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1 Introduction

The fractional calculus has long been an attractive research topic in
functional space theory due to its applicability in the modeling and
scientific understanding of natural phenomena. Indeed, several appli-
cations in viscoelasticity and electrochemistry have been investigated.
Non-integer derivatives of fractional order have been successfully used
to generalize the fundamental laws of nature. For more details, we rec-
ommend [1-6, 14, 24,26, 36—40]. The papers [8, 10, 11,15, 18-20,22, 23,

,34,35,41,42,46,47] provide many recent interesting and insightful
results for diverse fractional differential problems with varied conditions
and based on multiple approaches. The authors of [12,13,25,27] explored
the existence, stability and uniqueness of solutions for various problems
with fractional differential equation and inclusions concerning retarded
or advanced arguments.

Recently in [17], Diaz presented the definitions of the special func-
tions k-gamma and k-beta. Several findings and generalizations for var-
ious fractional integrals and derivatives based on the properties of these
special functions can be found in [16,31,32].

In [15], Sousa et al. introduce another so-called i-Hilfer fractional
derivative with respect to another function and gave some important
properties concerning this type of fractional operators. We direct the
readers to the papers [7,9,43,44] and the references therein for further
results based on this operator.

Recently in [39], we established existence, uniqueness and Ulam sta-
bility results to the boundary value problem with nonlinear implicit
generalized Hilfer type fractional differential equation with impulses:

<’7Dta+"3u> (t)=f (t,u(t), (ppjfu) (t)) ctedp, k=0,...,m,

(P77) ) = (770) )+ Lutut )ik = Leeom

k—1

e (PT50) (@) + e (P u) () = s,
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where th;’B P j o 7 are the generalized Hilfer fractional derivative of or-

der o € (Okl) and type 8 € [0, 1] and generalized fractional integral of or-
der 1—7, (v = a+B—ap) respectively, c1, ¢z, c3 are reals with ¢; +co # 0,
Ji = gy tiop1;E=0,...om, a=1t) < t; < ... <ty <tms1 =b < 00,
u(tf) = lim u(ty + €) and u(t;) = lim u(ty + €) represent the right
e—0t e—0~

and left hand limits of u(t) at ¢t = tx, f : (a,0] x R x R — R is a given
function and L; : R - R; k= 1,...,m are given continuous functions.
The proved results rely on Banach contraction principle, Krasnoselskii
and Schaefer fixed point theorems.

In keeping with the spirit of generalizing the previous results, in this
paper, we establish existence and uniqueness results to the following
k-generalized -Hilfer problem with nonlinear implicit fractional dif-
ferential equation with impulses involving both retarded and advanced
arguments :

(EDZ;”%) t)=f (t,xt(-), (,?fo”%) (t)> L ted;, i=0,...,m,

(779" (1) = (»Z@“‘@”Ww) (t7) + Lila(t7))si = 1,...,m,

k3

a (jak_’(_lfﬁ),kﬂ/)x) (a+) T ay <*7t7:1 &),k ) (b) = as, (3)
z(t) =w(t), t€a—Aa], A>0, (4)
2(t) = &(t), te [b,b+§}, 2> 0, (5)

where 1 Dﬁ Y VN FI=Ok% 2 re the k-generalized -Hilfer fractional deriva-
tive of order 9 e (0 k) and type r € [0,1] defined in Section 2, and
k-generalized 1-fractional integral of order k(1 — &) defined in [33] re-
spectively, where £ = (r(k — V) + 1), k>0, w € C([a— A,a],R), @ €

3
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c ([b,b+5\] ,R), f [, b] X PCe ([—A,XD xR —> R is a given ap-

propriate function specified latter, a1, as, ag € R such that a; + a9 # 0,

Ji = (ti,tprl];i = 0,...,m, a=1t <t <...<tlym <tpy1 = b < o0,

u(t) = lim u(t;+¢) and u(t; ) = lim u(t; +€) represent the right and
e—0t e—0~

left hand limits of u(t) at t =t; and L; : R - R; i = 1,...,m are given

continuous functions. For each function x defined on [a —Ab+ 5\] and

for any t € (a, b], we denote by z! the element defined by
() =zt +7), TEC [—)\, :\} :

This paper has the following structure: In Section 2, some notations
are introduced and we recall some preliminaries about k-generalized -
Hilfer fractional integral, the functions k-Gamma, k-Beta and some aux-
iliary results. Further, we give the definition of the k-generalized v-Hilfer
type fractional derivative and some essential theorems and lemmas. In
Section 3, we present two existence results for the problem (1)-(5) that
are founded on the Banach contraction principle and Schauder fixed
point theorem. Finally, in the last section, we give an example to illus-
trate the applicability of our main result.

