Some Results On 3-Dimensional Lorentzian Manifold

S. Azimpour*
University of Farhangian
\section*{A. Haji-Badali}
University of Bonab

Abstract

In this paper, first Szabo operator related to the Ricci operator of Lorentzian 3-manifold in the algebraic setting is determined. Then, a necessary and sufficient condition for a Lorentzian 3-manifolds admitting a parallel line field with vanishing Szabo operator is obtained.

AMS Subject Classification: 53C44; 53C30; 53C80
Keywords and Phrases: Killing vector, Lorentzian manifold, Szabo operator, Walker manifold

1 Introduction

The existence of a parallel line on a Riemannian manifold gives rise to a local decomposition of the manifold as a direct product is familiar. This property extends to semi-Riemannian manifolds whenever the line is nondegenerate, i.e., it is spanned by a non-null locally defined vector field. However, there are several research on geometrical consequences of the existence of a parallel degenerate line $[2,3,4,5]$.

[^0]Lorentz manifolds admitting a parallel degenerate line field are of special interest, so that, Walker [8, 9] obtained canonical coordinates for semi-Riemannian metrics admitting parallel degenerate plane fields which allowed further investigations [1, 2, 3, 4, 5]. In order to study some geometric properties, it is some times useful to have some insight from the 3-dimensional case. Let (M, g) be a 3 -dimensional Lorentzian manifold admitting a parallel degenerate line field with local coordinates (t, x, y) where the Lorentzian metric tensor is expressed as:

$$
g_{f}=\left(\begin{array}{ccc}
0 & 0 & 1 \tag{1}\\
0 & \varepsilon & 0 \\
1 & 0 & f(t, x, y)
\end{array}\right)
$$

for some function $f(t, x, y)$, where, $\varepsilon= \pm 1$ and the parallel degenerate line field becomes, $D=\left\langle\frac{\partial}{\partial t}\right\rangle$.

Let (M, g) be a semi-Riemannian manifold. A $(0,4)-$ tensor $R \in$ $\otimes^{4} T_{p} M$, for each point p in M, is said to be an algebraic curvature tensor, if R has the symmetries of the curvature of the Levi-Civita connection:

$$
\begin{array}{r}
R(x, y, z, w)=R(z, w, x, y)=-R(y, x, z, w) \\
R(x, y, z, w)+R(y, z, x, w)+R(z, x, y, w)=0 .
\end{array}
$$

A $(0,5)$-tensor, which we denote symbolically by $\nabla R \in \otimes^{5} T_{p} M$, is said to be a covariant derivative algebraic curvature tensor if ∇R has the symmetries of the covariant derivative of the curvature of the LeviCivita connection:

$$
\begin{aligned}
& \nabla R(a, b, c, d ; e)=-\nabla R(b, a, c, d ; e)=\nabla R(c, d, a, b ; e), \\
& \nabla R(a, b, c, d ; e)+\nabla R(a, c, d, b ; e)+\nabla R(a, d, b, c ; e)=0 \\
& \nabla R(a, b, c, d ; e)+\nabla R(a, b, d, e ; c)+\nabla R(a, b, e, c ; d)=0 .
\end{aligned}
$$

The Jacobi operator $J_{R}(x)$ and the Szabo operator $S_{R}(x)$ are the symmetric linear operators on $T_{p} M$ defined by:

$$
\left\langle J_{R}(x) y, w\right\rangle=R(y, x,, x, w) \text { and }\left\langle S_{\nabla R}(x) y, w\right\rangle=\nabla R(y, x, x, w ; x) .
$$

SOME RESULT ON 3-DIMENSIONAL LORENTZIAN MANIFOLD

It is obvious the $J_{R}(x)$ and $S_{R}(x)$ are self-adjoint.
Since any 3-dimensional algebraic curvature tensor is completely determined its Ricci tensor, we consider separately the following possibilities for the Ricci operator Ric (for more information see [3, 7]):

$$
\begin{array}{ll}
\text { Type Ia: }\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 0 & \gamma
\end{array}\right), & \text { Type } I b:\left(\begin{array}{ccc}
\alpha & -\beta & 0 \\
\beta & \alpha & 0 \\
0 & 0 & \gamma
\end{array}\right), \\
\text { Type } I I:\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & 0 \\
0 & 1 & \beta
\end{array}\right), & \text { Type III: }\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
1 & \alpha & 0 \\
0 & 1 & \alpha
\end{array}\right) . \tag{2}
\end{array}
$$

