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Abstract. Let G be a locally compact group and H be a compact
subgroup of G. The aim of this paper is to characterize some homo-
logical properties of L1(G/H), C0(G/H) and M(G/H) as left Banach
L1(G)-modules such as flatness, injectivity and projectivity. Moreover,
we study the projectivity of C0(G/H) and M(G/H) as Banach left
L1(G/H)-modules and M(G)-modules.
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1 Introduction

Homological properties of certain left Banach L1(G)-modules have been
studied by Dales and Polyakov in 2004 [1], and in 2008 some of those
results were investigated by Ramsden for semigroup algebras [6]. How-
ever, homological properties of left Banach L1(G)-modules constructed
on homogeneous spaces have not been investigated so far.
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Throughout this paper, we assume that G is a locally compact group
and H is a closed subgroup of G with left Haar measures λG and λH ,
respectively. Also, ∆G and ∆H are the modular functions of G and
H, respectively. Let q : G −→ G/H be the natural quotient map.
Consider the G-space G/H as a homogeneous space that G acts on by
x(yH) = (xy)H. Let µ be a Radon measure on G/H. For x ∈ G, µx is
defined by µx(E) = µ(xE), where E ⊂ G/H is a Borel set. The measure
µ is said to be G-invariant, if µx = µ for all x ∈ G. The Radon measure
µ is said to be strongly quasi-invariant if there is a continuous function
θ : G × G/H −→ (0,∞) such that dµx(yH) = θ(x, yH)dµ(yH) for any
x, y ∈ G. A continuous function ρ : G −→ (0,∞) is called rho-function

for the pair (G,H), when ρ(xξ) = (∆H(ξ)
∆G(ξ) )ρ(x) for any x ∈ G, ξ ∈ H.

For every rho-function ρ there exits a strongly quasi-invariant measure
µ on G/H such that the Weil’s formula holds:∫
G
f(x)ρ(x)dλG(x) =

∫
G/H

∫
H
f(xξ)dλH(ξ)dµ(xH) (f ∈ Cc(G)).

Furthermore, the measure µ satisfies dµx
dµ (yH) = ρ(xy)

ρ(x) for any x, y ∈ G.

The map Tρ : L
1(G) −→ L1(G/H) was defined by Tavallei and et al. in

[5] by

Tρf(xH) =

∫
H

f(xξ)

ρ(xξ)
dλH(ξ) (xH ∈ G/H, ξ ∈ H),

where µ is a strongly quasi-invariant measure on G/H which arises from
a rho-function ρ and L1(G/H) = L1(G/H,µ). The map Tρ is a linear,
bounded and surjective map with ∥Tρ∥ ≤ 1 and

∫
G/H Tρf(xH)dµ(xH) =∫

G f(x)dλG(x) for all f ∈ L1(G). Moreover, for every φ ∈ L1(G/H),

∥φ∥1 = inf{∥f∥1 : f ∈ L1(G), φ = Tρf}. (1)

It turns out that the Banach space L1(G/H) isometrically isomorphic

to the quotient space L1(G)
Ker(Tρ)

equipped with the usual quotiont norm.

For a compact subgroup H of G, define

L1(G : H) = {f ∈ L1(G) : Rξf = f, ξ ∈ H}.
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Then L1(G : H) is a left ideal of L1(G), and L1(G/H) is isometrically
isomorphic to L1(G : H). Thus L1(G/H) is a Banach algebra. It was
shown in [5] that

L1(G : H) = {ψ ◦ q : ψ ∈ L1(G/H)}. (2)

For more details see [5].

Lemma 1.1. Let H be a closed subgroup of G.Then kerTρ is a left ideal
of L1(G).

Proof. Let f ∈ L1(G) and g ∈ kerTρ. Then one has

f · g(xH) = Tρ(f ⋆ g)(xH) =
∫
G f(y)

∫
H

g(y−1xξ)

ρ(x)
∆H (ξ)

∆G(ξ)

dλH(ξ)dλG(x) = 0.

Since Tρ(g)(y
−1xH) = 0, we have

∫
H

g(y−1xξ)
∆H (ξ)

∆G(ξ)

dλH(ξ) = 0. Thus f ⋆ g ∈

kerTρ. □

Lemma 1.2. Let G be a locally compact group and H be a closed sub-
group of G. Then L1(G/H) is a left L1(G)-module.

