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Abstract. We consider the dualistic partial metric spaces on a set X,
and we give necessary conditions for existence of fixed point and e—fixed
point for some maps.
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1. Introduction

The partial metric spaces has been introduced by Matthews in [5] as
a part of the study of denotational semantics of dataflow networks. In
particular, Matthews established the precise relationship between partial
metric spaces and the so-called weightable quasi-metric spaces. Indeed
he proved a partial metric generalization of Banach contraction mapping
theorem.

A partial metric [5] on a set X is a function p : X x X — [0, 00) such
that for all x,y, 2z € X:

(1) z =y < p(z,z) =plz,y) = py,y);

(2) p(z, z) < p(@,y);
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(3) p(l’, y) = p<y7 JZ);

(4) p(z,2) < p(z,y) +py, 2) = p(y, ).

A partial metric space is a pair (X, p), where p is a partial metric on X.
If p is a partial metric on X, then the function p® : X x X — [0, c0) given
by p*(x,y) = 2p(x,y) — p(z,x) — p(y,y) is a (usual) metric on X. Each
partial metric p on X induces a Ty topology 7, on X which has as a basis
of the family of open p-balls {B,(z,€) : © € X,e > 0}, where By(z,¢€) =
{ye X : p(z,y) <p(z,z)+€} for all x € X and € > 0. Similarly, closed
p-ball is defined as By(z,€) = {y € X : p(z,y) < p(x,x) + €}

A sequence {zy, }nen in a partial metric space (X, p) is called a Cauchy
sequence if there exists (and is finite) limy mp(@n, Tm) [5]-

A partial metric space (X,p) is said to be complete if every Cauchy
sequence {xy }nen in X converges, with respect to 7, to a point z € X
such that p(z,z) = limy, mp(Tn, Tm) [5].

A mapping T : X — X is said to be continuous at xg € X, if for € > 0,
there exists § > 0 such that T'(By(xo,0)) C Bp(T(z0),€). [1]

Definition 1.1. [5] An open ball for a partial metricp : X x X — [0, 00)
is a set of the form BY(x) :={y € X : p(x,y) < €} for each ¢ > 0 and
z e X.

In [9], S. J. O’Neill proposed one significant change to Matthews defi-
nition of the partial metrics, and that was to extend their range from
R*to R. In the following, partial metrics in the O’Neill sense will
be called dualistic partial metrics and a pair (X,p) such that X is a
nonempty set and p is a dualistic partial metric on X will be called a
dualistic partial metric space.

A dualistic partial metric on a set X is a function p: X x X — R such
that for all x,y,z € X :

(1) x =y < p(z,x) =p@,y) =pyY,y);

(2) p(z, ) < p(@,y);

(3) p(z,y) = p(y,z);

(4) p(z,2) < p(x,y) + p(y,2) — p(y,y). A dualistic partial metric space
is a pair (X,p), where p is a dualistic partial metric on X.

A quasi-metric on a set X we mean a nonnegative real-valued function
d on X x X such that for all z,y,z € X :
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(i) d(‘Tvy) = d(y7$) =0 sz=y,

(i) d(z,y) < d(z, z) + d(z,y).

A quasi-metric space is a pair (X,d) such that X is a (nonempty) set
and d is a quasi-metric on X.

Lemma 1.2. [5] If (X,p) is a dualistic partial metric space, then the
function d, : X x X — Rt defined by dy(z,y) = p(z,y) — p(z, ), is a
quasi-metric on X such that T(p) = 7(dp).

Lemma 1.3. [5] A dualistic partial metric space (X,p) is complete
if and only if the metric space (X, (dp)®) is complete . Furthermore
limp—oo(dp)®(a,zy,) = 0 if and only if p(a,a) = limy—cop(a,z,) =
limn,mﬂoop(l'n7 xm) .

Before stating our main results we establish some (essentially known)
correspondences between dualistic partial metric spaces and quasi-metric
spaces. Our basic references for quasi-metric spaces are [3] and [4] and
for e— fixed point is [6].

Each quasi-metric d on X generates a Ty-topology T'(d) on X which has
as a base the family of open d-balls {Bj(z,€),z € X, ¢ > 0}, where
Bi(z,e) ={y € X : d(z,y) < e} forall z € X and € > 0.

If d is a quasi-metric on X, then the function d® defined on X x X by
d*(z,y) = maz{d(x,y),d(y, )}, is a metric on X.

