Journal of Mathematical Extension Vol. 16, No. 11, (2022) (5)1-16 URL: https://doi.org/10.30495/JME.2022.2192 ISSN: 1735-8299 Original Research Paper

Homological Properties of Banach Modules on Homogeneous Spaces

M. H. Sattari

Azarbaijan Shahid Madani University

V. Yousefiazar

Azarbaijan Shahid Madani University

Abstract. Let G be a locally compact group and H be a compact subgroup of G. The aim of this paper is to characterize some homological properties of $L^1(G/H)$, $C_0(G/H)$ and M(G/H) as left Banach $L^1(G)$ -modules such as flatness, injectivity and projectivity. Moreover, we study the projectivity of $C_0(G/H)$ and M(G/H) as Banach left $L^1(G/H)$ -modules and M(G)-modules.

AMS Subject Classification: 46H25; 43A85 **Keywords and Phrases:** Banach module, homogeneous spaces, flatness, injectivity, locally compact group, projectivity.

1 Introduction

Homological properties of certain left Banach $L^1(G)$ -modules have been studied by Dales and Polyakov in 2004 [1], and in 2008 some of those results were investigated by Ramsden for semigroup algebras [6]. However, homological properties of left Banach $L^1(G)$ -modules constructed on homogeneous spaces have not been investigated so far.

Received: October 2021; Accepted: March 2022

Throughout this paper, we assume that G is a locally compact group and H is a closed subgroup of G with left Haar measures λ_G and λ_H , respectively. Also, Δ_G and Δ_H are the modular functions of G and H, respectively. Let $q: G \longrightarrow G/H$ be the natural quotient map. Consider the G-space G/H as a homogeneous space that G acts on by x(yH) = (xy)H. Let μ be a Radon measure on G/H. For $x \in G$, μ_x is defined by $\mu_x(E) = \mu(xE)$, where $E \subset G/H$ is a Borel set. The measure μ is said to be G-invariant, if $\mu_x = \mu$ for all $x \in G$. The Radon measure μ is said to be strongly quasi-invariant if there is a continuous function $\theta: G \times G/H \longrightarrow (0, \infty)$ such that $d\mu_x(yH) = \theta(x, yH)d\mu(yH)$ for any $x, y \in G$. A continuous function $\rho: G \longrightarrow (0, \infty)$ is called rho-function for the pair (G, H), when $\rho(x\xi) = (\frac{\Delta_H(\xi)}{\Delta_G(\xi)})\rho(x)$ for any $x \in G, \xi \in H$. For every rho-function ρ there exits a strongly quasi-invariant measure μ on G/H such that the Weil's formula holds:

$$\int_{G} f(x)\rho(x)d\lambda_{G}(x) = \int_{G/H} \int_{H} f(x\xi)d\lambda_{H}(\xi)d\mu(xH) \quad (f \in C_{c}(G)).$$

Furthermore, the measure μ satisfies $\frac{d\mu_x}{d\mu}(yH) = \frac{\rho(xy)}{\rho(x)}$ for any $x, y \in G$. The map $T_{\rho}: L^1(G) \longrightarrow L^1(G/H)$ was defined by Tavallei and et al. in [5] by

$$T_{\rho}f(xH) = \int_{H} \frac{f(x\xi)}{\rho(x\xi)} d\lambda_{H}(\xi) \quad (xH \in G/H, \xi \in H),$$

where μ is a strongly quasi-invariant measure on G/H which arises from a rho-function ρ and $L^1(G/H) = L^1(G/H, \mu)$. The map T_{ρ} is a linear, bounded and surjective map with $||T_{\rho}|| \leq 1$ and $\int_{G/H} T_{\rho}f(xH)d\mu(xH) = \int_G f(x)d\lambda_G(x)$ for all $f \in L^1(G)$. Moreover, for every $\varphi \in L^1(G/H)$,

$$\|\varphi\|_{1} = \inf\{\|f\|_{1} : f \in L^{1}(G), \varphi = T_{\rho}f\}.$$
(1)

It turns out that the Banach space $L^1(G/H)$ isometrically isomorphic to the quotient space $\frac{L^1(G)}{Ker(T_{\rho})}$ equipped with the usual quotient norm. For a compact subgroup H of G, define

$$L^{1}(G:H) = \{ f \in L^{1}(G) : R_{\xi}f = f, \xi \in H \}.$$

Then $L^1(G:H)$ is a left ideal of $L^1(G)$, and $L^1(G/H)$ is isometrically isomorphic to $L^1(G:H)$. Thus $L^1(G/H)$ is a Banach algebra. It was shown in [5] that

$$L^{1}(G:H) = \{\psi \circ q : \psi \in L^{1}(G/H)\}.$$
(2)

For more details see [5].