Proof. For φ ∈ L1(G/H) there is gφ ∈ L1(G) such that Tρ(gφ) = φ.
Define a left module action of L1(G) on L1(G/H) by

f · φ = Tρ(f ⋆ gφ), (f ∈ L1(G)).

Then

∥f · φ∥L1(G/H) ≤
∫
G/H

∫
H
|f ⋆ gφ(xξ)

ρ(xξ)
|dλH(ξ)dµ(xH)

=

∫
G
|f ⋆ gφ|dλG ≤ ∥f∥1∥gφ∥1 <∞.

From equality (2) we have ∥f · φ∥L1(G/H) ≤ ∥f∥1∥φ∥L1(G/H). It can
be easily seen that this operation, converts L1(G/H) to a left Banach
L1(G)-module and L1(G/H) is essential as a left L1(G)-module. □

We conclude this section with some examples of homogeneous spaces.
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Example 1.3. Let Mn(C) be the space of n× n matrices,

G = GLn(C) := {T ∈Mn(C) : detT ̸= 0},

and
H = U(n) := {T ∈Mn(C) : T ∗T = I}.

Then H is a compact subgroup of G and

SU(n) = {T ∈ U(n) : detT = 1},

is a compact subgroup of U(n).

Example 1.4. : Let G = {f : N −→ N | f is a bijection} with discrete
topology and Hk = {f ∈ G | f(n) = n, n > k}. Obviously G is a group
under composition of functions and Hk is a subgroup of G. Then Hk

(the symmetric group) is a finite subgroup of G.

2 The Module L1(G/H)

Let E and F be two Banach spaces and B(E,F ) denote the space of all
bounded linear operators from E to F . The dual space B(E,C) of E is
denoted by E′. We write B(E) in place of B(E,E). An operator T ∈
B(E,F ) is called admissible if there exists an operator S ∈ B(F,E) such
that T ◦S ◦T = T . Let A be a Banach algebra and E,F be left Banach
A-modules. The linear space of all left A-module morphisms is denoted
by AB(E,F ). An operator T ∈ AB(E,F ) is called a retraction if there
exists an operator S ∈ AB(F,E) such that T ◦ S = IF . A left Banach
A-module P is called projective if for every admissible epimorphism
T ∈ AB(E,F ) and any S ∈ AB(P, F ), there exists R ∈ AB(P,E) such
that T ◦ R = S. A left Banach A-module J is called injective if for
every admissible monomorphism T ∈ AB(E,F ) and any S ∈ AB(E, J)
there exists R ∈ AB(F, J) such that R ◦ T = S. If a left (right) Banach
A-module E is projective, then the right (left) Banach A-module E′ is
injective. Finally, let us recall that if E is a Banach left A-module, then
E′ is a right Banach A-module under the dual module action defined by

⟨x, λ · a⟩ = ⟨a · x, λ⟩
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for λ ∈ E′, x ∈ E and a ∈ A.
A left (right) Banach A-module E is called flat if E′ is injective as

a right (left) A-module. For two Banach spaces E and F , we denote by
E⊗̂F their projective tensor product. The projective tensor norm on
E⊗̂F is denoted by ∥.∥π, where

∥u∥π = inf{
∞∑
1

∥xn∥∥yn∥ : u =
∞∑
1

xn ⊗ yn, (xn ∈ X, yn ∈ Y )}

Let A be a Banach algebra, E a Banach A-bimodule and F a left Banach
A-module. Then E⊗̂F becomes a left A-module with the following
module action:

a · (x⊗ y) = (a · x)⊗ y (a ∈ A, x ∈ X, y ∈ Y ).

For a Banach algebra A we denote by A♭ the Banach algebra formed by
adjoining an identity to A. The morphism Π ∈ AB(A♭⊗̂E,E) is defined
by

Π(a⊗ x) = a · x (a ∈ A♭, x ∈ E).

We shall use the following theorem from [4, IV.1.1, IV.1.2 ].

Theorem 2.1. Let A be a Banach algebra and E be a left A-module.
Then E is projective if and only if the morphism Π ∈ AB(A♭⊗̂E,E) is
a retraction. In the case that E is essential, E is projective if and only
if the morphism Π ∈ AB(A⊗̂E,E) is a retraction.

