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1 Introduction

The fractional calculus is associated with the integrals and differentiation
of arbitrary non integral order. This field has been considered the most
effective tool in the last three centuries to characterize anomalous kinet-
ics and its extensive applications in various domains. By using ordinary
differential equations for fractional derivatives, various phenomena such
as biology, chemistry, engineering, mathematics, physics and statistics
can be modelled.

The development of several fractional operators is a noteworthy fea-
ture of this investigation (see [3, 10, 51]). A more complete overview of
the development of this area with its overlapping with the generalized
local calculus can be found at [1, 11].

Definition 1.1. ([22]) Let ¥ € Li[a,b]. The right-sided and left-sided
Riemann Liouville fractional integrals of order o > 0, with §R§+19 and
%5_29, are defined by:

R2, () = /0 (=0 'd¢, (0> a),

and

RE_o /19 (-9, (o<b),
respectively, where F(Q) = fo e P2 tdp is the usual gamma function.

Definition 1.2. ([30]) Let [a,b] C R be a finite interval. Then the right-
sided and left-sided Katugampola fractional integrals of order o > 0 of
f e XE(a,b) are defined by:

p'=e [ ¢PF(Q)dC
PIg+f(§) = F(Q) /a (Cp — Cp)l_g’

and

o py_ PO [P CPT(Q)dS
0=t | e

with a < ¢ < b and p > 0, provided the integrals exist.
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Definition 1.3. ([31]) Let (a,b) be the finite interval, where —oo < a <
b < +o0 and o > 0. Let ¥ be a positive increasing function on (a,b]. The
left-sided and right-sided fractional integrals of a function f with respect
to another function ¥ in [a,b] are defined by:

0 _ L[ WO
L0~ 5 |, @ —wion >

and

o 1P W(Qf(Q)dS
B0 =1 | o spe €<

Definition 1.4. ([1]) Let 5 € C,R(8) > 0, the left-sided and right-sided
conformable fractional integrals are defined by:

B e .

INE) 0 (¢ —a)t=¢’
and
5 L[ (=9 = (-0 dg
0= 1) / ( 0 ) IO
Katugampola in [31], proposed the following definition of generalized

conformable fractional integral.

Definition 1.5. Let ® be conformable fractional integrable on the inter-
val [p, q] C (0,00). The left-sided and right-sided generalized conformable
fractional integrals of EK;; and EKf, of order 8 > 0,7 € R,o+ 7 # 0,
are defined by:

LKL.2(0 = 15 /: <W)ﬁ_l®(gwgg’ Y

o+T

and

_ 1 q (cotT _ cotr\ AT B
oK 2(C) = F(ﬁ)/g <Q+T> D (<)< dys, (2)

3
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respectively, 2K£+<I>(C) = 2K§_<I>(C) =®(().

Here the integral pr d,s is the conformable fractional integral and it
is defined as:

/pC B(s)dys = /pc ®(s)s? Nds.

Remark 1.6. ([33]) For 7 = 0 in definition (1.5), new Riemann Liouville
type conformable fractional integrals are obtained as:

05 ! ¢ ree—ce p-1
ng+<I>(C)—F(6)/p< . > D()d,s, (3)

and

q fco _ o\ P-1
00 = 1 [ (555) w0 (W

Remark 1.7. ([33])For o =1 in (3), the well known Riemann Liouville
fractional integral operator is obtained as:

¢
1020 = 775 / (€= 0y, (5)

Remark 1.8. For § = 1,7 = 0 in (1), we obtain the conformable
fractional integral and For o = 8 = 1,7 = 0 the classical Riemann
Liouville integral is obtained .

Remark 1.9. Under the above conditions, all these definitions can also
be obtained for (2).

The structure of this work is as follows: next we have a Preliminary
Section, where we present some ideas and references about Integral In-
equalities, mainly the well-known Hermite-Hadamard Inequality, in the
Main Results Section, we obtain various generalizations of known inte-
gral inequalities and We close with a Conclusions Section, where some
future work directions are presented.
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2 Preliminaries

One of the most developed mathematical areas in recent decades are the
integral inequalities using different class of convex functions, the concept
itself has undergone innumerable extensions and ramifications in the last
30 years, we recommend [19] to have a fairly complete picture of this
development. The convex function is defined as:

Definition 2.1. A function ¢ : I — R, I := [a,b] is said to be convex
if
P (TE+ (1= 7)5) <7Y(&) + (1 —7)9(q),

holds ¥ &,¢ € I,T € [0,1].

