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Abstract. The production possibility set (PPS) is defined as the set of
all inputs and outputs of a system in which inputs can produce outputs.
The frontier the production possibility set can be partitioned to strong
defining hyperplanes and weak defining hyperplanes. These hyperplanes
are useful in sensitivity and stability analysis, identifying the status of
returns to scale of a DMU, incorporating performance into the efficient
frontier analysis, and so on. In this paper, by using the basic con-
cepts of Linear Algebra, we propose an algorithm for finding all strong
and weak defining hyperplanes of PPS without solving any linear pro-
gramming problems. The proposed method is applicable to both, PPS
under constant and variable returns-to-scale assumptions. Two numer-
ical examples are presented to explain the usage and effectiveness of
the proposed algorithm. Our method can be easily implemented using
existing packages for mathematical algorithm, such as python.
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1 Introduction

Data Envelopment Analysis (DEA), developed by Charnes et al. [5],
is the most widely used method for estimating production frontier and
evaluating the efficiency of Decision Making Units (DMUs). The Pro-
duction Possibility Set (PPS) is a convex polyhedral set with a portion
of its boundary constituting the efficient frontier. The frontier consists
of two types of defining hyperplanes, strong and weak defining hyper-
planes. The defining hyperplanes determine the nature of returns to
scale and also is important for defining a suitable pattern for inefficient
DMUs. Thus, devising a method for identifying all the strong and weak
defining hyperplanes becomes a significant issue. Over the past years,
many papers have been written on the subject of finding the efficient
frontier. Jahanshahloo et al. [12] provided an algorithm for finding all
the strong defining hyperplanes of the PPS. Their method is based on
the identification of all the coplanar strong efficient DMUs and appli-
cable to both DEA models under constant and variable returns-to-scale
assumptions. Jahanshahloo et al. [11] proved that the hyperplane which
corresponds to an extreme optimal solution of the multiplier form (in
evaluating an efficient DMU) and whose components corresponding to
inputs and outputs are nonzero is a strong defining hyperplanes of the
PPS. Jahanshahloo et al. [13] provided a method to obtain efficient
frontier by using 0-1 integer programming. Sueyoshi et al. [16] pro-
posed a linear programming problem to identify all efficient DMUs that
consist of a reference set; meanwhile, under special conditions optimal
solutions of this model can be considered as the gradient of the defining
hyperplane. Wei et al. [17, 18] investigated the properties of a K-cone
and studied the problem of constructing all the “DEA-efficient surface”
of the production possibility set under generalized DEA model. By in-
troducing a variety of the supper-efficient model, Jahanshahloo et al. [9]
proposed a method for finding all the weak defining hyperplanes of PPS
with variable returns-to scale. By using a MOLP problem Jahanshahloo
et al. [10] provided an algorithm to find the gradient of efficient hyper-
planes which characterizes the efficient face. Ghazi et al. [8] proposed
an algorithm to generate the strong defining hyperplanes for the PPS
with the VRS technology. Their algorithm is based on a MOLP prob-
lem in DEA. Amirteimoori et al. [1] presented a method for generating
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all linearly independent strong defining hyperplanes (LISDHs) of the
PPS passing through a specific DMU. Olesen and Petersen. [14] studied
the characteristics of the production possibility set and discussed the
utilization of given surface structure information.

But, in all of the above papers linear programming problems has been
used for finding defining hyperplanes. It seems using linear programing
models and theory of DEA is the most common method of finding hy-
perplanes of PPS. By using these methods, hyperplanes cannot be find
easily. A few exceptions are Dula et al. [7] and Ranjbar et al. [15].
The procedures in [7] are in a category of preprocessors, uncover effi-
cient DMUs through using translation and rotating hyperplanes. These
two preprocessors, without using LPs and under special conditions, yield
some strong defining hyperplanes, but not all of them. Ranjbar et al.
[15] provided an algorithm for finding defining hyperplanes of variable
returns- to- scale technology by using the basic concepts of Linear Al-
gebra.

In this paper, an algorithm is developed by using the method pro-
posed by Jahanshahloo et al. [12] so that the strong and weak hyper-
planes are found without solving any linear programming problems. The
proposed algorithm is simple and quick to solve.

The paper is organized as follows: In section 2, we present the defini-
tions and concepts in DEA. Section 3, illustrates some characteristics of
the hyperplanes of PPS. In the next section, the proposed method which
finds the strong defining hyperplanes is introduced. Section 5 deals with
the introduction of the proposed method for finding the weak defining
hyperplanes. Section 6 contains the summary of the suggested algorithm
for finding defining hyperplanes. In section 7, some numerical examples
are provided. The comparison between the method presented in this
paper and the previous approaches presented in this field provided in
section 8 and finally a conclusion is summarized in the last section. All
the proofs are given in Appendix A. In Appendix B, the mathematical
interpretations of Theorems are illustrated through an example.
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2 Mathematical Preliminary

In DEA, it is assumed that there are n DMUs such that each DMUj(j =
1, ..., n) uses a column vector of inputs (xj) to produce a column vector
of outputs (yj), where xj = (x1j , ..., xmj)

t, yj = (y1j , ..., ysj)
t. It is

also assumed that xj > 0,yj > 0,xj 6= 0, and yj 6= 0 for every j =
1, ..., n. Furthermore, we name zj ≡ (xj,yj) . The production possibility
set (PPS) is defined as follows:

T = {(x,y) |y can be produced by x} .