Remark 2.2. It is well known that L1(G)⊗̂L1(G/H) is a left L1(G)-
module. If f , f1 ∈ L1(G), φ ∈ L1(G/H), then for F = f1 ⊗ φ ∈
L1(G×G/H) we have

f · F (x, zH) = (f ⋆ f1)(x)φ(zH)

=

∫
G
f(y)(f1 ⊗ φ)(y−1x, zH)dλG(y)

=

∫
G
f(y)F (y−1x, zH)dλG(y) (x, z ∈ G).

Thus this formula holds for any F ∈ L1(G×G/H).
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Theorem 2.3. Let H be a compact subgroup of G, and let µ be the G-
invariant measure on G/H arising from the constant rho-function ρ = 1.
Then L1(G/H,µ) is projective as a left L1(G)-module (M(G)-module),
and hence flat as a left L1(G)-module (M(G)-module).

Proof. Let

Π : L1(G)⊗̂L1(G/H) −→ L1(G/H), f ⊗ φ 7→ f · φ,

where

f · φ(xH) =

∫
G
f(y)φ(y−1xH)dλG(y).

Let also E be a compact symmetric subset of G such that λG(HE) > 0.
We can choose a Haar measure on G such that λG(HE) = 1. If K =
q(E) ⊂ G/H, then K is compact. Define

ρ : L1(G/H) −→ L1(G)⊗̂L1(G/H) = L1(G×G/H),

by

ρ(φ)(s, tH) = χK(tH)φ(stH).

Then

∥ρ(φ)∥1 =
∫
G

∫
G/H

|χK(tH)φ(stH)|dλG(s)dµ(tH)

=

∫
G

∫
G/H

|χK(zH)φ(tH)|dλG(s)dµ(tH) (z = ξs−1t, ξ ∈ H)

= λG(HE)

∫
G/H

|φ(tH)|dµ(tH) <∞.

Moreover, for g ∈ L1(G/H) and x ∈ G we have

Π(ρ(φ))(xH) =

∫
G
ρ(φ)(y, y−1xH)dλG(y)

= φ(xH)

∫
G
χK(y−1H)dλG(y) = φ(xH)λG(HE) = φ(xH).
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Let f ∈ L1(G), φ ∈ L1(G/H) and s, t ∈ G. Then

ρ(f · φ)(s, tH) = χK(tH)

∫
G
f(y)φ(y−1stH)dλG(y)

= f · ρ(φ)(s, tH).

Since L1(G/H) is unital as a left Banach M(G)-module, the result fol-
lows by Theorem 2.1 and [6, Theorem 3.1.1]. □

Lemma 2.4. Let G be a locally compact group, H a closed subgroup of
G and µ1, µ2 two strongly quasi-invariant measures on G/H that they
arising from rho-functions ρ1, ρ2, respectively. Then L1(G/H,µ1) is
isometrically isomorphic to L1(G/H,µ2) as left Banach L

1(G)-modules.

Proof. Let η : G/H −→ (0,∞) be defined by η(xH) = ρ1(x)
ρ2(x)

. Then

according to [3, Theorem 2.59], dµ1 = ηdµ2. Thus the mapping

T : L1(G/H,µ1) −→ L1(G/H,µ2), φ 7→ ηφ.

is well defined and
∫
G/H |φ|dµ1 =

∫
G/H |φ|ηdµ2 =

∫
G/H |T (φ)|dµ2 <∞.

Moreover, if φ ∈ L1(G/H,µ2), then T ( 1ηφ) = φ. Therefore, T is a

surjective linear isometry. For φ ∈ L1(G/H,µ1) there exists gφ ∈ L1(G)
such that Tρ1(gφ) = φ and thus Tρ1(gφ) = 1

ηTρ2(gφ). Finally for f ∈
L1(G), φ ∈ L1(G/H,µ1) we have

T (f · φ) = T (Tρ1(f ⋆ gφ)) = T (
1

η
Tρ2(f ⋆ gφ))

= f · Tρ2(gφ)
= f · T (φ).

□

Corollary 2.5. Let G, H, µ1 and µ2 be as in Lemma 2.4. If L1(G/H,µ1)
is projective as a left L1(G)-module, then L1(G/H,µ2) is projective as
a left L1(G)-module too.