2 Preliminaries

First, we present the weighted spaces, notations, definitions, and pre-
liminary facts which are used in this paper. Let 0 < a < b < o0,
J = [a,b], ¥ € (0,k), r € [0,1], k > 0 and & = 1(r(k — V) + V). By
C(J,R) we denote the Banach space of all continuous functions from J
into R with the norm

[#]|oc = sup{[z(t)[ : t € J}.
Let C = C([a— A, a],R) and c=C ([b,b+5\] ,R) be the spaces en-
dowed, respectively, with the norms

[zlle = sup{[z(®)] : € [a = A, al},

and
|zl s = sup {]m(t)\ te [b,b+ X} } .
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Consider the weighted Banach space

C&k;Qp(Ji) = {.%' : Ji —R:t— \I/g)(t,ti)x(t) S C([ti,t“_l],R)} ,

where \I/Z)(t,ti) = ((t) —¥(t;)) "¢ and i = 0,...,m. And, we consider

PC¢ jp(J) = {iL‘ :(a,b] > R: 2 € C¢py(Ji);i=0,...,m,and there

exist z(t; ) and ( FHO=O k0

i —
Y

:c) ()i =1,...,m,with z(t; ) = x(ti)},

with the norm

|zl pc, .., =  max sup
Sl 1=0,...,m tE[ts it
Consider the weighted Banach space

P ([

{x : [—)\, 5\} —R:7— \Ilg)(t,ti)a:(T) € C([r, mi41),R);i =0,...,m,

and there exist z(7; ) and (‘Zﬁ(l_g)’kwx) (7 )i=1,...,m,

with 2(7;") = x(r;) and 7, = t; — t, for each t € Ji},

with the norm

wg’(t,ti)x(t)(} .

211 —x.5)

= max { max sup \Ilg’(t,ti)xt(T)’ , sup |z%(7)|, sup |:cb(7)| .
=0 | e ry,7i44] TE[=A,0]

r€[0,4]
Next, we consider the Banach space

F:{x: [a—)\,b-i—S\] =Rl g EC,x\[b,b_i_;\] ecC

and x|,y € PCg (S )}

5
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with the norm

/| = max {{|z[lc, |z ll¢, 2]l pce vy } -

Consider the space Xf;(a, b), (ce R, 1 <p < o0) of those real-valued
Lebesgue measurable functions ¢ on [a, b] for which ||g| x7 < 0, where
the norm is defined by

oy = ([ w'<t>\g<t>|Pdt); ,

where 1) is an increasing and positive function on [a, b] such that ¢’ is
continuous on [a,b] with ¢(0) = 0. In particular, when ¢(z) = z, the
space sz (a,b) coincides with the Ly(a,b) space.

Definition 2.1. ( [17]) The k-gamma function is defined by
00 k
Ii(a) = / e~ % dt, o > 0.
0

When k£ — 1 then I'(a) = I'y(«), we have also some useful following
relations T (a) = k* 1T (%), T (a+k) = al'y(a) and Ty, (k) = T'(1) = 1.
Furthermore k-beta function is defined as follows

1t a_q B_q
Bk(a,ﬁ):% ; te (1 —t)r " dt

so that By(a, 8) = 1B (% %) and By(a, B) = %

Now, we give all the definitions to the different fractional operators
used throughout this paper.

Definition 2.2. ( [33]) (k-Generalized i-fractional Integral) Let g €
Xi(a, b) and [a,b] be a finite or infinite interval on the real axis R =
(—00,00), ¥ (t) > 0 be an increasing function on (a,b] and ¢'(¢t) > 0 be
continuous on (a,b) and ¥ > 0. The generalized k-fractional integral op-
erators of a function f (left-sided and right-sided) of order 1} are defined
by

t_

T (1) = / TEL (1, )0 (s)g(s)ds,

b
TR (1) = / Th (s, £y (s)g(s)ds,

t
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21
with £ > 0 and \Tlg’w(t, s) = W) = ¥(s)) .

kT ()
Also in [32], Ndpoles Valdés gave a more generalized fractional inte-
gral operators defined by
1/1’ (s)g(s)ds
R = [ |
Gat G((t) —P(s), %)
9(8) 5
jG b / )
ka G((s) — (1), )

where G(z,9) € AC|a,b]; the space of absolutely continuous functions
defined on [a, b].

Theorem 2.3. ( [32]) Let g : [a b] — R be an integrable function, and
take ¥ > 0 and k > 0. Then jG’ ’¢g exists for all t € [a,b].

Theorem 2.4. ( [32]) Let g € X} (a,b) and take 9 >0 and k > 0. Then
Tkl g € C(la,b),R).

Lemma 2.5. Let ¥ >0, r >0 and k > 0. Then, we have the following
semigroup property given by

TEECIEE £ty = IR £(6) = FIEY TEEY f (1)

and

J’l? k‘,’(/Jka’Ll)f( ) 19+Tk1ﬁf( ) _ L%Tik,wjf;k,wf(t)

Proof. By Lemma 1 in [15] and the property of k-gamma function, for
9 >0,r>0and k>0, we get

T Tl p () =

7
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where I ;91” is the fractional integral defined in [15], we have also,

VAR OR
_ I
k2D (9)Tk(r)
= TIETEE 1),

>
S—
!
—
Bl ]

. 9.
1515 (1)

O

Lemma 2.6. Let 9,7 >0 and k > 0. Then, we have

9,k 7k, Tk,
ja+ 77Z)\Ilr w(t7a) - \Pﬁfr(u a’)

and

9,k 1k, _ ok,
TLEVTEC (b,8) = TP (b, 1).

