Journal of Mathematical Extension Vol. 16, No. 11, (2022) (9)1-11 URL: https://doi.org/10.30495/JME.2022.2181 ISSN: 1735-8299 Original Research Paper

Some Results On 3-Dimensional Lorentzian Manifold

S. Azimpour^{*}

University of Farhangian

A. Haji-Badali

University of Bonab

Abstract. In this paper, first Szabo operator related to the Ricci operator of Lorentzian 3-manifold in the algebraic setting is determined. Then, a necessary and sufficient condition for a Lorentzian 3-manifolds admitting a parallel line field with vanishing Szabo operator is obtained.

AMS Subject Classification: 53C44; 53C30; 53C80 **Keywords and Phrases:** Killing vector, Lorentzian manifold, Szabo operator, Walker manifold

1 Introduction

The existence of a parallel line on a Riemannian manifold gives rise to a local decomposition of the manifold as a direct product is familiar. This property extends to semi-Riemannian manifolds whenever the line is nondegenerate, i.e., it is spanned by a non-null locally defined vector field. However, there are several research on geometrical consequences of the existence of a parallel degenerate line [2, 3, 4, 5].

Received: September 2021; Accepted: June 2022

^{*}Corresponding Author

S. AZIMPOUR AND A. HAJI-BADALI

Lorentz manifolds admitting a parallel degenerate line field are of special interest, so that, Walker [8, 9] obtained canonical coordinates for semi-Riemannian metrics admitting parallel degenerate plane fields which allowed further investigations [1, 2, 3, 4, 5]. In order to study some geometric properties, it is some times useful to have some insight from the 3-dimensional case. Let (M, g) be a 3-dimensional Lorentzian manifold admitting a parallel degenerate line field with local coordinates (t, x, y) where the Lorentzian metric tensor is expressed as:

$$g_{f} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & \varepsilon & 0 \\ 1 & 0 & f(t, x, y) \end{pmatrix}$$
(1)

for some function f(t, x, y), where, $\varepsilon = \pm 1$ and the parallel degenerate line field becomes, $D = \langle \frac{\partial}{\partial t} \rangle$.

Let (M, g) be a semi-Riemannian manifold. A (0, 4)-tensor $R \in \otimes^4 T_p M$, for each point p in M, is said to be an algebraic curvature tensor, if R has the symmetries of the curvature of the Levi-Civita connection:

$$\begin{split} R(x,y,z,w) &= R(z,w,x,y) = -R(y,x,z,w), \\ R(x,y,z,w) + R(y,z,x,w) + R(z,x,y,w) = 0. \end{split}$$

A (0,5)-tensor, which we denote symbolically by $\nabla R \in \otimes^5 T_p M$, is said to be a covariant derivative algebraic curvature tensor if ∇R has the symmetries of the covariant derivative of the curvature of the Levi-Civita connection:

$$\begin{aligned} \nabla R(a,b,c,d;e) &= -\nabla R(b,a,c,d;e) = \nabla R(c,d,a,b;e), \\ \nabla R(a,b,c,d;e) + \nabla R(a,c,d,b;e) + \nabla R(a,d,b,c;e) = 0, \\ \nabla R(a,b,c,d;e) + \nabla R(a,b,d,e;c) + \nabla R(a,b,e,c;d) = 0. \end{aligned}$$

The Jacobi operator $J_R(x)$ and the Szabo operator $S_R(x)$ are the symmetric linear operators on T_pM defined by:

$$\langle J_R(x)y,w\rangle = R(y,x,x,w)$$
 and $\langle S_{\nabla R}(x)y,w\rangle = \nabla R(y,x,x,w;x).$

It is obvious the $J_R(x)$ and $S_R(x)$ are self-adjoint.

Since any 3-dimensional algebraic curvature tensor is completely determined its Ricci tensor, we consider separately the following possibilities for the Ricci operator Ric (for more information see [3, 7]):

$$Type \ Ia: \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{pmatrix}, \quad Type \ Ib: \begin{pmatrix} \alpha & -\beta & 0 \\ \beta & \alpha & 0 \\ 0 & 0 & \gamma \end{pmatrix},$$

$$Type \ II: \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 1 & \beta \end{pmatrix}, \quad Type \ III: \begin{pmatrix} \alpha & 0 & 0 \\ 1 & \alpha & 0 \\ 0 & 1 & \alpha \end{pmatrix}.$$

$$(2)$$

Here, we can classify the Szabo operator, according to the classification of Ricci operator is suitable orthogonal frame $\{e_1, e_2, e_3\}$ [2].