Corollary 2.6. Let H be a compact subgroup of G. Then L1(G/H) is
projective as a left Banach L1(G/H)-module.
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Proof. Since L1(G/H) is an L1(G/H)-bimodule and Tρ is a surjective
left L1(G)-module morphism, the result follows by Theorem 2.3 and the
proof of [4, IV Proposition1.7]. □

Definition 2.7. Let G be a locally compact group, E a left Banach
L1(G)-module and φG the augmentation character defined by φG(f) =∫
G fdλG. Then E is termed augmentation-invariant, if there exists a
non-zero λ ∈ E′ such that

⟨f · x, λ⟩ = φG(f)⟨x, λ⟩ (f ∈ L1(G), x ∈ E).

Remark 2.8. Let E be a left Banach L1(G)-module. If E is augmentation-
invariant, then E′′ will also be augmentation-invariant.
Let λ ∈ E′. Then ⟨f ·x, λ⟩ = φG(f)⟨x, λ⟩ for f ∈ L1(G), x ∈ E. For each
φ ∈ E′′ there exists (xα)α ∈ E such that xα −→ φ in σ(E′′, E′)-topology.
So, if f ∈ L1(G) and φ ∈ E′′, we have

⟨f · φ, λ⟩ = ⟨φ, λ · f⟩ = lim
α
⟨xα, λ · f⟩ = lim

α
⟨f · xα, λ⟩

= lim
α
φG(f)⟨xα, λ⟩ = φG(f)⟨φ, λ⟩.

Lemma 2.9. Let E and F be left Banach L1(G)-modules and T ∈
L1(G)B(E,F ) be an isometric isomorphism of Banach space. If E is
augmentation-invariant, then F is augmentation-invariant as well.

Proof. Let λ ∈ E′ such that,

⟨f · x, λ⟩ = φG(f)⟨x, λ⟩ (f ∈ L1(G), x ∈ E).

Since λ ◦ T−1 ∈ F ′, for any y ∈ F we have

⟨f · y, λ ◦ T−1⟩ = λ ◦ T−1(f · y) = λ(f(T−1(y))) = φG(f)⟨y, λ ◦ T−1⟩.

□

Corollary 2.10. Let H be a closed subgroup of G. Then the left L1(G)-
module L1(G/H) is augmentation-invariant.

Proof. For f ∈ kerTρ we have

0 =

∫
G/H

Tρf(xH)dµ(xH) =

∫
G
f(x)dλG(x) = φG(f).
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Let λ : L1(G)/ kerTρ −→ C by λ(f + kerTρ) = φG(f). Then

λ(f · (g + kerTρ)) = φG(f)λ(g + kerTρ).

Thus L1(G)/ kerTρ is augmentation-invariant as a left L1(G)-module,
and so L1(G/H) is augmentation-invariant by Lemma 2.9. □

Definition 2.11. Let A be an algebra, and E be a left A-module. Then
E is said to be faithful if for each x ∈ E \ {0} there exists a ∈ A such
that a · x ̸= 0

Lemma 2.12. Let E and F be left Banach A-modules and T : E −→ F
be an isomorphism of left Banach A-modules. If E is faithful, then F is
also faithful.

Lemma 2.13. The Banach space L1(G)/ kerTρ is faithful as a left
L1(G)-module. Consequently, L1(G/H) is faithful as a left L1(G)-module.

Proof. Let g + kerTρ ̸= 0 and let {fυ}υ be a bounded approximate
identity for L1(G). Since fυ ⋆ g + kerTρ −→ g + kerTρ ̸= 0, there exists
υ such that fυ ⋆ g + kerTρ ̸= 0. □

Remark 2.14. Since L1(G/H) is a left Banach L1(G)-module,
L∞(G/H,µ) = L1(G/H,µ)′ and C0(G/H) become right Banach L1(G)-
modules. For ψ ∈ C0(G/H) and f ∈ L1(G) consider gφ ∈ L1(G) with
Tρ(gφ) = φ. Then

⟨φ,ψ · f⟩ = ⟨f · φ,ψ⟩

=

∫
G/H

f · φ(xH)ψ(xH)dµ(xH)

=

∫
G

∫
G/H

∫
H

f(y)gφ(y
−1xξ)

ρ(xξ)
ψ(xH)

ρ(y−1xξ)

ρ(y−1xξ)
dλH(ξ)dλG(y)dµ(xH)

=

∫
G/H

∫
G
f(y)ψ(xH)φ(y−1xH)θ(y−1, xH)dλG(y)dµ(xH)

=

∫
G/H

∫
G
f(y)ψ(yxH)φ(xH)dλG(y)dµ(xH).