T is characterized by the five postulates (see [6]).
Tc is built on the assumption of constant return to scale (see [5]).

Tc =

(x,y) |x >
n∑

j=1

xjλj ,y 6
n∑

j=1

yjλj , λj > 0, j = 1, ..., n

 .

Tv is built on the assumption of variable return to scale (see [3]). It
can be defined as follows:

Tv =

(x,y) |x >
n∑

j=1

xjλj ,y 6
n∑

j=1

yjλj ,

n∑
j=1

λj = 1 ,


λj > 0, j = 1, ..., n.

Tc and Tv are the production possibility sets of CCR and BCC mod-
els respectively. For evaluating DMUk (k ∈ {1, ..., n}), we can use the
multiplier form of BCC model that is formulated as follows:

Max uyk + u0
s.t uyj − vxj + u0 ≤ 0 j = 1, . . . , n

vxk = 1
u ≥ 0,v ≥ 0
u0 fiee

(1)

where u = (u1, ..., us) and v = (v1, ..., vm) are s -vector and m -vector
respectively. Suppose (u∗, v∗, u∗0) is the optimal solution of model (1).
The following definitions introduce strong and weak efficient DMUs.
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Definition 2.1. DMUk is called strong efficient, if u∗yk + u∗0 = 1 and
there exists at least one optimal solution (u∗, v∗), with u∗ > 0, v∗ > 0.

Definition 2.2. DMUk is called weak efficient, if u∗yk +u∗0 = 1 and at
least one element of (u∗, v∗) is zero for every optimal solution of (1).

Note. If u0 is omitted from (1), the CCR model is obtained. The
definition of efficiency is the same (see [2]).

Definition 2.3. DMUk is called non-dominated, if and only if there is

no
(
xt
j ,y

t
j

)
∈ PPS such that

(
−xj

yj

)
>

(
−xk

yk

)
and

(
−xj

yj

)
6=

(
−xk

yk

)
.

Otherwise, we say DMUj dominates DMUk.

3 Foundation of Hyperplanes in DEA

A production possibility set is enveloped by hyperplanes which are form-
ing the efficient frontier. For DMUs with m inputs and s outputs, the
PPS is a subset of Rm+s. Since the set of strong3 defining hyperplanes of
the PPS is unique (it has been assumed that the redundant hyperplanes
are omitted), each strong defining hyperplane of PPS passes through
at least m + s DMUs which are affine independent4. Otherwise, the
hyperplane is not unique. As an example, consider a set of six DMUs
in R2+1 (Table 1 and Fig 1). A, D, G lie on the same line; hence, the
hyperplane passing through them is not unique. since A, D, E, G are
affine independent, therefore only one hyperplane passes through them.

Remark 3.1. The results of this section are based on the following
geometric fact:

3Hyperplane {x; p′x = a, p ≥ 0} is strong if none of components of the p are zero
and it is weak if some of the components of p are zero.

4A collection of vectors a1, . . . , ak+1 of dimension n is called affine independent if
{a2 − a1, . . . , ak+1 − a1} is linear independent ([4]).
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let F =
{
zj1 , ..., zjm+s

}
⊆ Rm+s be the collection of arbitrary m+ s

DMUs. z = (x1, ..., xm, y1, ..., ys) lies on the hyperplane H, passing
through members of F , if and only if the determinant of the components
of the vectors −−→zj1z,−−−→zj1zj2 , ....,

−−−−−→zj1zjm+s are equal to zero i.e.,∣∣∣∣∣∣∣∣∣∣
x1 − x1j1 . . . xm − xmj1 y1 − y1j1 . . . ys − ysj1
x1j2 − x1j1 . . . xmj2 − xmj1 y1j2 − y1j1 . . . ysj2 − ysj1

. . . . . .

. . . . . .
x1jm+s − x1j1 . . . xmjm+s − xmj1 y1jm+s − y1j1 . . . ysjm+s − ysj1

∣∣∣∣∣∣∣∣∣∣
= 0

(2)

where x1, ..., xm, y1, ..., ys are variables, xpjt(p = 1, ...,m, t = 1, ...,m+
s) is the p -th input of DMUjt and yqjt (q = 1, ..., s, t = 1, ...,m+ s) is
the q -th output of DMUjt .