The specialties geometry of Szabo operator is investigated by Gilkey and Stavrov in [6]. They proved that:

Lemma 1.1. Let ∇R be a covariant derivative algebraic curvature tensor on a Lorentzian vector space. If $trac\{S_{\nabla R}(0)^2\}$ is constant on $S^-(V)$, then $S_{\nabla R} = 0$.

Where, $S^{\pm}(V)$ be the pseudo-spheres of unit space-like (+) and time-like (-) vectors in V:

$$S^{\pm}(V) = \{ z \in V; g(z, z) = \pm 1 \}.$$

Also in [6], they are proved that:

Lemma 1.2. Let ∇R be a covariant derivative algebraic curvature tensor on a vector space of arbitrary signature. If $S_{\nabla R} = 0$, then $\nabla R = 0$.

Here, we study some geometric and algebraic properties of Lorentzian 3-metric. The paper is organized in the following way. In Sect 2, we calculate the non-zero components of the Levi-Civita connection and curvature tensor of 3-dimensional Lorentz manifolds admitting a parallel degenerate line field. In Sect 3, Szabo operator related to the Ricci operator of 3-dimensional Lorentzian manifold is determined. Finally, in Sect 4, a necessary and sufficient condition for a function f(t, x, y) of the Walker metric of 3-dimensional manifold, with vanishing Szabo operator is constructed.

2 Preliminaries

Here, we will give some necessary objects corresponding to Lorentzian geometry. It follows after a straightforward calculation that the Levi-Civita connection of any metric (1), is given by:

$$\begin{split} \nabla_{\partial t} \partial y &= \frac{1}{2} f_t \partial_t, \\ \nabla_{\partial x} \partial y &= \frac{1}{2} f_x \partial_t, \\ \nabla_{\partial y} \partial y &= \frac{1}{2} (f f_t + f_y) \partial_t - \frac{1}{2\varepsilon} f_x \partial_x - \frac{1}{2} f_t \partial_y, \end{split}$$

where $\partial_t, \partial_x, \partial_y$ are the coordinate vector fields $\frac{\partial}{\partial_t}, \frac{\partial}{\partial_x}, \frac{\partial}{\partial_y}$ respectively.

Hence, if (M, g) admits a parallel null vector field, then the associate Levi-Civita connection satisfies

$$abla_{\partial x}\partial y = \frac{1}{2}f_x\partial_t, \qquad
abla_{\partial y}\partial y = \frac{1}{2}f_y\partial_t - \frac{1}{24}f_x\partial_x$$

Let R denote the curvature tensor taken with the sign convention:

$$R(X,Y) = \nabla_{[X,Y]} - [\nabla_X,\nabla_Y].$$

Therefore, for any vector field $Z \in \mathcal{X}(M)$:

$$R(X,Y)Z = \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]}Z.$$

Then, the non-zero components of the curvature tensor of any metric (1) are given by:

$$\begin{split} R(\partial_t,\partial_y)\partial_t &= -\frac{1}{2}f_{tt}\partial_t,\\ R(\partial_t,\partial_y)\partial_x &= -\frac{1}{2}f_{tx}\partial_t, \end{split}$$

$$R(\partial_t, \partial_y)\partial_y = -\frac{1}{2}ff_{tt}\partial_t + \frac{1}{2\varepsilon}f_{tx}\partial_x + \frac{1}{2}f_{tt}\partial_y, \qquad (3)$$

$$R(\partial_x, \partial_y)\partial_t = -\frac{1}{2}f_{tx}\partial_t,$$

$$R(\partial_x, \partial_y)\partial_x = -\frac{1}{2}f_{xx}\partial_t,$$

$$R(\partial_x, \partial_y)\partial_y = -\frac{1}{2}ff_{tx}\partial_t + \frac{1}{2\varepsilon}f_{xx}\partial_x + \frac{1}{2}f_{tx}\partial_y.$$

Further, note that the existence of parallel null field simplifies (3) as follows:

$$R(\partial_x, \partial_y)\partial_x = -\frac{1}{2}f_{xx}\partial_t, \qquad R(\partial_x, \partial_y)\partial_y = \frac{1}{2\varepsilon}f_{xx}\partial_x.$$

As a matter of notation, let Ric and Sc denote the Ricci tensor and the scalar curvature of (M,g), defined by $Ric(X,Y) = trace\{Z \rightarrow R(X,Z)Y\}$ and Sc = trace Ric, respectively.