Thus ψ · f(xH) =
∫
G f(y)Rx(ψ ◦ q)(y)dλG(y) and so ψ · f ∈ C0(G/H).
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Theorem 2.15. Let G/H be a discrete space. Then ℓ1(G/H) is injective
as a left Banach L1(G)-module if and if G is amenable.

Proof. According to Lemma 2.13, Corollary 2.10 and Remark 2.14, the
result is obtained by [1, Proposition4.6]. □

3 The Modules C0(G/H) and L∞(G/H)

Let G be a locally compact group and H be a compact subgroup of
G with a normalized Haar measure. The surjective linear map T∞ :
L∞(G) −→ L∞(G/H) with T∞f(xH) =

∫
H f(xξ)dλH(ξ) for x ∈ G

and f ∈ L∞(G) was defined in [5]. It has been proved that ∥T∞∥ ≤ 1
and T∞(Cc(G)) ⊂ Cc(G/H) [5, Theorem 3.4] and [3, Proposition 2.48].
Moreover, for φ ∈ L∞(G/H),

∥φ∥∞ = inf{∥f∥∞ : f ∈ L∞(G), φ = T∞(f)}.

Let L∞(G : H) = {f ∈ L∞(G) : Rξf = f, ξ ∈ H}. Then the restriction
of T∞ on L∞(G : H) is an isometric isomorphism. The left module
action of L1(G) on L∞(G/H) is defined by

f · φ = T∞(f ⋆ g) (φ ∈ L∞(G/H), f ∈ L1(G), g ∈ L∞(G)),

where T∞(g) = φ. The space C0(G/H) is a closed L1(G)-submodule of
the left Banach L1(G)-module L∞(G/H), and C0(G/H) is essential.

Remark 3.1. Since L∞(G/H) is a left L1(G)-module, L∞(G/H)′ will
be a right L1(G)-module. We show that L1(G/H) is also a right L1(G)-
module.
For f ∈ L1(G), φ ∈ L1(G/H), ψ ∈ L∞(G/H) and gψ ∈ L∞(G) such
that T∞(gψ) = ψ we have

⟨ψ,φ · f⟩ = ⟨f · ψ,φ⟩

=

∫
G/H

∫
H

∫
G
f(y)gψ(y

−1xξ)φ(xH)dλH(ξ)dµ(xH)dλG(y)

=

∫
G/H

∫
G
f(y)ψ(xH)φ(yxH)θ(y, xH)dλG(y)dµ(xH).



HOMOLOGICAL PROPERTIES OF BANACH MODULES ... 11

Thus φ·f(xH) =
∫
G f(y)φ(yxH)θ(y, xH)dλG(y), and so φ·f ∈ L1(G/H).

Furthermore,

∥φ · f∥1 ≤
∫
G/H

∫
G
|f(y)||φ(yxH)|θ(y, xH)dλG(y)dµ(xH)

=

∫
G/H

∫
G
|f(y)||φ(xH)|θ(y−1, xH)θ(y, y−1xH)dλG(y)dµ(xH)

= ∥f∥1∥φ∥1.

It is known that L1(G/H × G) ∼= L1(G/H)⊗̂L1(G) is a right L1(G)-
module. Indeed, for F ∈ L1(G/H ×G) and f ∈ L1(G),

F.f(tH, s) =

∫
G
F (tH, sy−1)f(y)∆G(y

−1)dλG(y).

Notice if G is compact and ρ = 1, L1(G/H) is essential as a right L1(G)-
module.

Theorem 3.2. Let G be a compact group and H be a closed subgroup
of G. Then L1(G/H) is projective as a right L1(G)-module and flat as
a right L1(G)-module.

Proof. Let Π : L1(G/H)⊗̂L1(G) −→ L1(G/H) be given by

Π(φ⊗ f) = φ · f (φ ∈ L1(G/H), f ∈ L1(G)),

where

φ · f(xH) =

∫
G
f(y)φ(yxH)θ(y, xH)dλG(y).

Define ρ : L1(G/H) −→ L1(G/H)⊗̂L1(G) ∼= L1(G/H ×G) by

ρ(φ)(tH, s)) = φ(s−1tH)θ(s−1, tH).

Then

Π(ρ)(φ)(xH) =

∫
G
φ(xH)θ(y−1, yxH)θ(y, xH)dλG(y)

= λG(G)φ(xH) = φ(xH),
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and

ρ(φ · f)(tH, s) =

∫
G
f(y)φ(ys−1tH)θ(y, s−1tH)θ(s−1, tH)dλG(y)

= (ρ(φ) · f)(tH, s).