Theorem 1.4. [6] Let (X,p) be a dualistic partial metric space and
T:X — X beamap, zo € X and € > 0 . If dp(T™(x0), T (20)) — 0
as n — oo for some k > 0, then T* has an e— fized point.

2. Main Results

In this section, we give some results on fixed point and e— fixed point
in dualistic partial metric space and its diameter.

Definition 2.1. An open ball for a dualistic partial metricp : X x X —
R is a set of the form BY(x) == {y € X : p(z,y) < €} for each ¢ > 0
and r € X.
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Theorem 2.2. Let (X,p) be a dualistic partial metric space and K,Y
be subsets of X. Also, leta: K — Y and B:Y — K be two maps. Then
T =pa: K — K has a fixed point if and only if S =af :Y — Y, has
a fixed point. In other words, given the commutative diagrams:

K Y
%iT and yis
Y —K K——Y

B
we have: F(T) # @ < F(S) # @.

Proof. If yy is a fixed point of Sa then it follows that a(yy) = afBla(yo)]. O

Definition 2.3. [6] Let (X,p) be a dualistic partial metric space and
T:X — X be amap. Then xg € X is e— fized point for T if

dp(Txo,z0) < €.

We say T has the e-fized point property if for some e > 0, AF(T) # 0
where

AF(T) = {.7}(] e X: dp(T.%‘o,l‘o) < 6}.

Theorem 2.4. Let (X,p) be a dualistic partial metric space and K,Y
be subsets of X. Also, let a: K —Y and 8:Y — K be two maps and
AF(T) = AF(a). Then T = pa : K — K has an approzimate fized
point if and only if S = af : Y — Y, has an approximate fized point. In
order words, given the commutative diagrams:

K Y

@ B
/iT and /is
Y —K K——Y
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we have: AF(T) # @ < AF(S) # @.
Proof. Since AF(T) # @, by Definition 2.3:
d(Tyo,y0) <€ < d(Ba(yo),yo) <€

& d(affal(yo)], a(yo)) < €
< d(SY0,%0) < e

Thus AF(T) # @ < AF(S) # @. O

Theorem 2.5. Let (X,p) be a complete dualistic partial metric space
and T : X — X be a map such that for all x,y € X

p(Tz,Ty) < cp(z,y) ; 0<e< L.

Then T has a unique fized point u, and T"(x) — u as n — oo for each
x e X.

Proof. We shall show that for any given = € X, the sequence {17 (x)}
of iterates convergent to a fixed point. For this purpose, first of all
observe that p(Tz, T?x) < ep(x, Tz) and by induction, p(T"z, T z) <
c"p(xz, Tx) for all n > 0. Thus, for any n > 0 and any k& > 0, we have

n+k—1
BT (@), T @) < 3 (Ti@), T (@)
< (@4 M T) - ple, )
< {0l T(@) ~ plz.2))
= 1c_ncdp($,T(x)).

Since ¢ < 1, then ¢" — 0. So by Lemma 1.3, {T"(z)} is a cauchy
sequence in (X,d,). Hence T"(x) — u for some u € X. By continuity
of T, we should have T(T"(z)) — Tu. But {T""!(z)} is a subsequence
of {T"(x)}, so Tu = w and u is a fixed point for T. Therefore, we have
shown that for each z € X, the limit of the sequence {1"(x)} exists
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and is a fixed point, since we will show that T has at most one fixed
point, and so every sequence {T"(z)} should be convergent to the same
point. At the end we show the uniqueness of the fixed point of T : for if
T(z9) = x¢ and T'(yo) = yo. Then xy # yo gives the contradiction:

dp(z0,y0) = dp(T(20), T (y0))

p(T'(z0), T(yo)) — p(T (o), T(x0))
c(p(wo, yo) — p(z0, o))

p(z0,y0) — p(xo, o)

= dp(wo,y0). O

AN

Corollary 2.6. Let (X,p) be a complete dualistic partial metric space
and By, = By(yo,r) = {y : dp(y,yo0) < r}. Let T : B, — X be a map
such that for all z,y € X

p(Tz,Ty) < cp(z,y) ; 0<c< 1. (1)

If dpy(Tyo,y0) < (1 —¢)r, then T has a fized point.