Proof. By Definition 2.2 and using the change of variable

Using the Definition 2.1 of k-beta function and the relation with gamma
function, we have

9,k 3k, 3k
jaJr w‘ljr w(t’a) - \I’ﬁfr(ma)'
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Theorem 2.7. Let 0 < a < b < 00,9 >0,0< &< 1, k>0 and
9
x € Cg p(J). If% >1—&, then

(752) (@) = lim (722) (1) = 0.

t—at

Proof. = € C¢,y(J) means that \Iﬂé(t, a)x(t) € C(J,R), then there
exists a positive constant R such that for ¢ € (a, b] we have

B¢ (t, a)z(t)| < R,
thus,
jo(t)] < RTy(k€)| T} (t,a)l. (6)

Now, we apply the operator jf jrk;w() on both sides of Equation (6) and
using Lemma 2.6, so that we have

(7)) < BUw(ke)
= RT (k&) Uyt (t a).

D k) Tk,
ja+ wlllkgw (t7 CL) ‘

Then, we have the right-hand side — 0 as x — a, and

lim (jff%%) (t) = (jjf;%) (a) = 0.
t—at

O

We are now able to define the k-generalized -Hilfer derivative as
follows.

Definition 2.8. (k-Generalized v-Hilfer Derivative) Let n — 1 <
n with n € N, J = [a,b] an interval such that —co < a < b
and g,v € C™([a,b],R) two functions such that ¢ is increasing and
Y'(t) # 0, for all t € J. The k-generalized 1-Hilfer fractional derivatives
(left-sided and right-sided) Dgfw(-) and Dg,_mb(.) of a function g of
order ¥ and type 0 <r <1, with £ > 0 are defined by

<

Nowi <

o

9
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kHDgI;ng (t) = <j;_$_knt9),k§1/) (w,l( )d)n (k:n a(iT)(knﬁLk;wg)) (t)
:(jaj_k‘n ﬁ)kwén (k?nj )(kn—19), ,wg>) (t)
and
o) ) = (g ( ) (I )
(j (kn—9), _1)ns (knjbl ) (kn—9), ’¢g>)(t),
1

where 87 = (7 )7

Lemma 2.9. Lett > a, v > 0,0 <7 <1,k > 0. Then for 0 < £ <
L& = F(r(k—9)+1), we have

9,7r; -1
o (vsw) w0
Proof. From Definitions 2.2 and 2.8, we have

. -1 b -1
T (W (1 a) :l/‘kWif(ts)(W?(&cw> W' (s)ds,

a

1
where X = Z (1 —7)(k — ). Now, we make the change of the variable
U(s) —(a) .
by 4 = —————= to obtain
SEEIORI0

k(W a))*1
Ly (kX)

1 [t 1o
x[kjkl—mX1flmﬂ,
0

then, by the definition of k-beta function

j(l r)(k— ﬁ)kwk< ?(t,a)>_1:

Lp(a)lk(8)

1.
Bk(a,ﬁ)_k/o trl(l—t)%—ldt: Thlot B)
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we have

j(1 ) (k— 19)k¢k( 5(t,a)>_1=1%:krk(k§)7

then, we have

1
%} <j(l r)(k— ﬁ)klbk( g(t,a)) >:0'

This complete the proof. O

9
Theorem 2.10. If f € C¢ [a,b],n —1 < z <mn, 0<r <1, where
n € N and k > 0, then

(e HDW) (1
e Zl e (—)z)i_;)) {7 (2 @)},

where

1
A (r(kn —9)+9).

In particular, if n = 1, we have

&=

_ b(a))E-l
<jﬁ Kt HDﬁrzpf) (1) = f(t) — lgfé?(k: _111)1(9))}r ﬁ)ja(—l— ST

Proof. From Definition 2.8 and Lemma 2.5, we have
9k 9
(72 s
_ (jﬂkw ja+kn 9) kwdn (k”j(l r kn—ﬁ),k;v,z;f)) (t)

_ (jaJ(rkn 19)+19k,1/}5n <an(1 r)(kn—1>9), ,wf)) ()

R o

11
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Integrating by parts, we obtain
(T oarr)

_ —(¢(Z)F;(;fg1))§ ' {5:;71 (knj( Dm0kt ¢ ))}

L
a6 ), v ib() e 0 () s
Using the propriety of the functions gamma and k-gamma, we get
(7 fplrvr) @
- St et )

t
1 P (s) n—1 ( 1.n ~(1—7r)(kn—9),k;¢
i ’“Ef(fl)/a (GO —b()> ¢ {5 (k ok f(s ))}

So, with integrating by parts n times, we obtain
(jmmp HD0r¢f> (t)

e o (et}
=1

e ), e (T ) as
L ()
(U

1 ! '(s) (A=) (kn=0)% £ 3\ s
* e, 0 - ooy (%ot f) ds

-3 o o (A )

+jk(§ kwlu ) (kn—9) k,q/;f(t)’
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then by using Lemma 2.5, we get

(Jfﬁ“" HDMf) (®

I R o )

O

Lemma 2.11. Let ¥ > 0,0 <r <1, and x € Cgkw(J)7 where k > 0,
then fort € (a,b], we have

(KD gEva) (0 = a).