Lemma 1.1. Let H be a closed subgroup of G. Then ker T_{ρ} is a left ideal of $L^{1}(G)$.

Proof. Let $f \in L^1(G)$ and $g \in \ker T_{\rho}$. Then one has

$$f \cdot g(xH) = T_{\rho}(f \star g)(xH) = \int_{G} f(y) \int_{H} \frac{g(y^{-1}x\xi)}{\rho(x)\frac{\Delta_{H}(\xi)}{\Delta_{G}(\xi)}} d\lambda_{H}(\xi) d\lambda_{G}(x) = 0.$$

Since $T_{\rho}(g)(y^{-1}xH) = 0$, we have $\int_{H} \frac{g(y^{-1}x\xi)}{\frac{\Delta_{H}(\xi)}{\Delta_{G}(\xi)}} d\lambda_{H}(\xi) = 0$. Thus $f \star g \in \ker T_{\rho}$. \Box

Lemma 1.2. Let G be a locally compact group and H be a closed subgroup of G. Then $L^1(G/H)$ is a left $L^1(G)$ -module.

Proof. For $\varphi \in L^1(G/H)$ there is $g_{\varphi} \in L^1(G)$ such that $T_{\rho}(g_{\varphi}) = \varphi$. Define a left module action of $L^1(G)$ on $L^1(G/H)$ by

$$f \cdot \varphi = T_{\rho}(f \star g_{\varphi}), \quad (f \in L^1(G)).$$

Then

$$\begin{split} \|f \cdot \varphi\|_{L^1(G/H)} &\leq \int_{G/H} \int_H |\frac{f \star g_{\varphi}(x\xi)}{\rho(x\xi)}| d\lambda_H(\xi) d\mu(xH) \\ &= \int_G |f \star g_{\varphi}| d\lambda_G \leq \|f\|_1 \|g_{\varphi}\|_1 < \infty. \end{split}$$

From equality (2) we have $||f \cdot \varphi||_{L^1(G/H)} \leq ||f||_1 ||\varphi||_{L^1(G/H)}$. It can be easily seen that this operation, converts $L^1(G/H)$ to a left Banach $L^1(G)$ -module and $L^1(G/H)$ is essential as a left $L^1(G)$ -module. \Box

We conclude this section with some examples of homogeneous spaces.

Example 1.3. Let $M_n(\mathbb{C})$ be the space of $n \times n$ matrices,

$$G = GL_n(\mathbb{C}) := \{ T \in M_n(\mathbb{C}) : \det T \neq 0 \},\$$

and

$$H = U(n) := \{T \in M_n(\mathbb{C}) : T^*T = I\}.$$

Then H is a compact subgroup of G and

$$SU(n) = \{T \in U(n) : \det T = 1\},\$$

is a compact subgroup of U(n).

Example 1.4. : Let $G = \{f : \mathbb{N} \longrightarrow \mathbb{N} | f \text{ is a bijection}\}$ with discrete topology and $H_k = \{f \in G | f(n) = n, n > k\}$. Obviously G is a group under composition of functions and H_k is a subgroup of G. Then H_k (the symmetric group) is a finite subgroup of G.

2 The Module $L^1(G/H)$

Let E and F be two Banach spaces and B(E, F) denote the space of all bounded linear operators from E to F. The dual space $B(E, \mathbb{C})$ of E is denoted by E'. We write B(E) in place of B(E, E). An operator $T \in$ B(E, F) is called admissible if there exists an operator $S \in B(F, E)$ such that $T \circ S \circ T = T$. Let A be a Banach algebra and E, F be left Banach A-modules. The linear space of all left A-module morphisms is denoted by $_AB(E,F)$. An operator $T \in _AB(E,F)$ is called a retraction if there exists an operator $S \in {}_{A}B(F, E)$ such that $T \circ S = I_{F}$. A left Banach A-module P is called projective if for every admissible epimorphism $T \in {}_{A}B(E,F)$ and any $S \in {}_{A}B(P,F)$, there exists $R \in {}_{A}B(P,E)$ such that $T \circ R = S$. A left Banach A-module J is called injective if for every admissible monomorphism $T \in {}_{A}B(E,F)$ and any $S \in {}_{A}B(E,J)$ there exists $R \in {}_{A}B(F, J)$ such that $R \circ T = S$. If a left (right) Banach A-module E is projective, then the right (left) Banach A-module E' is injective. Finally, let us recall that if E is a Banach left A-module, then E' is a right Banach A-module under the dual module action defined by

$$\langle x,\lambda\cdot a\rangle=\langle a\cdot x,\lambda\rangle$$

for $\lambda \in E'$, $x \in E$ and $a \in A$.