Proof. Choose € > r, so that d,(Tyo,y0) < (1—c¢)r < (1—c)e. We show
that 7' maps the closed ball K = {y : dp(y,yo) < €} into itself: for if
y € K, then

dp(T(y)7 yO) < dp(T(y>7 T(yo)) + dP(T(yO)v yO)
< op(y,90) + (1 —c)e
<

ce+ € —ce = €.

Since K is complete and T : K — K satisfies in (1) thus by Theorem
2.5, T has a fixed point. [

Theorem 2.7. Let (X,p) be a complete dualistic partial metric space
and T : X — X be a map , not necessarily continuous. For each € > 0
there is a 6(e) > 0 such that if d,(x,Tx) < 0(¢), then T[By(z,€)] C
Ba(x,€). Also, if dy(T™(po), T (po)) — 0 for some py € X, the se-
quence {T™(po)} converges to a fixed point of T.



GENERALIZATIONS OF ¢ -FIXED POINT ... 101

Proof. We consider T"(pg) = x,,. First we show that {z,} is a Cauchy
sequence. since dp(xn,Tzy) < 0(¢€), we have T'[By(zn, €)] C Ba(xn,€).
So Txny = xn+1 € B(zn, €) and, by induction, Txny = x4k € By, €)
for all & > 0. Thus, dy(zpm,z,) < 2¢€ for all m,n > N and {z,}
is Cauchy sequence. Therefore it converges to some zy € X. Now
we show that zg is a fixed point for T. Let dp(zo,Txo) = b > 0,
we can choose z, € B(zy, %) such that dp(z,,zn+1) < 0% : we have
T[Ba(zn,%)] C Ba(zn,2) by hypothesis, so Txg € B(zy, 5). But this
is impossible because d,(T'zg, y) = dp(Tx0, o) — dp(zp, o) = %b. Thus
Tz ¢ B(xy, %) and so dp(zo, Txg) =0. O

Theorem 2.8. Let (X,p) be a complete dualistic partial metric space
and T : X — X be a map satisfying

p(Tz, Ty) < nlp(z,y)],

where n : RT — R* 4s any nondecrasing (not necessarily continuous)
function such that n™(t) — 0 as n — oo for each t > 0. Then T has a
unique fized point py, and T"(x) — py as n — oo for x € X.

Proof. Observe that n(t) < ¢ for each ¢ > 0, for if ¢ < n(t) for some
t > 0, then monotonicity of n gives that n(t) < n[n(t)] and by induction,
t < n(t) for all n > 0. So we have p(Txz,T?x) < cp(x,Tz) and by
induction p(T"x, T" 'z)| < "p(x, Tz) for all n > 0. Fix z € X. Then
clearly for each x € N

Ip(T"z, T"z)| < c"|p(x, x)|

and
(T2, T" )| < " |p(z, Tx)|.

Also,
dp(T"z, T”+133) +p(T"z, T"x) = p(T"x, T”H:L‘).

Hence we deduce that

dp(T"2, T" M x) + p(T"x, T"x) < "|p(z, T)|.
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Thus we get

dp(T" (), T (2)) n"|p(z, Tz)| — |p(T"z, T"x)|

n"|p(z, Tx)| + |p(T"z, T"z)|

n"(Ip(z, Tx)| — [p(z, z)])

n"[dp(x, Tr)].

So dp(T™(z), T""*(z)) — 0 as n — oo for each x € X. Now let € > 0
be given, and choose 0(¢) = € — n(e); if dy(x,Tx) < 6(¢), then for any
xo € By(x,€) we have

INCINCIN N

dy(Txo,x) < dp(Txo, Tx)+dp(Tx, z) < n[dy(x0,x)]+0(e) < n(e)+e—n(e) = e.

So Txy € By(x,¢). Hence by Theorem 2.7, T has a fixed point. The
remainder of the proof is obvious. [

Theorem 2.9. Let (X,p) be a complete dualistic partial metric space
and T : X — X be a map satisfying

p(Tz, Ty) < B(z,y)p(x,y),

where 3: X x X — R has the property for any closed interval [a,b] C
R+ - {%}7

sup{B(x,y) : a < dp(z,y) <b} = A(a,b) <1.
Then T has an unique fixed point p, and T"(x) — p as n — oo for each

rz e X.