The important point to note is the fact that the gradient (normal
vector) of H, which is obtained by Eq. (2), is orthogonal to the m +
s − 1 vector in the form of −−−→zj2zj1 ,

−−−→zj3zj1 , ...,
−−−−−→zjm+szj1 . Needless to say,

the gradient of H is also orthogonal to all the vectors that lie on H. In
other words, the rows of the determinant of Eq. (2) can be considered
as the vectors that are the difference between any two arbitrary points
of F i.e.,

−−−→zjtzjt′ s.t t, t′ ∈ {1, ...,m+ s} , t 6= t′.

Remark 3.2. If the m + s points, through which the hyperplane H
passes, are not affine independent, then the Eq. (2) becomes trivia
(leads to 0=0). It means that the hyperplane passing through these
points is not unique.

For example, consider a system of six DMUs with variable return to
scale assumption as in Table 1.

It is easily found in Fig. 1 that the set {A,D,G} is not affine inde-
pendent, since {D −A,G−A} is not linear independent. We now apply
Eq. (2) for {A,D,G}, hence it follows that 0=0 i.e.,∣∣∣∣∣∣

x1 − 2 x2 − 2 y − 4
1− 2 5− 2 6− 4

1.5− 2 3.5− 2 5− 4

∣∣∣∣∣∣ = 0.
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Figure 1: Remark 3.2.

Table 1: An illustrative numerical example for Fig. 1

DUM
A B C D E G

x1 2 4 5 1 0.5 1.5
x2 2 4 1 5 1 3.5
y 4 8 6 6 1 5

This implies that the hyperplane passing through {A,D,G} is not
unique.
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4 Finding The Strong Defining Hyperplane of
Tc And Tv

In this section, Definition 4.1 is presented as a criterion for identifying
all the strong defining hyperplanes.

Definition 4.1. The hyperplaneH = {(x,y) |ūy−v̄x+ū0 = 0, (ū, v̄) >
(0,0) , (ū, v̄) 6= (0,0)} is a strong defining hyperplane of PPS, if and
only if:

1. At least m+ s actual DMUs of PPS lie on H.

2. It is supporting.

3. All of the components of its gradient are strictly positive i.e.,
(ū, v̄) > (0,0) .

Now, suppose that J = {1, ..., n} is a set of indices of all DMUs. We
define F as the set of indices of DMUs which are non-dominated.

F = {j|DMUj can not be dominated by any observed DMUs} .
Let |F | = n1 6 |J | = n.

According to Definition 4.1, we choose an arbitrary m+ s members
of F. Again, one should note that when we deal with Tc, one of these
m + s DMUs must be the origin; therefore, only m + s − 1 members
of F are chosen. As it was mentioned, because of the ray unbounded-
ness postulate in Tc, all the strong and weak defining hyperplanes must
contain the origin. We call this set D = {j1, ..., jm+s}.

By using D, a hyperplane can be generated through Eq. (2).

4.1 Supporting conditions

Suppose that the equation of the obtained hyperplane from Eq. (2) is
in the form of H : ūy − v̄x + ū0 = 0.

Remark 4.2. If (ū, v̄) > (0,0) , then H has the potential to be sup-
porting. In what follows, the conditions of Theorem 4.3 are going to be
surveyed so that the supporting of H is proved.
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If (ū, v̄) 6 (0,0) , then the hyperplane H must be generated by
(−ū,−v̄) , and then we can survey the conditions of Theorem 4.3. (Note
that in Tv, H must be generated by (−ū,−v̄,−ū0) ).

If some of the gradient components of H corresponding to input
vector are nonnegative or some of its gradient components corresponding
to output vector are nonpositive, then the gradient of H is not in the
direction of a supporting hyperplane.

Theorem 4.3. Suppose H = {(x,y) |ūy−v̄x+ū0 = 0, (ū, v̄) > (0,0) , (ū, v̄) 6=
(0,0)}, ūy − v̄x + ū0 = 0 is formulated from Eq. (2). If

ūyj − v̄xj + ū0 = 0 j ∈ D
ūyj − v̄xj + ū0 6 0j ∈ J −D,
then H is supporting.

Proof. See Appendix A. �

5 Identifying Equations of Weak Defining Hy-
perplanes

The idea to find weak defining hyperplanes is straightforward by adding
artificial weak DMUs.

Remark 5.1. In Tc we call each point on the input/output axes as
“artificial DMU”, and in Tv we call each virtual DMU on the weak
hyperplanes, as “artificial DMU” hereafter. It should be noted that the
weak hyperplanes are parallel to the axis of input or output.

Definition 5.2. The hyperplaneH = {(x,y) |ūy−v̄x+ū0 = 0, (ū, v̄) >
(0,0) , (ū, v̄) 6= (0,0)} is weak defining hyperplane of PPS, if and only
if:

1. At least m+ s actual and artificial DMUs of PPS lie on H.
2. It is supporting.
3. At least one component of its gradient (normal vector) is zero.