In 2014, with the develpoment of the conformable derivative ([32]), a
new direction of work has been opened, which also favorably influenced
the aforementioned topic. For different applications and results ([2, 11,

’ ) ) ’ ’ ’ ’ ])

Among the well-known integral inequalities, the classic Hermite-
Hadamard inequality for convex functions occupies a prominent place.

Let ¢ : I CR — R is a convex function and a,b € I with a < b, then

a b a
o(%37) < 52, [ wioe < HOTHE, )

The inequality is known as Hermite-Hadamard inequality for convex
functions.

It gives an estimation of the mean value of a convex function, inter-
polates the image of the average of the interval and the average of the
images of the extremes of the interval and it is important to note that it
also provides a refinement to the Jensen inequality (various extensions
and applications of this inequality can be consulted in [3, 4, 5, 6, 9, 12,

The main purpose of this paper is, using the generalized conformable
integral operators of Definition 1.5, to establish several integral inequal-
ities of Hermite-Hadamard type (6), which contain as particular cases,
several of those reported in the literature.
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3 Main Results

In this section, we establish new integral inequalities within the frame-
work of the generalized conformable fractional operators order

Theorem 3.1. Let ® and ¥ be continuous functions defined on the in-
terval [1,+00) where that ® < W. If % 1s decreasing and ® is increasing
over [0,400), then for any convex function Q satisfying 2(0) = 0, the
following inequality holds:

P [P)] K. (AP (w)] -
PKO[W(u)] T KD [ (u)]

Proof. Using the convexity of Q and using the assumption Q(0) = 0,

Q(®(x))

Q(®(z)
P(x)

the function

the function

is also increasing. It is obvious that the function §

is increasing. As the function ® is increasing then

P

is decreasing, then for all s,t € [0, +00), we have

(Q(‘P(S)) (%
®(s) (1)

From (8), we have

Q(s)) D(1) | Q1)) B(s)
t) W(s)

B(s) Ut) B

Q1) @(1) | Q(®(s)) D(s)
t

o) W) D(s) W(s)

Multiplying inequality (9) by ¥(s)¥(t), we obtain

Q(®(s)) Q(2(1))

B(s) U(s)P(t) + 0 U(t)D(s) > QP(t))P(s) + QP(s))¥(t).

(10)
-1
Multiply (10) by ﬁ (%#)ﬁ t"d,t and integrating over [p, u]
with respect to t, we obtain
0 I ()
s ey s, (el + o0s) 15, | 25w

Vv

4

W(s) pKL [0 (u))] + Q(s)) FKI, [¥(u)]. (11)

o pt
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. . . . . 1 wltT _gotT p-1 T
Similarly, multiplying the inequality (11) by NG <?) s7dys,

integrating the resulting inequality over [p, u] with respect to s, we ob-
tain

i [2OW) g T kB o+ TP @ TiE | HEW)
7 [P g e+ g ] 5 | T v
> TKD(Q(®()] K, (W) + [KD [Q(@(w)] K, [T(w)]. (12)
From (12), we have
PKD [0 pKD [Q(0(w)]
Z > . (13)
PR (W] T oK, [ ww)

Since ® < ¥ and from the properties of €2, it is easy to obtain for
t €1]0,400)

Q1) _ ()
) 0
and .
s [Pl < g o)) (14

On utilizing (14) in (13), we obtain required result. [

Remark 3.2. Since EK£+<I>(U) = ;Kqﬁ,q)(u) so above inequality is also
proved for qu’B_fI’(u).

Remark 3.3. If o = 1 then this result is proved for Riemann Liouville
Fractional Integral.

Remark 3.4. On taking 8 = p = land 7 = 0, the integral becomes
Classical Riemann Liouville integral and we obtain theorem 3.1 of [16].

Remark 3.5. Let’s look at some particular cases of this Theorem re-
ported in the literature. For example, if we work with the classic Rie-
mann Integral, we obtain Theorem 9 of [30] taking the function Q as
convex. In addition, if we consider the Riemann Liouville integral, then
we obtain Theorem 3 of [55].
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Next, we present a more general variation from the previous result,
in which two fractional orders are considered.