Proof. We have from Definition 2.8 and Lemma 2.5 that £ = +(r(k —
J) + V)

(FD2 Zve) (o

(T, (k00 72552 )
(Jff—ﬂ,k;w61 (k:j(l ) (k—9)+09,k;ep >> (t)
(Fh 080l (kTER0) ) ),

then, we obtain

(Foere glive) @

- 1 /t Y'(s)
krk(k‘g - 19)1—‘19(]?(1 — f) + ’lg) a (T/)(t) _ ¢(S))lf§+%
S (r)x(r)dr ]
&y 5| ds. (7)
o [/ (0(s) — 0 F

On other hand by integrating by parts, we have
/S Y (T)a(r)dr
@ ((s) —(r)F
1
“Ter?

o(a) (B(s) — (@) sHE 4 [0
/ (0(s) — (S8

13
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then, by applying 511p we get

s [1 (s
’”/a ((s) — p(r))EF
' (7)dr

= 2(a) ((s) — () E 4 [ -
/ (b(s) — o) ¢

Now, replacing (8) into Equation (7), and by Dirichlet’s formula and the
properties of k-gamma function, we get

(Foir gltva) ()
B 1
R (RE — )T (k(1 =€) + 9)
L [ ¥ (s)dr ]
+ [ 2'(t)dt 5 = -
[ o | () = () (0s) = ()

/t (@) (s) ((s) — (a))"SHF ds

P(s) — (a)
(t) —1p(a)

from a to t and similarly changing the variable in the integral from s to

Making the following change of variables y = in the integral
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t, then we have

(o gitve)
= | [0 06) — vt ) - (s E s
+ [ 0at [0 @0 - ve) T @) - v ar]

" KT (k€ — O)Tr(k(1— &) + 0)

— ]1 /Olu—&i (1 _M)fildﬂ] <x(a)+/::v'(t)dt>

1
" Th(ke — Mk(k( —5)+9)

_ k/ (==L (1 — )& 1@} <x(a)+/atx’(t)dt)

X

Ly (k& —9)0 (k‘( —§+9)

then by the definition of k-beta function, we obtain
A 0,k
(Ko glive) @

[Fk(k§ D)y (k(1 = &) +v)] b
ke — O)Tx(k(1—€) + 0) (’““”L ‘”(t)dt)

Di(
— 2(a) + / (1)t
= z(1).

O

Theorem 2.12. Let the function o(-) € C(J,R). Then x € Cg .y (J;)
1$ a solution of the differential equation:

(,?fo”%) ) =(t), tedy, i=0,....m, 0<O<k, 0<r<1,
9)
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if and only if x satisfies the following Volterra integral equation:

z _ 2 UN R

r(k—9)+9

k> 0.
’ ,E>0

where £ =

Proof. By applying the fractional integral operator J, i’k;d’(-) on both

sides of the fractional equation (9) and using Theorem 12.10, we obtain
the equation (10).
Now, applying the fractional derivative operator fo;w(') on both

sides of the fractional equation (10), then we get
k(1-€),k;
j-ﬁ( &),k 2 (t;)

HyO,r31 HyO,r31 t
D .Z‘) t)y= D
(£2 ) 0 = 127 WY (¢, 1) Ti(kE)

0,15t 70,k;
+ (FDET2) ()
Using the Lemma 2.9 and Lemma 2.11, we obtain equation (9). O

3 Existence of Solutions
We consider the following fractional differential equation
(HDW“;%) ()= (t), teJ, i=0,....m (11)
k t?— @ ) 7 ety )

where 0 < 9 < k,0 <r <1, with the conditions

(ii(l—ﬁ)vk;wx) (t;&—) _ <‘7t/jr(1—§)7k;¢x> (tz_) + Ll(:v(tl_)),z =1,....m,

i—1

z(t) =w(t), te€la—Aal, A>0, (14)

2(t) = &), te [b,b+ x} L A>0, (15)
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where £ = w, k > 0, a1, a9, a3 € R such that a1 + ag # 0
and where ¢(-) € C(J,R), w(-) € C and @ (-) € C.

The following theorem shows that the problem (11)-(15) have a
unique solution.