Here, we can classify the Szabo operator, according to the classification of Ricci operator is suitable orthogonal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ [2].
The specialties geometry of Szabo operator is investigated by Gilkey and Stavrov in [6]. They proved that:

Lemma 1.1. Let ∇R be a covariant derivative algebraic curvature tensor on a Lorentzian vector space. If $\operatorname{trac}\left\{S_{\nabla R}(0)^{2}\right\}$ is constant on $S^{-}(V)$, then $S_{\nabla R}=0$.
Where, $S^{ \pm}(V)$ be the pseudo-spheres of unit space-like $(+)$ and time-like $(-)$ vectors in V :

$$
S^{ \pm}(V)=\{z \in V ; g(z, z)= \pm 1\} .
$$

Also in [6], they are proved that:
Lemma 1.2. Let ∇R be a covariant derivative algebraic curvature tensor on a vector space of arbitrary signature. If $S_{\nabla R}=0$, then $\nabla R=0$.

Here, we study some geometric and algebraic properties of Lorentzian 3 -metric. The paper is organized in the following way. In Sect 2, we calculate the non-zero components of the Levi-Civita connection and curvature tensor of 3 -dimensional Lorentz manifolds admitting a parallel degenerate line field. In Sect 3, Szabo operator related to the Ricci operator of 3-dimensional Lorentzian manifold is determined. Finally, in Sect 4, a necessary and sufficient condition for a function $f(t, x, y)$
of the Walker metric of 3-dimensional manifold, with vanishing Szabo operator is constructed.

2 Preliminaries

Here, we will give some necessary objects corresponding to Lorentzian geometry. It follows after a straightforward calculation that the LeviCivita connection of any metric (1), is given by:

$$
\begin{aligned}
\nabla_{\partial t} \partial y & =\frac{1}{2} f_{t} \partial_{t} \\
\nabla_{\partial x} \partial y & =\frac{1}{2} f_{x} \partial_{t} \\
\nabla_{\partial y} \partial y & =\frac{1}{2}\left(f f_{t}+f_{y}\right) \partial_{t}-\frac{1}{2 \varepsilon} f_{x} \partial_{x}-\frac{1}{2} f_{t} \partial_{y}
\end{aligned}
$$

where $\partial_{t}, \partial_{x}, \partial_{y}$ are the coordinate vector fields $\frac{\partial}{\partial_{t}}, \frac{\partial}{\partial_{x}}, \frac{\partial}{\partial_{y}}$ respectively.
Hence, if (M, g) admits a parallel null vector field, then the associate Levi-Civita connection satisfies

$$
\nabla_{\partial x} \partial y=\frac{1}{2} f_{x} \partial_{t}, \quad \nabla_{\partial y} \partial y=\frac{1}{2} f_{y} \partial_{t}-\frac{1}{24} f_{x} \partial_{x}
$$

Let R denote the curvature tensor taken with the sign convention:

$$
R(X, Y)=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right]
$$

Therefore, for any vector field $Z \in \mathcal{X}(M)$:

$$
R(X, Y) Z=\nabla_{[X, Y]} Z-\left[\nabla_{X}, \nabla_{Y}\right] Z=\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z+\nabla_{[X, Y]} Z
$$