Theorem 3.6. Let ® and ¥ be continuous functions defined on the in-
terval [p,u] C [1,+00) where ® < W. If 2 is decreasing and ® is increas-
ing over [0,400), then for any convex function Q satisfying 2(0) = 0,
the following inequality holds:

DK [ ()] TR [T ()] + FEN [(®(w)]) K2, (2 (u))]

B A A T 1B > 1.
KD [W(u)] TN (@ ()] +5 KX (U ()] KD, [2(D(u))]

(15)

Proof. Using the convexity of {2 and using the assumption 2(0) = 0,
Q(®(2))
x

Q(2(z))

the function is increasing. As the function ® is increasing then

the function is also increasing. It is obvious that the function %

. . ¢(x)
is decreasing, then for all s,¢ € [0, +00), we have
Q(0(s)) Q@) (2()  2(s)
(5o~ o) (567~ w0) 2° 1o

From (16), we have

Q(0(s)) (1) | QP(F)) D(s) _ QP(2)) 2(t) | Q(D(s)) ()
) '

B(s) @) B U(s) = v T (s

~—
S

—~~
0

~—

Multiplying inequality (9) by ¥(s)¥(t), we obtain

Q(q’<t))q,(t)q>(s) > Q(®(t))W(s) + Q(D(s))W(1).

D(t) -
(18)
T T 6_1
Multiply (18) byﬁﬁ) (“ﬁg%ﬁ) t7dyt, and integrating the re-

sulting inequality over [p, u] with respect to ¢, we obtain

G P L )P
w2, (e + o) x5 |2 )] a9

W(s) pKL [0 (u))] + Q(s)) FKI, [¥(u)].

Vv
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Similarly, on multiplying the inequality (19) by ﬁ (“ﬁg%fﬁ) sTd,s

and integrating the resulting inequality over [p, u] with respect to s, we
obtain

1 | M| o el + g o) g | T e
(20)
> TED Q@) JK [T(u)] + JE N [Q®(w)] K, [T ()]

Since ® < V¥ and from the properties of 2, it is easy to obtain for
t € [0,400)

lezg)) < Qgg)),t € [0, +o0). (21)
From the inequality (21), we can obtain
e [2@E) T s [Q0Ew)
L R Tl e 100 B
and .
i | vws| < IR eW)E]. (2

Utilizing (22) and (23) in (20), obtain the required result. [

Remark 3.7. If A = Q this result becomes Theorem 3.1. On the other
hand, if we consider the classic Riemann integral, our theorem is reduced
to Theorem 3.3 of [10].

We can to obtain a more general conclusion to Theorem 3.1, if we
consider a positive, continuous and increasing function in addition.

Theorem 3.8. Let &, w and ¥ be continuous functions defined on the
interval [p,u] C [1,+00) where ® < W. If $ is decreasing and ®
is increasing over [0,+00), then for any convex function Q satisfying
Q(0) = 0, the following inequality holds:
2 (0] 5. (@) (w)
DKC (W) 5K, () (w)

(24)
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Proof. Using the convexity of Q and using the assumption Q(0) = 0,

the function @ is increasing. As the function ® is increasing then

the function Q‘gb%)) is also increasing. It is obvious that the function %

is decreasing, then for all ¢t € [0, +00), we have

(25)

T T 6_1
Multiplying inequality (25) by \If(t)w(t)ﬁ (%) t7dyt and

integrating over [p, u] with respect to ¢, we obtain

i | e ws| < ik e@)s]. (o

Now from the assumptions, we consider the inequality

<QE§S))w(t) _ Q((IES))W(SO (B(s)U(t) — B(t)U(s)) > 0. (27)

The above inequality can be written as

QEI;IE;))w(t)\I/(t)tID(S) — Q®(s))w(5) V(1) — UD(t)) ()T (s)
Q(2(s))
i TP OLGLORT (28)

ot
tegrating over [p,u] with respect to ¢, we obtain

. . .. . 1 o+7 _jotT p-1 .
Multiplying this inequality (28) by NG (ui) t7d,t and in-

SRS, | P w e - @)K T 29

—W(s) DK, [Q(®(w))w(u)] +

DK @(s)V(s) TKP ®(u) > 0.

ot pt

-1
o+7 _got+T B . .
%> s7d,s and integrating over

Again multiplying (29)by 15 ( et
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[p, u] with respect to s, we obtain

QP(u))

65 | e G o) ~ T 0w (] FK7, ¥a)
g )w 0] K7 v + 57 | P mte)| T e >0
(30)
It follows from (30)
K (@) KD (09 (wm(w)
a > . (31)
PR (W() oKL [ 2w () ()|

Utilizing (31) and (26) , we obtain required result. [

Remark 3.9. If o = 1 then this result is proved for Riemann Liouville
fractional integral.