Theorem 3.1. The function x(-) satisfies (11)-(15) if and only if it
satisfies

1 s v O
wo (t)<h+a2 arﬂmg;%@wﬂ>

a1+a2 — J

+ (jfik;%) (t), t € Jo,

1 a3 e%) = _
- Li(z(t;
\I/Z)(t,ti)rk(ké) a1 +ay o1+ oo Zl ]( ( J )
t = m
#{t) az = k(1=&)+19,k; w 1 &)+ kb
Cartas Z ‘71?_1 + Z © (t]’)
j=1
+3 L) + (FFe) @), tedzi=1,...,m,
Jj=1 !

w(t), t€fa—\al,

(1), te [b,b+5\} .

(16)
Proof. Assume x satisfies (11)-(15). If ¢ € Jy, then
(FDra) () = o),
Theorem 2.12 implies that the solution can be written as
(1-8), ke
J, z(a .
oty = T (v s) ), (7)

Ve (¢, a)Ty(kE)
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If t € Ji1, then Theorem 2.12 implies

_ CHH
T W tTe(ke) (72) @

kal_g)’k;wm t7) + Li(z(ty
(@ ¢ ) () + La( <1>>+<ﬁ%>®
\Ifg (t,tl)l“k(kf) 1
() (@) + (709 ) (1) + Lae(ey)

a

WY (¢, 1)k (k)

+ (7)o

If t € Jo, then Theorem 2.12 implies

x(t) = —

N \Il?(t, t2) (k&)
( jz}(l—g),k;%) (ty) + La(z(t3))

oo

_ t 9,ksep
WY (1, 1) (kE) +(7"e) 0
_ 1 k(1—€), ks k(1—€)+0,ks)
- [@ D) @)+ (099 (1

+ La(@(tD) + (T (1) + L2<x<t;>>}

+(75"0) O

Repeating the process in this way, the solution z(t) for t € J;i =
1,...,m, can be written as

1 [ (
‘I’lf’(t,ti)Fk(ki)

: k(1— 9,k;
+ Z(JP O+ %) (t))
j=1

o(t) = TR <a)+iij<x<t;>>
= (18)

(g

th
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Applying %ﬁ(l_@’k;w on both sides of (18), using Lemma 2.6 and taking
t=">, we obtain

(‘7&51—5)&;%) (b) = <jak£1—f)7k;¢x) (a) + iLJ(x(t;))

Jj=1

N Z (inul—&)w,k;w(p) (t) + (%i(1—£)+ﬁ,k;w¢) (b).
X 1= "

j=1
(19)

Multiplying both sides of (19) by ag and using condition (13), we obtain

oy —ar (ZEM0) (@) = an (ZE79ME) (@) + a2 Y Ls(o(t)
j=1

m+1 L -
1- RS
rar Y () (),
=1~ 7

which implies that

m m+1
« « _ « _ .
=2 2N L) 2 23(4’1“ f”ﬁ”%) ().
. J
J J=

(20)

Substituting (20) into (18) and (17) we obtain (16).

s

Reciprocally, applying J; ﬁ(l_g) on both sides of (16) and using
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Lemma 2.6 and Lemma 2.5, we get

( ‘Zﬁ(lfé),k;zbw) o)

m+1
as ( TR0 ke >(t)
J

a1 + Qo a1+a2 —

ZL (t7)) + (Jk(l f’*“%) (1), ifte o,

.

Oé1+042
- a a " : k(1—€)+0,k;0b (21)
3 2 _ —&)+ .
— Li(x(t;)) + J ™ t;

S e L) g( SR )
a m+1 k(1) 49 k) 7
2 1-€)40,k; _

_ L t. L (x(t:

a1 _|_a2 le <‘7tj_1 @) ( .7) + ]Zl ](:C( 7 ))

+(FOR) (1), tedzi=1,.m

Next, taking the limit ¢ — a* of (21) and using Theorem 2.7, with
k(1 —¢) < k(1 —¢&)+ 19, we obtain

m+1
(j:ilfé)’k;wx) (a+) __ % Z (Zﬁ(1£)+ﬁ,k;¢¢> (t;)
J

a1 + Qo o1 + Q9 =

L 22
Oél+a2]Z; ] ( )

Now, taking ¢t = b in (21), we get

a-0kw gy — W L
(“Zt+ )(b) a1+a2+< a1+a2>

m m+1
S Lyl Z < K- 5”'”%) (t))
j=1

From (22) and (23), we find that
on (FEIOK Y (a%) 1 0y (E794) (b) =

tm
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which shows that the boundary condition (13) is satisfied. Next, apply
operator ’Dﬂrw(-) on both sides of (16), where i = 0,...,m. Then,

from Lemma 2.9 and Lemma 2.11 we obtain equation (11). Also, we
can easily show that x satisfies the equations (12), (14) and (15). This
completes the proof. O

As a consequence of Theorem 3.1, we have the following result

r(k—19)+9

Lemma 3.2. Let £ = where 0 <9 <k and 0 <r <1, let

[ J %X PCg¢ ([—)\,S\D xR = R be a continuous function, w(-) € C

and ©(-) € C, then x € F satisfies the problem (1)-(5) if and only if x is
the fized point of the operator T : F — T defined by

as a2

— Li(x(t;
oS almjzl ((t)

( )
oa —1—042 Z < Lo k’¢w> (t])
j=1

&)+ ks . (-
(Tz) (1) = + Z < 90) (t:) + Z Li(x(t; ))]

a<t;<t a<lt;<t
+ (Zi’ﬁk;wcp> (t), teJi;i=0,...,m,

k3

w(t), te€a—\al,

(), te [b,bm} .
(24)

where ¢ be a function satisfying the functional equation
By Theorem 2.4, we have Tx € F.