Then, the non-zero components of the curvature tensor of any metric (1) are given by:

$$
\begin{aligned}
& R\left(\partial_{t}, \partial_{y}\right) \partial_{t}=-\frac{1}{2} f_{t t} \partial_{t} \\
& R\left(\partial_{t}, \partial_{y}\right) \partial_{x}=-\frac{1}{2} f_{t x} \partial_{t}
\end{aligned}
$$

$$
\begin{align*}
R\left(\partial_{t}, \partial_{y}\right) \partial_{y} & =-\frac{1}{2} f f_{t t} \partial_{t}+\frac{1}{2 \varepsilon} f_{t x} \partial_{x}+\frac{1}{2} f_{t t} \partial_{y} \tag{3}\\
R\left(\partial_{x}, \partial_{y}\right) \partial_{t} & =-\frac{1}{2} f_{t x} \partial_{t} \\
R\left(\partial_{x}, \partial_{y}\right) \partial_{x} & =-\frac{1}{2} f_{x x} \partial_{t} \\
R\left(\partial_{x}, \partial_{y}\right) \partial_{y} & =-\frac{1}{2} f f_{t x} \partial_{t}+\frac{1}{2 \varepsilon} f_{x x} \partial_{x}+\frac{1}{2} f_{t x} \partial_{y} .
\end{align*}
$$

Further, note that the existence of parallel null field simplifies (3) as follows:

$$
R\left(\partial_{x}, \partial_{y}\right) \partial_{x}=-\frac{1}{2} f_{x x} \partial_{t}, \quad R\left(\partial_{x}, \partial_{y}\right) \partial_{y}=\frac{1}{2 \varepsilon} f_{x x} \partial_{x}
$$

As a matter of notation, let Ric and $S c$ denote the Ricci tensor and the scalar curvature of (M, g), defined by $\operatorname{Ric}(X, Y)=\operatorname{trace}\{Z \rightarrow$ $R(X, Z) Y\}$ and $S c=$ trace Ric, respectively.
Moreover, let Ric be the Ricci operator defined by:
$\langle\hat{\operatorname{Ric}}(X), Y\rangle=\operatorname{Ric}(X, Y)$. Then the Ricci tensor of any metric (1) satisfies:

$$
\text { Ric }=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{2} f_{t t} \\
0 & 0 & \frac{1}{2} f_{t x} \\
\frac{1}{2} f_{t t} & \frac{1}{2} f_{t x} & \frac{1}{2 \varepsilon}\left(\varepsilon f f_{t t}-f_{x x}\right)
\end{array}\right) \text {, }
$$

when expressed in the local coordinate basis. Moreover, the Ricci operator Ric of a metric (1), when expressed in the coordinate basis, takes the form:

$$
\hat{\text { Ric }}=\left(\begin{array}{ccc}
\frac{1}{2} f_{t t} & \frac{1}{2} f_{t x} & -\frac{1}{2 \varepsilon} f_{x x} \tag{4}\\
0 & 0 & \frac{1}{2} f_{t x} \\
0 & 0 & \frac{1}{2} f_{t t}
\end{array}\right) .
$$

Hence, the Ricci operator has eigenvalues:

$$
\lambda_{1}=0, \lambda_{2}=\lambda_{3}=\frac{1}{2} f_{t t},
$$

and the scalar curvature satisfies

$$
S c=f_{t t} .
$$

3 Szabo operators on 3-dimensional Lorentzian manifolds

Since any 3-dimensional algebraic curvature tensor is completely determined by its Ricci tensor. By (2), we can characterize the Szabo operator, according to the classification of Ricci operator in suitable orthogonal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ [3]. So, by a direct and straightforward computation according to definition of Szabo operator we will have the following

Proposition 3.1. The non-zero component of Szabo operator of each type of classification are explained as:
(1) When $\left\{e_{1}, e_{2}, e_{3}\right\}$ is unite orthogonal, one of the following cases occurs.
Type Ia:

$$
\begin{aligned}
& \nabla R_{12113}=\nabla R_{13112}=\frac{1}{2}(\beta-\gamma)(-\alpha+\beta+\gamma)^{2}, \\
& \nabla R_{21223}=\nabla R_{23221}=-\frac{1}{2}(\alpha-\gamma)(\alpha-\beta+\gamma)^{2}, \\
& \nabla R_{31332}=\nabla R_{32331}=-\frac{1}{2}(\alpha-\beta)(\alpha+\beta-\gamma)^{2} .
\end{aligned}
$$