Moreover, let \hat{Ric} be the Ricci operator defined by: $\langle \hat{Ric}(X), Y \rangle = Ric(X, Y)$. Then the Ricci tensor of any metric (1) satisfies:

$$Ric = \begin{pmatrix} 0 & 0 & \frac{1}{2}f_{tt} \\ 0 & 0 & \frac{1}{2}f_{tx} \\ \frac{1}{2}f_{tt} & \frac{1}{2}f_{tx} & \frac{1}{2\varepsilon}(\varepsilon ff_{tt} - f_{xx}) \end{pmatrix},$$

when expressed in the local coordinate basis. Moreover, the Ricci operator \hat{Ric} of a metric (1), when expressed in the coordinate basis, takes the form:

$$\hat{Ric} = \begin{pmatrix} \frac{1}{2}f_{tt} & \frac{1}{2}f_{tx} & -\frac{1}{2\varepsilon}f_{xx} \\ 0 & 0 & \frac{1}{2\varepsilon}f_{tx} \\ 0 & 0 & \frac{1}{2}f_{tt} \end{pmatrix}.$$
 (4)

Hence, the *Ricci* operator has eigenvalues:

$$\lambda_1 = 0, \lambda_2 = \lambda_3 = \frac{1}{2} f_{tt},$$

and the scalar curvature satisfies

$$Sc = f_{tt}.$$

3 Szabo operators on 3-dimensional Lorentzian manifolds

Since any 3-dimensional algebraic curvature tensor is completely determined by its *Ricci* tensor. By (2), we can characterize the Szabo operator, according to the classification of *Ricci* operator in suitable orthogonal frame $\{e_1, e_2, e_3\}$ [3]. So, by a direct and straightforward computation according to definition of Szabo operator we will have the following

Proposition 3.1. The non-zero component of Szabo operator of each type of classification are explained as:

(1) When $\{e_1, e_2, e_3\}$ is unite orthogonal, one of the following cases occurs.

Type Ia:

$$\nabla R_{12113} = \nabla R_{13112} = \frac{1}{2} (\beta - \gamma) (-\alpha + \beta + \gamma)^2,$$

$$\nabla R_{21223} = \nabla R_{23221} = -\frac{1}{2} (\alpha - \gamma) (\alpha - \beta + \gamma)^2,$$

$$\nabla R_{31332} = \nabla R_{32331} = -\frac{1}{2} (\alpha - \beta) (\alpha + \beta - \gamma)^2.$$

Type Ib:

$$\nabla R_{12112} = \nabla R_{13113} = (\alpha - 2\beta)\beta(\alpha - 2\gamma),$$

$$\nabla R_{21223} = \nabla R_{23221} = \frac{1}{2}(2\beta(\beta - \gamma - \alpha^3) + \alpha(\beta - 2\beta^2 - \gamma)) + \alpha^2(1 + \gamma)),$$

$$\nabla R_{31332} = \nabla R_{32331} = \frac{1}{2}(\alpha^2(-1 + \gamma) - 2\beta(\beta + \gamma) - \alpha^3) + \alpha(\beta - 2\beta^2 - \gamma)).$$

Type II:

$$\nabla R_{12112} = \nabla R_{23223} = -\nabla R_{12113} = -\nabla R_{13112} = -\frac{1}{2}(\beta - 2\gamma)^2,$$

$$\nabla R_{21223} = \nabla R_{23221} = \frac{1}{4}\alpha(-4\beta + \alpha(3 - 2\alpha + 2\beta)),$$

$$\nabla R_{31332} = \nabla R_{32331} = \frac{1}{4}\alpha(-\alpha(3 + 2\alpha) + 2\beta(2 + \alpha)).$$

Type III:

$$\nabla R_{12112} = \nabla R_{12113} = \nabla R_{13112} = \nabla R_{13113} = 2\alpha,$$

$$\nabla R_{21221} = \nabla R_{31331} = \frac{-2 + \alpha^2}{\sqrt{2}},$$

$$\nabla R_{23223} = \nabla R_{32332} = \frac{-\alpha^2}{\sqrt{2}},$$

$$\nabla R_{31332} = \nabla R_{32331} = -\nabla R_{21223} = -\nabla R_{23221} = \alpha.$$

(2) When, $\{e_1, e_2, e_3\}$ is not unite orthogonal, one of the following cases occurs:

Type IV1: $\{e_1, e_2, e_3\}$ is orthonormal with $\langle e_1, e_1 \rangle = -\langle e_2, e_2 \rangle = -\langle e_3, e_3 \rangle$ and the structure constant satisfies $\alpha \gamma - \beta \delta = 0$.