The following hypotheses will be used in the sequel :

(Az1) The function f : J x PC¢ .y <[—)\, S\D x R — R is continuous.
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(Ax2) There exist constants (; > 0 and 0 < (2 < 1 such that

Lf(t,z1,91) — f(t 22, 92)| < Gl — $2|’[_A7;\] + G2ly1 — 2l

for any x1, 22 € PCg .y <[—)\, XD, y1,y2 € R and t € (a,b].
(Ax8) There exists a constant ¢; > 0 such that
[Li(y1) = Li(y2)| < Q¢ (i, ti 1) g1 — v
for any y1,y2 € Randi=1,...,m.

We are now in a position to state and prove our existence result for
the problem (1)-(5) based on based on Banach’s fixed point theorem [21].

Theorem 3.3. Assume (Ax1)-(Ax3) hold. If

- [( ol 1) (mmmcmw(b)—w(a))l-“k)

~ Tk | \on + 0z (1— Q)Tk(2k — k& +9)

L GL(Eb) —h(a) T E ( sl Ty (k€) )
(1-¢2) a1 + ooTx(2k =k +0) — T(V+ k)

<1, (25)

then the problem (1)-(5) has a unique solution in F.

Proof. We show that the operator 7 defined in (24) has a unique fixed
point in FF.

Let x,y € F. Then for any t € [a — \,a] U [b,b+ 5\}, we have
[ Tz(t) — Ty(t)| = 0.
Thus

1Tz —Tylle =Tz = Tyll¢ = 0. (26)
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Further, for ¢ € (a,b] we have

[ Ta(t) — Ty()]
1
T WYt t)T(KE)

m+1
L loof 3 (%ﬁ(l‘g)”’wlwl(@ - @2(3)0 (t)

] |Z\ ) Li(u(t)|

la + g

+ > (Jt’i“@””“‘”|sm<s>—so2<s>\) <ti>]

a<t;<t il

19 k;
+ (T2 101() = pa(s)]) ()
where 1 and ¢; be functions satisfying the functional equations

e1(t) = f(t, 2" (), e1(t)),
@a(t) = f(t, 4" (-), palt)).

y (Az2), we have

[f(t, 2", 1(t) — (£, 3", 02(t))]
Gllz" = y'll_y5) + Celer(t) = @a(®)].

|P1(t) = a(D)]

IA I

Then,

o1(8) = e2(t)] < T2t = ol

23
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Therefore, for each t € (a, b]

[Ta(t) — Ty(t)]
1
T WYt )Ty (kE)

61\a2| PR
J=

SIGE! (1-E)+0,ks0 sie ) (4
" (1 —¢)|or + ag| & Z ( ., la® — H[AA]) (t5)
G (1) 40, k31 . ) .
- 3 (A0 <) )]

Cl 9,k S S _
1o (Z; o = o7l _yx) (-

Thus

| Ta(t) — Ty()]

Hx — y”IF
- W(t )Tk (kE)

. z (o) )+ 19 > (o) “j)]

Cl
1-—

14
e + az| (1 —G)|ar + az|

Frigle =l (T2 W) @),

By Lemma 2.6, we have

[ Ta(t) = Ty()]

|z —yllr
T WLt ) T(KE)

(m + 1)Cilaz] ($(b) — (a) ¢ F
(1= CG)lar + aa|Ty(k(1 — &) + 9 + k)
)

m (¥(b) — () ¢ E G () — 9(t)

a)
(1=C)Tr(k(1 =&+ 9+ k) + (1—C)TR(9 + k) lz —yllr.

mly ||

’I’)’Lﬁl
‘061 + 062|

A
k
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Hence

‘q/g(t, t;) (Tx(t) — Ty(t))‘
§ Hx_yHFl( oo +1> <m€1 - m¢ ((b) — (a)' T F >

= Tp(ké) 1—G)r(k(l—&6) + 0+ k)

G ((b) — (a)) ~HE || Ty (k€) )

- (1-¢2) (|a1 + Ty (k(1 =8 +9+k) Tr(@+k)

)

which implies that

HT&Z - Tprcg,k;w
< Nz —yls [( ) (mgl L () - w<a>>1“i>

Fk(kf) ‘Oq + 042‘ (1 — gg)Fk(Zk — k£ + 19)
G (0(b) — (a)) ¢ E s T (k€)
+ (=G <la1+a2\l“k(2k—k:§+19) + Fk(z9+k)> :

Thus
HT.I‘ - TyHcg,k;w < ﬁ”x - yH]F' (27)
By (26) and (27), we obtain
1Tz = Tyllr < Lz — yllr.
By (25), the operator 7 is a contraction on F. Hence, by Banach’s
contraction principle, 7 has a unique fixed point z € F, which is a
solution to our problem (1)-(5). O

Our next existence result for the problem (1)-(5) is based on Schauder’s
fixed point theorem [21].