5.1 Identifying artificial DMUs in Tc

We know that the weak defining hyperplanes are parallel to at least one
of the input or output axes. But in Tc owing to its special structure, all
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the hyperplanes of PPS must contain the origin; thus, the weak defin-
ing hyperplanes should necessarily contain entirely an input or output
axis that the hyperplane is parallel to. It means that all points on the
input/output axes should satisfy equation of weak hyperplanes. To this
end, artificial DMUs is added on the input-output axes in the following
form

γl = (0, 0, ..., 0, α, 0, ..., 0) ∈ Rm+s l = 1, ...,m

γm+q = (0, 0, ..., 0,−α, 0, ..., 0) ∈ Rm+s q = 1, ..., s.
(3)

In which α > 0. The vector γl (l = 1, ...,m) is an artificial DMU
that lies on the l -th input axis where α appears in the l -th position.
Likewise, γm+q (q = 1, ..., s) is an artificial DMU that lies on the q -th
output axis where −α appears in the (m+ q) -th position (the minus
sign shows that these artificial DMUs are dominated by origin).

5.2 Identifying artificial DMUs in Tv

We know that artificial DMUs through which a weak hyperplane passes
must be satisfied in its equation. In the absence of the ray unbound-
edness postulate in Tv, weak defining hyperplanes may not contain in-
put/output axes. In other words, we try to identify other artificial DMUs
such that they satisfy equations of weak defining hyperplanes of Tv. In
this case, we add m+ s artificial DMUs for each actual DMU which lie
on the weak hyperplanes that are parallel to the input or output axis.

These artificial DMUs are as follows:

zlj =(x1j , x2j , ..., x(l−1)j , xlj + α, x(l+1)j , ..., xmj , y1j , ..., ysj)

j = 1, ..., n, l = 1, ...,m

zm+q
j =(x1j , x2j , ..., xmj , y1j , ..., y(q−1)j , yqj − α, y(q+1)j , ...ysj)

j = 1, ..., n, q = 1, ..., s.

(4)

It should be noted that each zlj (l = 1, ...,m) and zm+q
j (q = 1, ..., s)

are dominated by zj .
Let us illustrate concepts of these artificial DMUs with a simple

example. Fig. 2 exhibits three actual DMUs z1, z2, z3, each with two
inputs and one output. Note that there is no strong defining hyperplane.
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It is easy to see that the artificial DMUs z11 , z
1
2 and z13 lie on the weak

hyperplanes that are parallel to the first axis of input and the z21 , z
2
2 and

z23 lie on the weak hyperplanes that are parallel to the second axis of
input and the artificial DMU z31 lies on the weak hyperplanes that are
parallel to the first axis of output.

Figure 2: The presentation of actual and artificial DMUs.

Theorem 5.3 will show that in Tv, adding n×(m+ s) artificial DMUs
in the form of (4) is equivalent to the adding m + s artificial DMUs in
the form of (3). Hence, with the result of Theorem 5.3 only few artificial
DMUs must be added.

Theorem 5.3. Assume H is a hyperplane that is generated with a set
of m+ s actual and artificial DMUs which are in the form of (4), then
H can also be generated with the set of m+s actual and artificial DMUs
which are in the form of (3) and the equation (2) is replaced with the
following equation:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 − x1j1 · · · xm − xmj1 y1 − yj1 · · · ys − ysj1
x1j2 − x1j1 · · · xmj2 − xmj1 y1j2 − yj1 · · · ysj2 − ysj1

...
...

...
...

...
...

x1jk − x1j1 · · · xmjk − xmj1 y1jk − yj1 · · · ysjk − ysj1
γt1
...
γtk′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(5)

where k is the number of actual DMUs and k′ is the number of
artificial DMUs such that k + k′ = m + s, k > 1, k′ > 1 and in which
γt1 , ..., γtk′ are k′ arbitrary artificial DMUs among m+s artificial DMUs
from (3).
Proof. See Appendix A. �

Now, for both Tc and Tv, we can put m + s artificial DMUs in the
form of (3) and actual DMUs in a new set in the following form:

E =
{
zj1 , ..., zjn1 , γl, γm+q

}
l = 1, ...,m, q = 1, ..., s.

where n1 is the number of members of F . We construct the set D
by selecting m + s arbitrary DMUs from E such that it consists of at
least one artificial DMU and at least one actual DMU. To this end, we
generate the hyperplane passing on D by using Eq. (5).

Remark 5.4. For D in Tc the following conditions must be met:

1. The origin belongs to D.
2. At least one artificial DMU and one actual DMU belong to D.
Using what has been mentioned up to now, for finding all the strong

and weak defining hyperplanes of the PPS, an algorithm is going to be
presented in the next section.

6 Summary of the Algorithm for Finding All
the Strong and Weak Defining Hyperplanes

Using what has been mentioned up to now, an algorithm for finding all
strong and weak defining hyperplanes of the PPS is presented as follows:
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Let J = {1, ..., n} be an index set of all DMUs.