□
The following theorem is proved with a similar argument as in [1,

Theorem 3.1].

Theorem 3.3. Let G be a locally compact group, H a compact sub-
group of G and E a closed, left L1(G)-submodule of L∞(G/H) such that
Cc(G/H) ⊂ E ⊂ Cb(G/H). If E is projective, then G/H is compact.

Proof. Suppose that G/H is not compact. Then clearly G is not
compact. So, there exists compact and symmetric neighborhoods V,W
of eG such that V 2 ⊂ W and there exists 0 ≤ f1 ≤ 1, f1 ∈ Cc(G) with
f1(eG) = 1, suppf1 ⊂ V and ∥f1∥1 ≤ 1. Then supp(f1 ⋆ f1) ⊂ V 2 ⊂ W ,
f1 ⋆ f1(eG) ̸= 0 and f1 ⋆ f1 ≥ 0. Set Tρ(f1) = f . Since f1 is continuous
and f1 ≥ 0, f1 · f = Tρ(f1 ⋆ f1) ̸= 0 and Tρ(f1 ⋆ f1) ∈ Cc(G/H). Set
A = L1(G). Because E is projective, there exists T ∈ AB(E,A♭) such
that T (f1 · f) ̸= 0 by [1, Proposition1.2].
Without loss of generality we may suppose that T (E) ⊂ A. Let n ∈ N
and F be a compact subset of G. Since G is not compact, there exist
s1, . . . , sn ∈ G such that siF ∩ sjF = ∅ for i ̸= j.

Set η = ∥f1⋆T (f)∥1
2 > 0 and pick k ∈ N with 1

k < η. There exists

g ∈ Cc(G) such that ∥T (f)− g∥1 <
1

k
, and so

∥f1 ⋆ (T (f)− g)∥1 ≤ ∥f1∥1∥T (f)− g∥1 ≤
1

k
< η.

Therefore, we have

∥f1 ⋆ g∥1 = ∥f1 ⋆ g − f1 ⋆ T (f) + f1 ⋆ T (f)∥1
≥ ∥f1 ⋆ T (f)∥1 − ∥f1 ⋆ g − f1 ⋆ T (f)∥1
> 2η − η = η.

Set K = supp(g) and observe that (K ∪ V )2 is compact. There exist
s1, . . . , sk ∈ G such that the sets si(K ∪ V )2 are pairwise disjoint for
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i = 1, . . . , k. Set f1j = sj ⋆ f1 = Lsjf . Then suppf1j ⊂ sjV , supp(f1j ⋆

f) ⊂ sjV.V and |
∑k

j=1 f1j |G = 1.

Therefore, ∥
∑k

1 f1j ⋆ g∥1 =
∑k

1

∫
sj(K∪V )2 |f1j ⋆ g| = k∥f1 ⋆ g∥1.

Now set λ =
∑k

j=1(f1j · f). Since sjV.V ∩ siV.V = ∅ for i ̸= j and
f1j ⋆ f1 ≥ 0, we have

|λ|G/H = sup
t∈G

|λ(tH)|

= sup
t∈G

|
k∑
1

Tρ(f1j ⋆ f1)(tH)|

= M |f1 ⋆ f1|G,

in which M = sup(1ρ) on ∪kj=1(sjV.V ). Since

∥f1j ⋆ (T (f)− g)∥1 ≤ ∥f1j∥1∥T (f)− g∥1 ≤
1

k
,

we have

∥T (λ)∥1 = ∥
k∑
1

f1j ⋆ T (f)∥1 ≥ ∥
k∑
1

f1j ⋆ g∥1 − 1 = k∥f1 ⋆ g∥1 − 1

≥ kη − 1.

Therefore,

kη − 1 ≤ ∥T (λ)∥1 ≤ ∥T∥|λ|G/H ≤ |f1 ⋆ f1|GM∥T∥.

This holds for any k ∈ N, which is a contradiction with boundedness of
T . □

Theorem 3.4. Let H be a compact subgroup of G and G/H be a compact
space. Then C(G/H) is projective as a left L1(G)-module.