Type Ib:
$\nabla R_{12112}=\nabla R_{13113}=(\alpha-2 \beta) \beta(\alpha-2 \gamma)$,
$\left.\nabla R_{21223}=\nabla R_{23221}=\frac{1}{2}\left(2 \beta\left(\beta-\gamma-\alpha^{3}\right)+\alpha\left(\beta-2 \beta^{2}-\gamma\right)\right)+\alpha^{2}(1+\gamma)\right)$,
$\left.\nabla R_{31332}=\nabla R_{32331}=\frac{1}{2}\left(\alpha^{2}(-1+\gamma)-2 \beta(\beta+\gamma)-\alpha^{3}\right)+\alpha\left(\beta-2 \beta^{2}-\gamma\right)\right)$.
Type II:

$$
\begin{aligned}
& \nabla R_{12112}=\nabla R_{23223}=-\nabla R_{12113}=-\nabla R_{13112}=-\frac{1}{2}(\beta-2 \gamma)^{2}, \\
& \nabla R_{21223}=\nabla R_{23221}=\frac{1}{4} \alpha(-4 \beta+\alpha(3-2 \alpha+2 \beta)) \\
& \nabla R_{31332}=\nabla R_{32331}=\frac{1}{4} \alpha(-\alpha(3+2 \alpha)+2 \beta(2+\alpha))
\end{aligned}
$$

SOME RESULT ON 3-DIMENSIONAL LORENTZIAN MANIFOLD 7

Type III:

$$
\begin{aligned}
& \nabla R_{12112}=\nabla R_{12113}=\nabla R_{13112}=\nabla R_{13113}=2 \alpha \\
& \nabla R_{21221}=\nabla R_{31331}=\frac{-2+\alpha^{2}}{\sqrt{2}} \\
& \nabla R_{23223}=\nabla R_{32332}=\frac{-\alpha^{2}}{\sqrt{2}} \\
& \nabla R_{31332}=\nabla R_{32331}=-\nabla R_{21223}=-\nabla R_{23221}=\alpha
\end{aligned}
$$

(2) When, $\left\{e_{1}, e_{2}, e_{3}\right\}$ is not unite orthogonal, one of the following cases occurs:
Type IV1: $\left\{e_{1}, e_{2}, e_{3}\right\}$ is orthonormal with $\left\langle e_{1}, e_{1}\right\rangle=-\left\langle e_{2}, e_{2}\right\rangle=-\left\langle e_{3}, e_{3}\right\rangle$ and the structure constant satisfies $\alpha \gamma-\beta \delta=0$.
Type IV2: $\left\{e_{1}, e_{2}, e_{3}\right\}$ is orthonormal with $\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=-\left\langle e_{3}, e_{3}\right\rangle$ and the structure constant satisfies $\alpha \gamma+\beta \delta=0$.
Type IV3: $\left\{e_{1}, e_{2}, e_{3}\right\}$ is pseudo-orthonormal with

$$
g=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right)
$$

and the structure constant satisfies $\alpha \gamma=0$. Then according the this classification, we have:
Type IV1:

$$
\begin{aligned}
& \nabla R_{12113}=\nabla R_{13112}=\frac{1}{4}(\alpha+\beta)\left(-\beta^{2}+\gamma^{2}+2 \alpha(\alpha+\delta)\right) \\
& \nabla R_{21223}=\nabla R_{23221}=-\frac{1}{2}(\beta+\gamma)\left((\beta-\gamma) \gamma-\alpha \delta+\delta^{2}\right) \\
& \nabla R_{31332}=\nabla R_{32331}=-\frac{1}{4}(\beta-\gamma)\left(-2 \alpha^{2}+(\beta-\gamma)^{2}-2 \delta^{2}\right)
\end{aligned}
$$

