx, x) < λε+ (1− λ)ε = ε.

Hence, T [Bp(x, ε) ⊂ Bp(x, ε), and by Theorem 2.7, T has a fixed point.
The remainder of the proof is obvious. �

Proposition 2.10. Let (X,p) be a dualistic partial metric space and
T : X → X be a map such that T is asymptotic regular, i.e., for all
x ∈ X

dp(Tn(x0), Tn+1(x0)) → 0 as n→∞.

Then T has an ε− fixed point.

Proof. Since dp(Tn(x0), Tn+1(x0)) → 0 as n→∞ then for ε > 0, there
exists n0 > 0 such that for all n > n0,

dp(Tn(x0), Tn+1(x0)) < ε.

Then dp(Tn0(x0), T (Tn0(x0))) < ε. Therefore Tn0(x0) is an ε− fixed
point of T. �

Theorem 2.11. Let T be a mapping of a dualistic partial metric space
(X, p) into itself such that

|p(Tx, Ty)| 6 c|p(x, y)| 0 < c < d(α(y0), y0)

for all x, y ∈ X, and ε > 0. Then T k has a ε-fixed point, for all k.

Proof. Fix x ∈ X. It is clear that for each x ∈ N

|p(Tnx, Tnx)| 6 cn|p(x, x)|

also
|p(Tnx, Tn+1x)| 6 cn|p(x, Tx)|,
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and
dp(Tnx, Tn+1x) + p(Tnx, Tnx) = p(Tnx, Tn+1x).

We deduce that

dp(Tnx, Tn+1x) + p(Tnx, Tnx) 6 cn|p(x, Tx)|.

Hence

dp(Tn(x), Tn+1(x)) 6 cn|p(x, Tx)| − |p(Tnx, Tnx)|
6 cn|p(x, Tx)|+ |p(Tnx, Tnx)|
6 cn(|p(x, Tx)|+ |p(x, x)|).

Therefore for k, n ∈ N

dp(Tn(x), Tn+k(x)) 6 dp(Tn(x), Tn+1(x)) + ...+ dp(Tn+k−1(x), Tn+k(x))

6 (cn + ...+ cn+k−1)(|p(x, Tx)|+ |p(x, x)|)

6
cn

1− c
(|p(x, Tx)|+ |p(x, x)|)

6
cn

1− c
[dp(x, Tx)].

Thus limn→∞ dp(Tn+k(x), Tn(x)) = 0 as n → ∞. Therefore by Propo-
sition 2.10 T k has an ε-fixed point. �

If we take T : X → X in Theorem 2.2 of [7], we have the following
corollary.

Corollary 2.12. Let (X,p) be a dualistic partial metric space and T :
X → X be a mapping and ε > 0. Also, let

dp(Tx, Ty) 6 αdp(x, y) + β[dp(x, Tx) + dp(y, Ty)]

for all x, y ∈ X, where α, β > 0 and α + 2β < 1. Then T has a ε-fixed
point.

Example 2.13. Let X = (−∞, 2], and let p be the dualistic metric on
X given by

p(x, y) = Max{x, y}
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for all x, y ∈ X.
Let T be the mapping from X into itself defined by T (x) = x− 1, for all
X = (−∞, 2]. It is immediate to see that

p(T (x), T (y)) 6
1
2
p(x, y)

for all x, y ∈ X. However T does not have any fixed point. But by
Proposition 2.10, for some ε > 0, T has a ε-fixed point.

Definition 2.14. Let (X, p) be a dualistic partial metric space, T : X →
X, be continues map and ε > 0. We define diameter AF (T ) by

diamAF (T ) = sup{dp(x, y) : x, y ∈ AF (T )}.

If we take T : X → X in Theorem 2.8 of [7], we have the following
corollary.

Corollary 2.15. Let T : X → X and ε > 0. If there exists α ∈ [0, 1]
such that for all x, y ∈ X

dp(Tx, Ty) 6 αdp(x, y),

then
diamAF (T ) 6

2ε
1− α

.
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