Type IV2: $\{e_1, e_2, e_3\}$ is orthonormal with $\langle e_1, e_1 \rangle = \langle e_2, e_2 \rangle = -\langle e_3, e_3 \rangle$ and the structure constant satisfies $\alpha \gamma + \beta \delta = 0$. Type IV2: $\{e_1, e_2, e_3\}$ is needed, orthonormal with

Type IV3:
$$\{e_1, e_2, e_3\}$$
 is pseudo-orthonormal with

$$g = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

and the structure constant satisfies $\alpha \gamma = 0$. Then according the this classification, we have:

 $Type \ IV1:$

$$\nabla R_{12113} = \nabla R_{13112} = \frac{1}{4} (\alpha + \beta) (-\beta^2 + \gamma^2 + 2\alpha(\alpha + \delta)),$$

$$\nabla R_{21223} = \nabla R_{23221} = -\frac{1}{2} (\beta + \gamma) ((\beta - \gamma)\gamma - \alpha\delta + \delta^2),$$

$$\nabla R_{31332} = \nabla R_{32331} = -\frac{1}{4} (\beta - \gamma) (-2\alpha^2 + (\beta - \gamma)^2 - 2\delta^2).$$

Type IV2:

$$\nabla R_{12113} = \nabla R_{13112} = \frac{1}{4} (\alpha + \gamma) (-\beta^2 + \gamma^2 + 2\alpha(\alpha + \delta)),$$

$$\nabla R_{21223} = \nabla R_{23221} = -\frac{1}{2} (\beta + \gamma) ((\beta - \gamma)\gamma - \alpha\delta + \delta^2),$$

$$\nabla R_{31332} = \nabla R_{32331} = -\frac{1}{4}(\beta - \gamma)(\alpha^2 + \beta^2 - \gamma^2 + \delta^2).$$

Type IV3:

$$\nabla R_{13113} = \gamma(\alpha^2 + \beta\gamma - \alpha\delta),$$

$$\nabla R_{31331} = 2\gamma(-\beta\gamma + \alpha - \alpha + \delta),$$

$$\nabla R_{31332} = \nabla R_{32331} = \frac{1}{2}\gamma(\alpha^2 + 3\beta\gamma - \alpha\delta).$$

4 Szabo Operators of Walker Metrics on 3-Manifolds

Let (M, g) be a 3-dimensional Lorentzian manifold admitting a parallel one-dimensional degenerate plane with the local coordinates (t, x, y), where the Lorentzian metric tensor expresses by (1).

Then, we can classify the Szabo operator in a suitable unit orthogonal frame $\{e_1, e_2, e_3\}$, where $e_1 = \partial_t, e_2 = \partial_x, e_3 = \partial_y$. So, the non-zero component of the Szabo operator are:

$$\begin{aligned} \nabla R_{13313} &= \frac{1}{2} f_{tty}, \\ \nabla R_{13323} &= \nabla R_{23313} = \frac{1}{2} f_{txy} - \frac{1}{4} f_x f_{tt} + \frac{1}{4} f_t f_{tx}, \\ \nabla R_{13333} &= \nabla R_{33313} = \frac{1}{4} f f_t f_{tt} + \frac{1}{4} f_y f_{tt} + \frac{1}{4\varepsilon} f_x f_{tx}, \\ \nabla R_{23323} &= \frac{1}{2} f_{xxy} - \frac{1}{4} f_x f_{tx} + \frac{1}{4} f_t f_{tx}, \\ \nabla R_{23333} &= \nabla R_{33323} = \frac{1}{4\varepsilon} f_x f_{xx} - \frac{1}{4} f f_t f_{tx} - \frac{1}{4} f_y f_{tx}. \end{aligned}$$

Theorem 4.1. Let (M,g) be a three-dimensional Lorentzian manifold admitting a parallel one-dimensional degenerate plane field. Suppose S be Szabo operator of Walker metric. Then, $S \equiv 0$ if and only if the function f is of the form

$$f(t, x, y) = G(x, t) + H(x, y)t + K(x, y) + c,$$
(5)

for any functions G(x,t), H(x,y), K(x,y) and c (constant) satisfy the following relations:

$$2(H_{xy} - H_{xxy}t - K_{xxy}) + (G_x + H_xt + K_x)(G_{tx} + H_x - G_{tt}) = 0,$$

$$(G_x + H_x t + K_x) \left(G_{tx}^2 + H_x^2 + 2G_{tx} H_x + G_{xx} G_{tt} + H_{xx} G_{tt} t + K_{xx} G_{tt} \right) = 0.$$