Step 1 (purge). Define F as the set of DMUs which are non-
dominated.

F = {j|DMUjcannot be dominated by any observed DMUs}
where |F | = n1 6 |J | = n.

Step 2. Consider m+ s artificial DMUs as:

γl = (0, ..., 0, α, 0, ..., 0) ∈ Rm+s , l = 1, ...,m

γm+q = (0, ..., 0,−α, 0, ..., 0) ∈ Rm+s , q = 1, ..., s

where α > 0 is an arbitrary scalar. Put indices of both non-dominated
and artificial DMUs in E.

Step 3. Choose m + s arbitrary members of E. Call this set D =
{j1, ..., jm+s}. In dealing with Tc, one of these m+ s DMUs must be the
origin.

Construct a hyperplane using Eq. (2). If at least one of the m + s
members of D is artificial, then use Eq. (5). Suppose that the equation
of the obtained hyperplane is in the form of H : ūy − v̄x + ū0 = 0.

Step 4. If some of the components of its gradient which are corre-
sponding to the output vector are nonpositive or those corresponding to
the input vector are nonnegative, then go to step 7.

If (ū, v̄) > (0,0) , then H may be supporting and go to the next
step.

If (ū, v̄) 6 (0,0) , then construct the hyperplane H with (−ū,−v̄)
and go to the next step.

Step 5. If

ūyj − v̄xj + ū0 = 0 j ∈ D
ūyj − v̄xj + ū0 6 0 j ∈ J −D,

then H is supporting. Otherwise, go to step 7.

Step 6. If at least one of the m+s members of D is an artificial DMU,
then H is a weak defining hyperplane. Otherwise, if all the components of
its gradient are strictly positive, then H is a strong defining hyperplane.

Step 7. If another subset of E with m + s members can be found,
go to step 3, else stop.
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6.1 Convergence of algorithm

The mentioned algorithm stops in a finite number of iterations, with all
the strong and weak defining hyperplanes of PPS under constant and
variable returns to scale assumptions. The third step will be repeat until
all the hyperplanes passing through D are found, that D is subset of m+s
members of E. On the other hand, the number of iterations of third step
is less than

(
m+s+n1

m+s

)
. Thus, algorithm is finite-time convergent.

7 Numerical Examples

Here, we present two examples. In Example 7.1, all defining hyperplanes
of a system with CRS technology is found. Example 7.2 is devoted to a
system of DMUs in VRS technology.

Example 7.1. ( Tc−CRS ). Consider a system of five DMUs with two
inputs and one output as in Table 2. All DMUs have been depicted in
Fig. 3.

Table 2: Data on numerical example 7.1

DUM
a b c d e

x1 1 2 5 6 1.5
x2 4 2 1 1 3
y 1 1 1 1 1

Since xd > xc, yd 6 yc then DMUd is dominated and F = {a, b, c, e}.
Let α = 2, we have:
γ1 = (2, 0, 0), γ2 = (0, 2, 0), γ3 = (0, 0,−2)
E = {a, b, c, e, γ1, γ2, γ3} .
The first strong hyperplane is constructed by using Eq. (2) on D =

{o, a, b} where o is the origin.

∣∣∣∣∣∣
x1 x2 y
1 4 1
2 2 1

∣∣∣∣∣∣ = −6y + 2x1 + x2, H1 : −6y + 2x1 + x2 = 0.
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Figure 3: PPS of numerical Example 7.1.

By using Remark 4.2 and corresponding with ūy− v̄x + ū0 = 0, we
have (ū, v̄) = (−6,−2,−1) < 0 ; hence, construct the hyperplane with
(−ū,−v̄) that leads to H1 : 6y − 2x1 − x2 = 0.

It can be easily verified that conditions of Theorem 4.3 are held and
H1 is defining because:

a : 6 (1)− 2(1)− (4) = 0

b : 6 (1)− 2(2)− (2) = 0

c : 6 (1)− 2(5)− (1) < 0

e : 6 (1)− 2(1.5)− (3) < 0.

On D2 = {o, a, c} we obtain H2 : 19y−3x1−4x2 = 0, but this is not
supporting since by considering conditions of Theorem4.3 for DMUb we
have:

b : 19 (1)− 3(2)− 4(2)) > 0.

On D3 = {o, a, γ2}, because one of the three members of D3 is arti-
ficial DMU, therefore by using Eq. (5) we have:
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∣∣∣∣∣∣
x1 x2 y
1 4 1
0 2 0

∣∣∣∣∣∣ = y − x1, H3 : y − x1 = 0.

Note that conditions of Theorem 4.3 are held and H3 is a weak
defining hyperplane. In a similar manner, the other equations of the
strong and weak defining hyperplanes are obtained. Table 3 summarizes
the results related to the strong and weak defining hyperplanes of the
Example 7.1.