Remark 3.4. We note that by taking:
G =¢3, G=g3, 1 =0,

q1(t) = |£(£,0,0)] and o1 = |Li(0)].
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hypothesis (Az2) implies that
[ft 29l = au(®) + a2 ()25 57+ as($)]y]
and from (Az3), we get

Li)| < o1 + 02W¢ (ti, ti )y,

for ¢ € (a,b], = € PCe sy ([_/\’S\D and y € R, where g1, 02 > 0 and
41,492,493 € C(J, RJr) with

qi =supqi(t), g5 =supqa(t), q3 =supgs(t) < 1.
teJ teJ teJ

Theorem 3.5. Assume (Ax1)-(Ax3) hold. If

- [( el ) <mgg+mq;w(b)—w(a))l—f*k)

T Ti(kE) | \Jau + agf (1— q§)Tk(2k — k& + )

g5 (V(b) — P(a)EHE | Ty (kE)
+ (1—(];) <|oq+a2|1“k(2k—k£+19) +Fk(19+k‘))
<1, (28)

then the problem (1)-(5) has at least one solution in F.

Proof. In several steps, we will use Schauder’s fixed point theorem to
prove that the operator 7 defined in (24) has a fixed point.

Step 1: The operator 7 is continuous.
Let {x,} be a sequence such that x,, — x in F. For each ¢t € [a— A, a]U

[b, b+ 5\} , we have

| Tz (t) — Tx(t)| = 0.



ON k-GENERALIZED ¢-HILFER IMPULSIVE BOUNDARY ... 27

And for t € (a,b], we have
| Tn(t) - Tﬂﬁ(t)l

lag + ael

‘a2| Y (ax (t:)) — Li(x(t:
wY(t, t)l“k(kf) ZI’LJ( n(t7)) = Lj(2(t7))]

ool ( TEOE ) o150

\a1+a2\
+ D Li(ea(t)) = Li(a(t)))]
s (T (5) = o1 <m]

+ (4, “%( )= (s)]) (1),
where ¢ and ¢,, be functions satisfying the functional equations
Son(t) = f(t,ﬂ?%('), Spn(t))‘

Since x,, — z, then we get p,(t) — ¢(t) as n — oo for each t € (a,?],
and since f and L;;¢ =0, ..., m are continuous, then we have

| Tzn — Txllp — 0 as n — oo.

Step 2: T (B) C By
Let M a positive constant such that

|z + f]ar + ao|Ty(K€) Nwlle, l@le
o1 + az|Tk(k€) (1 - ) o

MZmaX{

such that

s 1 sl ma; ((b) — () ~EFF
= [<a1+a2\ “) <m91+ (1—q§)1“k(2k—k:§+19))

i ((b) = (@)~ ( o] - ke )
(1-g3) lar + 2|l (2k — kE+0)  Tw(9+k)
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We define the following bounded closed set
By ={zeF:|z|r < M}.
For each t € [a — A, a], we have
[ T()] < =,
and for each t € [b, b+ 5\} , we have
[ Tz@)] < |l

Further, for each t € (a,b], (24) implies that

|as| |z
<
< g e e 2

m+1
g i < k(1—€)+0,ks0) )
vy t
+ ’al _~_a2‘ ; k7tj+71 |90(8)| (J)

+ Z ( gk £+19kw‘ ) )+ Z |Li(z ]

a<t;<t a<t;<t

+ (T e (s)]) (). (29)
By the hypothesis (Az2) and Remark 3.4, for ¢ € (a, b], we have

o(t)] = 15t 2", (1)
< a(t) + @2’y 5 + as(O)le(0)],

which implies that

lo(®)] < @1 + oM + gslp(t)],
then

qi + ;M

— = A.
1—q3

p(t)] <
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Thus for t € (a,b], by hypothesis (Az3), Remark 3.4 and from (29) we
get

1
L'k (k)

A|042| k(l £)+9,k;1p '
A D) Z ( m) )

La) (Z.F f”’““”%l)) <tj>]

+ AT, t)( f’fm)) ().

s m(o1 +92M)\a2|
lat + ag| lag + ag|

WY (1) T (t)] < m(o1 + 02M)

By Lemma 2.6, we have

|as] m(o1 + 0oM)|as|

+m(o1 + 0o M
lor + agl | + agl ( )

1
W (40 Te(0)] < ey
(m + 1)A|ag| (¥(b) — v(a)) ~EH%
a1 + oDy (k(1 = &) + 9 + k)
mA (B(b) — (@) "] A @) - ot) R
Tp(k(1— &) +9+k) Th (0 + k) :

+

Thus

W (¢, ) T (t)]

. mA ((b) — (a) ' EFE
< [ (\aho'm + 1) (m(gl oM+ o e+ ) )

|| Iy (k€) >
‘041+a2‘rk<2k—/€§+19) Fk(ﬁ-i-k‘)

L AWE) - pa)EHE <

s |
|t + | Tk (KE)
< M.
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Then, for each t € {a —Ab+ :\} we obtain

[Txlle < M.