Type IV2:

$$
\begin{aligned}
& \nabla R_{12113}=\nabla R_{13112}=\frac{1}{4}(\alpha+\gamma)\left(-\beta^{2}+\gamma^{2}+2 \alpha(\alpha+\delta)\right), \\
& \nabla R_{21223}=\nabla R_{23221}=-\frac{1}{2}(\beta+\gamma)\left((\beta-\gamma) \gamma-\alpha \delta+\delta^{2}\right)
\end{aligned}
$$

$$
\nabla R_{31332}=\nabla R_{32331}=-\frac{1}{4}(\beta-\gamma)\left(\alpha^{2}+\beta^{2}-\gamma^{2}+\delta^{2}\right)
$$

Type IV3:

$$
\begin{aligned}
& \nabla R_{13113}=\gamma\left(\alpha^{2}+\beta \gamma-\alpha \delta\right) \\
& \nabla R_{31331}=2 \gamma(-\beta \gamma+\alpha-\alpha+\delta) \\
& \nabla R_{31332}=\nabla R_{32331}=\frac{1}{2} \gamma\left(\alpha^{2}+3 \beta \gamma-\alpha \delta\right)
\end{aligned}
$$

4 Szabo Operators of Walker Metrics on 3-Manifolds

Let (M, g) be a 3 -dimensional Lorentzian manifold admitting a parallel one-dimensional degenerate plane with the local coordinates (t, x, y), where the Lorentzian metric tensor expresses by (1).

Then, we can classify the Szabo operator in a suitable unit orthogonal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$, where $e_{1}=\partial_{t}, e_{2}=\partial_{x}, e_{3}=\partial_{y}$. So, the non-zero component of the Szabo operator are:

$$
\begin{aligned}
& \nabla R_{13313}=\frac{1}{2} f_{t t y} \\
& \nabla R_{13323}=\nabla R_{23313}=\frac{1}{2} f_{t x y}-\frac{1}{4} f_{x} f_{t t}+\frac{1}{4} f_{t} f_{t x} \\
& \nabla R_{13333}=\nabla R_{33313}=\frac{1}{4} f f_{t} f_{t t}+\frac{1}{4} f_{y} f_{t t}+\frac{1}{4 \varepsilon} f_{x} f_{t x} \\
& \nabla R_{23323}=\frac{1}{2} f_{x x y}-\frac{1}{4} f_{x} f_{t x}+\frac{1}{4} f_{t} f_{t x} \\
& \nabla R_{23333}=\nabla R_{33323}=\frac{1}{4 \varepsilon} f_{x} f_{x x}-\frac{1}{4} f f_{t} f_{t x}-\frac{1}{4} f_{y} f_{t x}
\end{aligned}
$$

Theorem 4.1. Let (M, g) be a three-dimensional Lorentzian manifold admitting a parallel one-dimensional degenerate plane field. Suppose S be Szabo operator of Walker metric. Then, $S \equiv 0$ if and only if the function f is of the form

$$
\begin{equation*}
f(t, x, y)=G(x, t)+H(x, y) t+K(x, y)+c \tag{5}
\end{equation*}
$$

for any functions $G(x, t), H(x, y), K(x, y)$ and c (constant) satisfy the following relations:

$$
2\left(H_{x y}-H_{x x y} t-K_{x x y}\right)+\left(G_{x}+H_{x} t+K_{x}\right)\left(G_{t x}+H_{x}-G_{t t}\right)=0,
$$

$\left(G_{x}+H_{x} t+K_{x}\right)\left(G_{t x}^{2}+H_{x}^{2}+2 G_{t x} H_{x}+G_{x x} G_{t t}+H_{x x} G_{t t} t+K_{x x} G_{t t}\right)=0$.
Proof. Using the condition in Szabo operator, then we have five equations:

$$
\begin{aligned}
& \frac{1}{2} f_{t t y}=0 \\
& \frac{1}{2} f_{t x y}-\frac{1}{4} f_{x} f_{t t}+\frac{1}{4} f_{t} f_{t x}=0 \\
& +\frac{1}{4} f f_{t} f_{t t}+\frac{1}{4} f_{y} f_{t t}+\frac{1}{4 \varepsilon} f_{x} f_{t x}=0 \\
& \frac{1}{2} f_{x x y}-\frac{1}{4} f_{x} f_{t x}+\frac{1}{4} f_{t} f_{t x}=0 \\
& \frac{1}{4 \varepsilon} f_{x} f_{x x}-\frac{1}{4} f f_{t} f_{t x}-\frac{1}{4} f_{y} f_{t x}=0
\end{aligned}
$$