Remark 3.10. If we put 8 = p = 1 and 7 = 0, it follows Classical
Riemann Liouville Fractional Integral and we obtain theorem 3.5 of [16].

Remark 3.11. It is not difficult to obtain the Theorem 10 of [36].
The following consequence is the generalization to Theorem 3.6.

Theorem 3.12. Let ®,V and w be continuous and positive functions

defined on the interval [1,+00) where ® < ww. Under the condition that

% is decreasing and ® is increasing over [1,4+00) then, for any convex

function Q that satisfies Q(0) = 0, the following inequality holds:

PP, [0(u)] KN QW) (w)] 45 KX ()] KP [20(w)w(w)]

PO ()] pK, [Q(0()m(w)] 45 K2 ()] K2, [9(@(w))=(w)
(32)

>1

Proof. Using the convexity of Q and using the assumption ©(0) = 0,
Q(®(x))

the function Q((;Eg;)) is also increasing. It is obvious that the function

the function is increasing. As the function ® is increasing then

2
]

is decreasing, then for all ¢ € [0, +00), we have

<Q§S))w(t) _ QSS))W(SO (@(s)W(t) — D(1)U(s)) > 0. (33)
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The inequality (33) can be written as

Qgg))w@)@(s)@@) — Q)@ (5)U(E) — QD) (1) U(5)
Q(a(s))
t gy mB2(0(s) 20 G

where s,t € [0, 4+00)
On multiplying (34) by ﬁ (
[p, u] with respect to ¢, we obtain
Q(P(u))
®(u)
—W(s) ) [QP(w))w ()] +

ot pt

wetT _gotT

-1
- ) t7d,t and integrating over

B G | P e - 2@(9) ()R B

o pt
Q(2(s))

0 w(s)U(s)TKP ®(u) > 0. (35)

ot pt

wotT _gotT

-1
P ) s7d,s and integrating over

Now multiplying (35) by ﬁ (

[p, u] with respect to s, we obtain

e [2A2w)

w<u>w<u>g] KN ®(u) — 3K [Q(D(w)w ()] K2, U(u)

et | d(u) e tpt o pt
(36)
. - . Q@ (w)) .
_QK5+ [0 (w))w(u)]] K U (u) + QK;\+[ S (0) @ (u) ¥ (u) QK@@
Again considering @) o)
o(t Ut
o) = 0 (37)
for all s,t € [0, +00).
From (37), we can easily obtain
oK, "W\p(u)w(u) < K0 )=, (39)
and _ _
TK, Qﬁig”wum(u) < TN [Q@@)m@)].  (39)

Utilizing(36), (38) and (39), we obtain the required result. O
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Remark 3.13. If we put 8 = X then this result becomes the Theorem
3.8.

Remark 3.14. If p = 1 then this result is proved for Riemann Liouville
Fractional Integral.

Remark 3.15. If we put A= =1, o =1 and 7 = 0 then we obtain
the Theorem 3.7 of [10].

4 Conclusions

In this paper, we established certain inequalities by employing the gener-
alized proportional Hadamard conformable fractional integral operator.
The inequalities obtained in this present paper will lead to the classical
inequalities which are established earlier by Dahmni and Liu [16, 30].
The results established in this paper give some contribution in the field
of fractional calculus and Hadamard fractional integral inequalities. One
can establish various integral inequalities by employing the newly defined
Hadamard fractional integral operators.

From these results, some work directions remain open, for example:

i) Extending these results to other types of integral fractional op-
erators, let’s say, the one defined in [25, 35, 44, (5], which contains as
particular cases many of those reported in the literature.

ii) Obtain new results for other well-known inequalities such as
Chevishev, Griiss, among others.
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