Step 3: T (Byy) is relatively compact.
Let i, € J;;1=0,...,m, 1 <1 and let z € By;. Then

(6 Ta(n) = 0 (st ()

[y <jtk+(1 £)+ﬁ,k;w‘¢(s)‘> )+ S L)

L 71<t;<T2 i1 T1<t; <T2 i

+ | W (18 (T2 (@) (1) = W m2,t0) (T2 9)]) (72)]

cty <jtk+(1 f)w,k;ww(s)‘) )+ S L)

L <ti<To il T1<t;<T2 i

WY (1, )Y (71, 5) — WL (72, 1) W (7, 8)| [0/ ()0 (5)] s

By Lemma 2.6, we get

‘\I/g)(Tl,ti)T:L‘(Tl) — \I’ (12,1 )T$(72)‘

> (ZO ) w4 et >>']

T1<t;<T2 T1<t;<T2

Lr )T (71,5) = WL (ma, t) Y (ra, 9)| [0 (5| s

< 1
— Tw(kE)

+A

t;

A\IJ?(E, ti) (Y(r2) — (1))
T+ k)

As 71 — 79, the right-hand side of the above inequality tends to zero.
The equicontinuity for the other cases is obvious, thus we omit the de-
tails. From stepl to step3 with Arzela-Ascoli theorem, we conclude that
T : F — F continuous and compact. As a consequence of Schauder’s
fixed point theorem, we deduce that 7 has a fixed point which is a
solution of the problem (1)-(5). O

IS

+



ON k-GENERALIZED -HILFER IMPULSIVE BOUNDARY ...

4 An Example

Example 4.1. Taking » — 0, ¥ = %, E=1,J =117, ¥(t) = In(t),

a1 =2, a9 =3, a3 =4, A\ = A =7 and &= %, we obtain an impulsive

boundary value problem which is a particular case of problem (1)-(5)

with Hadamard fractional derivative, given by

(ipi"e) 0 = ("pic) 0

=f <t, 2, (HD%+:C> (t)) e JyUJy, (30)

(FE79) () = () () = L(a(en)), (1)

2 <j15+’1””x> (1) +3 (jea’l’%> (3) = 4 (32)
2(t) =w(t), te[l—m1], (33)
z(t) = w(t), te[m2n], (34)

where Jy = (1,€] and J; = (e, 7]. Set

1 : |21 | 2]
" e — | ) t
f( ,x17$2) 105 + 103e™t |: + ‘Sln( )|+ 1+|CU1| ]_—}—‘1‘2| 7
and 2o
X2
Li(x9) = | cos(t)| + )

where t € J, 1 € PCy¢ .y ([—)\,5\]) and xo € R. Since the function f
is continuous, then the condition (Az1) is satisfied.
For each x1,y1 € PC¢ .y ([—)\, S\D, T2,y2 € R and t € J, we have

1

' —f(t = 105+ 1037
£t 21, 22)=f (8 91,92)| < {5 yomams

(I = gl g + 2 = 2l

31
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and
|[La(z1) = La(y)l < llzn = wnll_ 55

then, the conditions (Az2) and (Az3) are satisfied with

1
Clzggzﬁandélzl.

Also, We have

118 In(3) In(3) /3
=—|-(1 S 42
ﬁ[5<+207>+207 5jL
As all the assumptions of Theorem 3.3 are satisfied, the problem (30)-
(34) has a unique solution in F.

~ 0.915279505465885 < 1.

In order to prove an existence result based on Theorem 3.5, we can
easily show that all the conditions are satisfied by using Remark 3.4 and
taking

1 + 2|sin(?)| 1
a2(t) = (1) = J55 oz

01 =02=1,

t) =
0(t) = 105 103"

for each t € J.

5 Conclusion

In this study, we started by presenting the definition of a new generalized
derivative operator called k-generalized i-Hilfer fractional derivative.
We also presented and established the generalized operator’s essential
properties while taking the characteristics of the functions k-Gamma
and k-Beta into consideration. Second, we demonstrated certain exis-
tence and uniqueness results for a k-generalized 1-Hilfer problem with
nonlinear implicit fractional differential equation with impulses incor-
porating both retarded and advanced arguments using our definitions.
Our arguments were founded on the Banach contraction principle and
Schauder’s fixed point theorem. Finally, we provided an example to
demonstrate the utility of our main result.
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It is worth noting that our operator can generalize previous frac-

tional derivatives defined in the literature, such as the i-Hilfer fractional
derivative. As a result, this will pave the way for new applications and
more broader research.
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