Table 3: The results of the supposed algorithm for Example 7.1

D Equation of hyperplanes Strong or weak

{o, a, b} 6y − 2x1 − x2 = 0 strong
{o, b, c} 8y − x1 − 3x2 = 0 strong
{o, a, γ2} y − x1 = 0 weak
{o, c, γ1} y − x2 = 0 weak

Example 7.2. ( Tv−VRS ). Consider a system of four DMUs with
one input and one output as it is shown in Fig. 4. Data is given in Table
4.

Table 4: Data of numerical Example 7.2

DUM
a b c d

x 1 2 4 3
y 1 3 5 3

Since xb > xd, yd 6 yb, the DMUd is dominated and F = {a, b, c} .
Let α = 2, we have γ1 = (2, 0), γ2 = (0,−2) ; then E = {a, b, c, γ1, γ2} .
On D = {a, b} and by using Eq. (2) we get:

∣∣∣∣ x− 1 y − 1
2− 1 3− 1

∣∣∣∣ = −y + 2x− 1, H1 : −y + 2x− 1 = 0.
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Figure 4: PPS of numerical Example 7.2.

By using Remark 4.2 and corresponding ūy− v̄x + ū0 = 0, we have
(ū, v̄) = (−1,−2) < 0; hence, we construct the hyperplane H1 with
(−ū,−v̄) that leads to H1 : y − 2x+ 1 = 0.

It can be easily verified that the conditions of Theorem 4.3 are held
and H1 is defining because:

a 1− 2 (1) + 1 = 0

b 3− 2 (2) + 1 = 0

c 5− 2 (4) + 1 < 0.
Table 5 summarizes the results of applying the algorithm for detect-

ing strong and weak defining hyperplanes of the Example 7.2.

8 Comparative Analysis

In this section, we have made a comparison between the method pre-
sented in this paper and the previous ones presented with the subject of
finding defining hyperplanes.

Most of the articles presented in this field, find only strong defining
hyperplanes (Say [1, 8, 10, 11, 12, 13]). But it is important to generate
the weak defining hyperplanes, specially when the frontier of the PPS is
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Table 5: The results of the supposed algorithm for Example 7.2

D HYPERPLANES Is supporting? Strong or weak

{A,B} y − 2x+ 1 = 0 Yes strong
{A,C} −4x+ 3y + 1 = 0 No –
{B,C} y − x− 1 = 0 Yes strong
{A, γ1} y − 1 = 0 No –
{A, γ2} −x+ 1 = 0 Yes weak
{B, γ1} y − 3 = 0 No –
{B, γ2} −x+ 2 = 0 No –
{C, γ1} y − 5 = 0 Yes weak
{C, γ2} −x+ 4 = 0 No –

constructed only of weak facets.

Also, most of the provided methods are applicable to PPS, either
constant returns to scale (CRS) or variable returns to scale (VRS). (Say
[1, 8, 9, 13, 15]).

Finally, in all of the mentioned papers, methods of finding defin-
ing hyperplanes solve many linear programming problems. This matter
requires more computational effort.

The presented algorithm (in section 6) has the following strengths:

i) It Calculates both strong and weak defining hyperplanes.

iii) It’s applicable to both, PPS under constant and variable returns
to scale.

iii) It finds all the defining hyperplanes without solving any LPs.

Our method can be easily implemented using existing packages for
mathematical algorithm, such as python.

9 Conclusions

Data Envelopment Analysis (DEA) has a strong connection with Linear
Programming (LP). The structure of PPS is studied since early years of
DEA. Finding strong and weak defining hyperplanes of PPS is surveyed
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in many papers that are mostly baes on solving LPs. Today, with ad-
vanced computers and softwares solving a linear programming (or even
hundreds of LPs) is not time consuming. But existence of alternative
solution for a LP is a big issue in the subject. It causes many difficulties
in determining the maximal facets (and also defining hyperplanes) PPS.

In this paper, we have proposed an algorithm for finding all the
strong and weak defining hyperplanes without solving any linear pro-
gramming problems. By means of the equations of hyperplanes which
construct the efficient frontier, we can identify returns to scale of DMUs
and all efficient DMUs that consist of a reference set. Furthermore, the
method of moving inefficient DMUs to efficient frontier can be studied
in more details. With all defining hyperplanes of PPS in hand, many
issues in DEA can be explored simpler.

Appendix A

Proofs of Theorems

Proof of Theorem 4.3. Since H passes through all members of D,
then H ∩ Tv 6= ∅. Also, we have:

uyj − vxj + u0 6 0 j = 1, ..., n.

Suppose that for j = 1, ..., n, λj > 0 are scalars such that
n∑

j=1
λj = 1,

then we have:

ū

 n∑
j=1

λjyj

− v̄

 n∑
j=1

λjxj

+ ū0

 n∑
j=1

λj

 6 0.