Proof. For x € X, the sequence {d,(T™(z), T""!(x))} is nonincreasing,
therefore it is convergent to some a > 0. We should have a = 0 : other-
wise, d,(T"(z), T" "1 (x)) € [a,a + 1] for all large n; then by choosing n
and ¢ = A(a,a + 1), by induction we have

0 < dp(T™ (2), T (@) < ¢hdy (T7(2), T (2)) < ¢F(a+ 1)

for all £ > 0, but ¢ < 1, and is a contradiction. Now, suppose € > 0,
A = A(5,€) and choose 0 = min{5,e(1 — \)}. Let dy(z,Tx) < () and
xo € Bp(z,€) then

dy(Txo,x) < dp(Txo, Tx) + dp(Tx, x).
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If d(zo,x) < § : then
dp(Txo, x) < dp(zo,z) + dp(Tx, x) < % + % =€
and if § < d(zo,z) < €: then
dy(Txo,x) < Bz, y)dp(xo, ) + dp(Tz,2) < Ae + (1 — Ne =e.

Hence, T'[By(z,€) C By(x,€), and by Theorem 2.7, T has a fixed point.
The remainder of the proof is obvious. [

Proposition 2.10. Let (X,p) be a dualistic partial metric space and
T : X — X be a map such that T is asymptotic regular, i.e., for all
reX

dp(T™(20), T (x0)) — 0 as n — oo.

Then T has an e— fixed point.

Proof. Since d,(T™(z0), T" " (x0)) — 0 as n — oo then for € > 0, there
exists ng > 0 such that for all n > ng,

dp(T"(0), T (0)) < €.

Then d,(T"(x0), T(T™ (z0))) < €. Therefore T™0(zg) is an e— fixed
point of T. [

Theorem 2.11. Let T be a mapping of a dualistic partial metric space
(X, p) into itself such that

[p(Tz, Ty)| < clp(z,y)| 0 << d(a(yo), o)
for all z,y € X, and € > 0. Then T* has a e-fized point, for all k.
Proof. Fix ¢ € X. It is clear that for each x € N
p(T"x, T"z)| < " [p(z, )]

also
p(T"2, T )| < " |p(x, T,
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and
dp(T"2, T" M 2) + p(T"x, T"x) = p(T"x, T" " '2).
We deduce that
dp(T"2, T" M x) + p(T"x, T"x) < "|p(z, Tr)|.
Hence

dp(T" (), T ()) |p(z, Tz)| = |p(T"z, T"z)|

<

< pla, Tx)| + |p(T"z, T )
< Cp(z, Tz)| + [p(z, 2)]).
Therefore for k,n € N

dp(T" (), T" ()

NN

(™ + .. 4+ Y (p(x, Tx)| + |p(x, 2)))
—— (p(a, T2)| + [p(z, )

1—c¢

N

N

[dp({l}, T‘T)} :
Thus lim,, e dp(T" ¥ (), T"(x)) = 0 as n — co. Therefore by Propo-
sition 2.10 T* has an e-fixed point. [

If we take T : X — X in Theorem 2.2 of [7], we have the following
corollary.

Corollary 2.12. Let (X,p) be a dualistic partial metric space and T :
X — X be a mapping and € > 0. Also, let

dp(Tz, Ty) < ady(z,y) + Bldp(x, Tx) + dp(y, Ty)]

for all x,y € X, where a, 3 2 0 and aa+ 28 < 1. Then T has a e-fixed
point.

Example 2.13. Let X = (—00,2|, and let p be the dualistic metric on
X given by
p(z,y) = Max{z, y}

dp(T" (2), T (@) + oo + dp (T (), T (@)
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for all z,y € X.
Let T be the mapping from X into itself defined by T'(xz) = x — 1, for all

X = (—00,2]. It is immediate to see that
1

for all z,y € X. However T does not have any fixed point. But by
Proposition 2.10, for some € > 0, T has a e-fixed point.

Definition 2.14. Let (X, p) be a dualistic partial metric space, T : X —
X, be continues map and € > 0. We define diameter AF(T) by

diamAF (T) = sup{dp(z,y) : z,y € AF(T)}.

If we take T : X — X in Theorem 2.8 of [7], we have the following
corollary.

Corollary 2.15. Let T : X — X and € > 0. If there exists a € [0,1]
such that for oll x,y € X

dp(T.CL‘, Ty) < adp(xa y)7

then
2¢

1—a’

diamAF(T) <
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