Proof. Using the condition in Szabo operator, then we have five equations: $\int_{-1}^{1} f = 0$

$$\begin{split} &\frac{1}{2}f_{tty} = 0, \\ &\frac{1}{2}f_{txy} - \frac{1}{4}f_x f_{tt} + \frac{1}{4}f_t f_{tx} = 0, \\ &+ \frac{1}{4}f_f f_t f_{tt} + \frac{1}{4}f_y f_{tt} + \frac{1}{4\varepsilon}f_x f_{tx} = 0, \\ &\frac{1}{2}f_{xxy} - \frac{1}{4}f_x f_{tx} + \frac{1}{4}f_t f_{tx} = 0, \\ &\frac{1}{4\varepsilon}f_x f_{xx} - \frac{1}{4}f_f f_t f_{tx} - \frac{1}{4}f_y f_{tx} = 0. \end{split}$$

From the first equation, $\frac{1}{2}f_{tty} = 0$, we conclude:

$$f(t, x, y) = G(x, t) + H(x, y)t + K(x, y) + c.$$

By the second equation, the fourth equations, and (5) we concluded: $2(H_{xy} - H_{xxy}t - K_{xxy}) + (G_x + H_xt + K_x)(G_{tx} + H_x - G_{tt}) = 0.$ Also by the third equation, fifth equations and (5), the proof is completed. \Box

Now, if (M, g) admits a parallel null vector field, then the non-zero component of Szabo operator are:

$$\nabla R_{23323} = \frac{1}{2} f_{xxy},$$

$$\nabla R_{23333} = \frac{1}{4\varepsilon} f_x f_{xx}.$$
(6)

Theorem 4.2. Let (M,g) be a three-dimensional Lorentzian manifold admitting a parallel null one-dimensional degenerate plane field. Then, $S \equiv 0$ if and only if the function f is of the from

f(x,y) = P(y) or f(x,y) = xQ(y) + c

for any functions P(y), Q(y) and c (constant).

Proof. Using the condition in Szabo operator, then we have two equations.

 $f_{xxy} = 0$ and $f_x f_{xx} = 0$.

From the above equations (6), the proof is completed. \Box

Acknowledgments

Authors would like to thank referees for those sharp and nice comments.

References

- S. Azimpour, A note on 3–Lorentzian manifolds, Annual Iranian Mathematics Conference, Kharazmi University, Karaj, Iran 47th, August (2016), 28–31
- [2] M. Chaichi, E. García-Río, and M. E. Vazquez-Abal, Threedimensional Lorentz manifolds admitting a parallel null vector field, *J. Phys. A, Math. Gen.* 38 (2005), no. 4, 841–850.
- [3] E .García-Río, A. Haji-Badali, and R. Vazquez-Lorenzo, Lorentzian three-manifolds with special curvature operators, *Class. Quantum Grav.* 25 (2008) 015003.
- [4] E.García-Río, A. Haji-Badali, M. E. Vazquez-Abal and R.Vazquez-Lorenzo, Lorentzian 3-manifolds with commuting curvature operators, *International Journal of Geometric Methods in Modern Physics* 5 (04), (2008), 557–572.
- [5] E.García-Río, A.Haji-Badali, M. E. Vazquez-Abal and R. Vazquez-Lorenzo, On the local geometry of three-dimensional Walker metrics, Advance in Lorentzian geometry, (2008), 77–87.
- [6] P. Gilkey and I. Stavrov, Curvature tensors whose Jacobi or Szabo operator is nilpotent on null vectors, *Bull. London Math. Soc.* no. 34 (6) (2002), 650-658.
- [7] B. O'Neill, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, (1983).

SOME RESULT ON 3-DIMENSIONAL LORENTZIAN MANIFOLD 11

- [8] A. G. Walker, Canonical form for a Riemannian Space with a parallel field of Null planes, *Quart. J. Math. Oxford* (1950), 69–79.
- [9] A. G. Walker, Canonical forms II. Parallel partially null planes, Quart. J. Math. Oxford (2)1 (1950), 147–152.

Sohrab Azimpour

Department of Mathematics Assistant Professor of Mathematics University of Farhangian Tehran, Iran. E-mail: azimpour@cfu.ac.ir

Ali Haji-Badali

Department of Mathematics Professor of Mathematics University of Bonab Bonab, Iran. E-mail: haji.badali@ubonab.ac.ir