Again, with regard to the structure of Tv we have

−v̄x 6 −v̄
n∑

j=1

λjxj

ūx 6 ū
n∑

j=1

λjyj

ū0 6 ū0.
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Therefore, for each (x,y) ∈ Tv we get:

ūy − v̄x + ū0 6 ū

n∑
j=1

λjyj − v̄

n∑
j=1

λjxj + ū0

n∑
j=1

λj 6 0.

It means that all the PPS ( Tv ) is on one side of H. In other words,
H is supporting.

Note that by omitting u0, the proof is concluded for Tc straightfor-
ward.

Proof of Theorem 5.3. It is known that each hyperplane can be
generated by using a set of m + s points (DMUs). We will investigate
different possible cases in which the artificial DMUs in the form of (4),
are effective in constructing a hyperplane. Then, it will be shown that
these hyperplanes can also be generated by using artificial DMUs in the
form of (3).

Let D consists of both actual and artificial DMUs. Suppose D
contains k arbitrary actual and k arbitrary artificial DMUs such that
k + k = m+ s and k ≥ 1, k ≥ 1.

Case 1. All the k′ artificial DMUs has the same index as the actual
DMUs that are members of D ; i.e.

D =
{
zj1 , ..., zjk , z

∗
jt1
, ..., z∗jtk′

}
and

{
jt1 , ..., jtk′

}
⊆ {j1, ..., jk} .

where * can be either l ( l ∈ {1, ...,m} ) or q ( q ∈ {1, ..., s} ).

Now let H be the hyperplane that is generated by using the members
of D and Eq. (2). Therefore, the gradient of H is orthogonal to vectors
−−−→zj1zj2 , ...,

−−−→zj1zjk ,
−−−−→
zjtz

∗
jtβ

such that β ∈ {1, ..., k′} . On the other hand,

Remark 3.2 implies that the gradient of H is also orthogonal to m+s−1
arbitrary vectors as follows:

−−−→zj1zj2 , ...,
−−−→zj1zjk ,

−−−−→
zjtz

∗
jtβ

s.t jtβ = jt , β ∈
{

1, ..., k′
}
.

It means that, in the determinant of Eq. (2), rows (k + 1) to (k + k′)
are the differences between actual and artificial DMUs which have the
same indices. But these differences are the vectors introduced in (3). So,
the determinant of Eq. (2) transforms to the determinant of Eq. (5).
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Case 2. The k′ artificial DMUs are of two types. The first type are
artificial DMUs that have the indices same as some actual DMUs of
set D ; and the second type are artificial DMUs that don’t have the
indices same as some actual DMUs of set D.Suppose k′′ + k′′′ = k′

where k′′ is the number of the first type and k′′′ is the number of the

second type. Then D =

{
zj1 , ..., zjk , z

∗
jt1
, ..., z∗jtk′′

, z∗jt′1
, ..., z∗jt′k′′′

}
and

{t1, ..., tk′′} ⊆ {1, ..., k} , {t′1, ..., t′k′′′} ⊆ J − {1, ..., k} .
In this case, we will show that the obtained hyperplane using the

above set is either not supporting (therefore it is not defining) or the set
D can be transformed to a set which is a subset of case 1, and in this
case the hyperplane can also be generated by Eq. (5). Corresponding
to Remark 3.2, we know that the supporting hyperplanes have a form
as follows:

H = {(x,y) |ūy − v̄x + ū0 = 0, (ū, v̄) > (0,0)}

in which (ū, v̄) is gradient of H. Without loss of generality, suppose
that for an arbitrary artificial DMU of D, say z∗jt ∈ D, we have zjt /∈ D
and also suppose ∗ = l and l ∈ {1, ...,m}. since zljt is dominated by zj
we have:

(−x1jt ,−x2jt , ...,−xljt , y1jt , ..., ysjt) >
(−x1jt ,−x2jt , ...,−xljt − α, y1jt , ..., ysjt) .

And since (ū, v̄) > (0,0) , then:

u1y1jt + · · ·+ usysjt − v1x1jt − · · · − vlxljt · · · − vmxmjt
+ u0 >

u1y1jt + · · ·+ usysjt − v1x1jt − · · · − vl(x1jt + α)− · · · − vmxmjt + u0.

Because H is binding in zljt ∈ D, the right-hand side of the above
inequality will be zero i.e.,

u1y1jt + · · ·+ usysjt − v1x1jt − · · · − vlxljt · · · − vmxmjt + u0 > 0.

Subcase 2a. If u1y1jt′1
+ · · · + usysjt′1

− v1x1jt′1 − · · · − vlxljt′1 · · · −
vmxmjt′1

+u0 > 0, then clearlyH is not a supporting hyperplane, because
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H does not pass through zjt . So, in this case, the set D will not lead to
the construction of a supporting hyperplane.

Subcase 2b. If u1y1jt′1
+ · · · + usysjt′1

− v1x1jt′1 − · · · − vlxljt′1 · · · −
vmxmjt′1

+u0 = 0, then H passes through zjt . Therefore, this hyperplane

can be constructed by eliminating artificial DMU zljt from D and sub-
stituting the actual same-indexed DMU. In this case we have a subset
of case 1.