From the first equation, $\frac{1}{2} f_{t t y}=0$, we conclude:

$$
f(t, x, y)=G(x, t)+H(x, y) t+K(x, y)+c
$$

By the second equation, the fourth equations, and (5) we concluded: $2\left(H_{x y}-H_{x x y} t-K_{x x y}\right)+\left(G_{x}+H_{x} t+K_{x}\right)\left(G_{t x}+H_{x}-G_{t t}\right)=0$. Also by the third equation, fifth equations and (5), the proof is completed.

Now, if (M, g) admits a parallel null vector field, then the non-zero component of Szabo operator are:

$$
\begin{align*}
\nabla R_{23323} & =\frac{1}{2} f_{x x y} \\
\nabla R_{23333} & =\frac{1}{4 \varepsilon} f_{x} f_{x x} \tag{6}
\end{align*}
$$

Theorem 4.2. Let (M, g) be a three-dimensional Lorentzian manifold admitting a parallel null one-dimensional degenerate plane field. Then, $S \equiv 0$ if and only if the function f is of the from

$$
f(x, y)=P(y) \quad \text { or } \quad f(x, y)=x Q(y)+c
$$

for any functions $P(y), Q(y)$ and c (constant).

Proof. Using the condition in Szabo operator, then we have two equations.

$$
f_{x x y}=0 \quad \text { and } \quad f_{x} f_{x x}=0
$$

From the above equations (6), the proof is completed.

Acknowledgments

Authors would like to thank referees for those sharp and nice comments.

References

[1] S. Azimpour, A note on 3-Lorentzian manifolds, Annual Iranian Mathematics Conference, Kharazmi University, Karaj, Iran 47th, August (2016), 28-31
[2] M. Chaichi, E .García-Río, and M. E. Vazquez-Abal, Threedimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A, Math. Gen. 38 (2005), no. 4, 841-850.
[3] E .García-Río, A. Haji-Badali, and R. Vazquez-Lorenzo, Lorentzian three-manifolds with special curvature operators, Class. Quantum Grav. 25 (2008) 015003.
[4] E.García-Río, A. Haji-Badali, M. E. Vazquez-Abal and R.VazquezLorenzo, Lorentzian 3 -manifolds with commuting curvature operators, International Journal of Geometric Methods in Modern Physics 5 (04), (2008), 557-572.
[5] E.García-Río, A.Haji-Badali, M. E. Vazquez-Abal and R. VazquezLorenzo, On the local geometry of three-dimensional Walker metrics, Advance in Lorentzian geometry, (2008), 77-87.
[6] P. Gilkey and I. Stavrov, Curvature tensors whose Jacobi or Szabo operator is nilpotent on null vectors, Bull. London Math. Soc. no. 34 (6) (2002), 650-658.
[7] B. O'Neill, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York, (1983).

SOME RESULT ON 3-DIMENSIONAL LORENTZIAN MANIFOLD 11

[8] A. G. Walker, Canonical form for a Riemannian Space with a parallel field of Null planes, Quart. J. Math. Oxford (1950), 69-79.
[9] A. G. Walker, Canonical forms II. Parallel partially null planes, Quart. J. Math. Oxford (2)1 (1950), 147-152.

Sohrab Azimpour

Department of Mathematics
Assistant Professor of Mathematics
University of Farhangian
Tehran, Iran.
E-mail: azimpour@cfu.ac.ir

Ali Haji-Badali

Department of Mathematics
Professor of Mathematics
University of Bonab
Bonab, Iran.
E-mail: haji.badali@ubonab.ac.ir

[^0]: Received: September 2021; Accepted: June 2022

 * Corresponding Author