Proof. Since H and G/H are compact, G is compact and so L1(G) is
biprojective. If C0(G : H) = {φ ∈ C0(G) : φ(xξ) = φ(x), x ∈ G, ξ ∈
H}, then C0(G : H) is a left L1(G)-module by the module action defined
by

f ·φ(x) = f⋆φ(x) =

∫
G
f(y)φ(y−1x)dλG(y), (f ∈ L1(G), φ ∈ C0(G : H)).
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Let (fα)α be a bounded approximate identity for L1(G). Then fα ·
φ = fα ⋆ φ −→ φ and so L1(G) · C0(G : H) = L1(G) ⋆ C0(G : H) =
C0(G : H). By [4, IV, Proposition 5.3] C0(G : H) is projective as a left
L1(G)-module. Since T∞ is an isometric isomorphism of C0(G : H) onto
C0(G/H) = C(G/H) as a left L1(G)-module, C(G/H) is projective.
□

Corollary 3.5. Let H be a compact subgroup of G. Then C0(G/H) is
projective as a left L1(G)-module (M(G)-module) if and only if G/H is
a compact space.

Remark 3.6. If G is a locally compact group, and if H is a compact
subgroup of G, then by Theorem 2.3, L∞(G/H) is an injective right
L1(G)-module. If G/H is finite, by Theorem 3.4 and the proof of [4, IV
Proposition1.7], L∞(G/H) is projective as a left L1(G/H)-module.

Let G be a locally compact group and H be a compact subgroup
of G. According to [7], we can define a norm decreasing linear map
T̃ : M(G) −→ M(G/H) by T̃m(E) = m(q−1(E)), where E is a Borel
subset of G/H, that satisfies∫

G/H
φ(xH)dT̃m(xH) =

∫
G
φ(xH)dm(x) (φ ∈ C0(G/H)).

Set M(G : H) = {m ∈ M(G) : m(Ah) = m(A), A ∈ BG , h ∈ H},
where BG is the σ-algebra of Borel sets. Then M(G : H) is a closed
left ideal of M(G) and T̃ : M(G : H) −→ M(G/H) is an isometric
isomorphism of Banach spaces ([2]).
For m ∈ M(G) and ν ∈ M(G/H) define a left M(G)-module action on
M(G/H) by

m · ν(φ) =
∫
G/H

∫
G
φ(yxH)dm(y)dν(xH) (φ ∈ C0(G/H).

Then M(G/H) is a left Banach L1(G)-module and T̃ (m1 ⋆ m2) = m1 ·
T̃ (m2) for all m1, m2 ∈ M(G). Also, if ω, ν ∈ M(G/H), then ω ⋆ ν =
T̃ (ωv ⋆ νv), where ωv, νv ∈ M(G : H) such that T̃ (ωv) = ω, T̃ (νv) =
ν. Moreover, M(G/H) with this convolution is a Banach algebra and
L1(G/H) is an ideal of M(G/H) (see [2] for more details).
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Remark 3.7. If G/H is discrete, then M(G/H) = ℓ1(G/H) is projec-
tive as a left L1(G)-module (M(G) module, L1(G/H)-module).

Lemma 3.8. Let G be a locally compact group and H be a compact
subgroup of G. Then M(G/H) is faithful and augmentation-invariant
as a left L1(G)-module.

Proof. Since M(G : H) is a submodule of the faithful Banach module
M(G) as a left L1(G)-module, M(G/H) is faithful. Since M(G) is
augmentation-invariant, there exists λ ∈ M(G)′ such that ⟨f ·m,λ⟩ =
φG(f)⟨m,λ⟩ for f ∈ L1(G) and m ∈ M(G). The map λ ◦ ι ◦ T̃−1 is an
element ofM(G/H)′ that satisfies definition of augmentation-invariance
for M(G/H), where ι :M(G : H) −→M(G) is the inclusion map. □

Theorem 3.9. Let G be a locally compact group and H be a compact
subgroup of G. The following conditions are equivalent.

(a) G is amenable;

(b) M(G/H) is injective as a left Banach L1(G)-module;

(c) L∞(G/H) is flat as a right Banach L1(G)-module;

(d) C0(G/H) is flat as a right Banach L1(G)-module.

Proof. According to Lemma 3.8, M(G/H) is augmentation-invariant
as a left Banach L1(G)-module, and also based on Remark 2.8, (L∞(G/H))′

is augmentation-invariant as a left Banach L1(G)-module. Therefore, ac-
cording to [6, Theorem 3.4.2], the implications (d) ⇔ (a) ⇔ (b) ⇔ (c)
follow. □
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