Finally we can conclude, for each artificial DMU that there doesn’t
exist any same-index actual DMU in D, either the hyperplane is not
supporting or the hyperplane can be obtained by other forms of D which
are subsets of case 1.

Appendix B

Illustration of Theorem 5.3 with an example

Consider a system contain 7 DMUs with two inputs and one output
(Table 6). The production possibility set ( Tv ) is shown in Fig. 5.
These seven DMUs span four strong defining hyperplanes and six weak
defining hyperplanes. The dotted regions and the shaded regions of
the production possibility set are the strong and weak efficient frontier
respectively. Some artificial DMUs in the form of (4) have also been
depicted in Fig. 5.

We have:

z12 = (5 + α, 1, 6) , z13 = (4 + α, 4, 8) , and z25 = (0.5, 1 + α, 1)

in all of which α > 0, for example α = 1.

Table 6: An illustrative numerical example

DUM
z1 z2 z3 z4 z5 z6 z7

x1 2 5 4 1 0.5 1 1.5
x2 2 1 4 5 1 0.5 3.5
y 4 6 8 6 1 1 5



FINDING ALL THE STRONG AND WEAK DEFINING... 23

Figure 5: he production possibility set of the example.

The detailed analysis proof of Theorem 5.3 will be provided in the
following instances.

Case 1. Choose D1 =
{
z2, z3, z

1
2

}
. The set D1 contains two actual

DMUs and one artificial DMU. The Artificial DMU z12 has the same
index as z2. By using Eq. (2) we have:∣∣∣∣∣∣

x1 − 5 x2 − 1 y − 6
4− 5 4− 1 8− 6
5− 5 4− 1 8− 6

∣∣∣∣∣∣ = 0 → H1 : 3y − 2x2 − 16 = 0.

The obtained weak hyperplane is associated with H1 in Fig. 3 which
is parallel to the first axis of input. Note that the Remark 3.1 implies

that the gradient of H1 is also orthogonal to vectors −−→z2z3,
−−→
z3z

1
3 , in which

−−→
z3z

1
3 = (1, 0, 0). Consequently, the equation of H1 is can be generated

by using the following relation:

∣∣∣∣∣∣
x1 − 5 x2 − 1 y − 6
4− 5 4− 1 8− 6
5− 4 4− 4 8− 8

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x1 − 5 x2 − 1 y − 6
−1 3 2
1 0 0

∣∣∣∣∣∣
=→ H1 : 3y − 2x2 − 16 = 0.
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Obviously, the above relation is associated with Eq. (5). This ex-
presses the equivalence between the set D1 =

{
z2, z3, z

1
3

}
and the set

D = {z2, z3, γ1} in which γ1 is an artificial DMU in the form of (3).
Case 2. Choose the set D2 =

{
z3, z

1
3 , z

1
2

}
, that contains one actual

DMU and two artificial DMUs. The artificial DMU z13 has the same
index as z3 (Actual DMU), but there is no actual DMU with same index
as z12 . DMU z12 is dominated by z2. Let us now summarize the different
possible cases that may arise.
Subcase 2a. The hyperplane that passes through members of D2 also
passes through z2. Therefore the obtained hyperplane can be generated
by the set

{
z3, z

1
3 , z2

}
.

Subcase 2b. The obtained hyperplane when using D2 is not support-
ing.

Due to the Fig. 1, it is clear that the subcase 2a is occurred. There-
fore, in regard of case 1, the set D2 =

{
z3, z

1
3 , z

1
2

}
is equivalent to the

set D = {z3, γ1, z2} .
Now, choose the set D3 =

{
z3, z

1
3 , z

2
5

}
in which D3 contains one

actual DMU and two artificial DMUs. The artificial DMU z13 has the
same index as z3 (Actual DMU), but there is no actual DMU with same
index as z25 . Here subcase 2b is occurred. Thus, the obtained hyperplane
using D3 and Eq. (4) is not supporting and z5 is not on one side of it;
i.e., ∣∣∣∣∣∣

x1 − 4 x2 − 4 y − 8
5− 4 4− 4 8− 8

0.5− 4 2− 4 1− 8

∣∣∣∣∣∣ = 0 → 2y − 6x2 + 8 = 0.

And for z5 we have:

2 (1)− 6 (1) + 8 > 0

∀j 2(yj)− 6 (x2j) + 8 6 0.

Therefore, this hyperplane passes through PPS and is not support-
ing.

The above example implies that the outcomes of adding artificial
DMUs in the form of (4) and using Eq. (2) is similar to outcomes of
adding artificial DMUs in the form of (3) and using Eq. (5). Therefore,
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all the weak defining hyperplanes of a system is generable by actual
DMUs and artificial DMUs in the form of (3) and by using Eq. (5).
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