A left (right) Banach A-module E is called flat if E' is injective as a right (left) A-module. For two Banach spaces E and F, we denote by $E \hat{\otimes} F$ their projective tensor product. The projective tensor norm on $E \hat{\otimes} F$ is denoted by $\|.\|_{\pi}$, where

$$||u||_{\pi} = \inf\{\sum_{1}^{\infty} ||x_n|| ||y_n|| : u = \sum_{1}^{\infty} x_n \otimes y_n, (x_n \in X, y_n \in Y)\}$$

Let A be a Banach algebra, E a Banach A-bimodule and F a left Banach A-module. Then $E \otimes F$ becomes a left A-module with the following module action:

$$a \cdot (x \otimes y) = (a \cdot x) \otimes y \quad (a \in A, x \in X, y \in Y).$$

For a Banach algebra A we denote by A^{\flat} the Banach algebra formed by adjoining an identity to A. The morphism $\Pi \in {}_{A}B(A^{\flat}\hat{\otimes}E, E)$ is defined by

$$\Pi(a \otimes x) = a \cdot x \qquad (a \in A^{\flat}, x \in E).$$

We shall use the following theorem from [4, IV.1.1, IV.1.2].

Theorem 2.1. Let A be a Banach algebra and E be a left A-module. Then E is projective if and only if the morphism $\Pi \in {}_{A}B(A^{\flat}\hat{\otimes}E, E)$ is a retraction. In the case that E is essential, E is projective if and only if the morphism $\Pi \in {}_{A}B(A\hat{\otimes}E, E)$ is a retraction.

Remark 2.2. It is well known that $L^1(G)\hat{\otimes}L^1(G/H)$ is a left $L^1(G)$ -module. If $f, f_1 \in L^1(G), \varphi \in L^1(G/H)$, then for $F = f_1 \otimes \varphi \in L^1(G \times G/H)$ we have

$$f \cdot F(x, zH) = (f \star f_1)(x)\varphi(zH)$$

=
$$\int_G f(y)(f_1 \otimes \varphi)(y^{-1}x, zH)d\lambda_G(y)$$

=
$$\int_G f(y)F(y^{-1}x, zH)d\lambda_G(y) \quad (x, z \in G).$$

Thus this formula holds for any $F \in L^1(G \times G/H)$.

Theorem 2.3. Let H be a compact subgroup of G, and let μ be the G-invariant measure on G/H arising from the constant rho-function $\rho = 1$. Then $L^1(G/H, \mu)$ is projective as a left $L^1(G)$ -module (M(G)-module), and hence flat as a left $L^1(G)$ -module (M(G)-module).

Proof. Let

$$\Pi: L^1(G) \hat{\otimes} L^1(G/H) \longrightarrow L^1(G/H), \quad f \otimes \varphi \mapsto f \cdot \varphi,$$

where

$$f \cdot \varphi(xH) = \int_G f(y)\varphi(y^{-1}xH)d\lambda_G(y).$$

Let also E be a compact symmetric subset of G such that $\lambda_G(HE) > 0$. We can choose a Haar measure on G such that $\lambda_G(HE) = 1$. If $K = q(E) \subset G/H$, then K is compact. Define

$$\rho: L^1(G/H) \longrightarrow L^1(G) \hat{\otimes} L^1(G/H) = L^1(G \times G/H),$$

by

$$\rho(\varphi)(s,tH) = \chi_K(tH)\varphi(stH).$$

Then

$$\begin{split} \|\rho(\varphi)\|_{1} &= \int_{G} \int_{G/H} |\chi_{K}(tH)\varphi(stH)| d\lambda_{G}(s)d\mu(tH) \\ &= \int_{G} \int_{G/H} |\chi_{K}(zH)\varphi(tH)| d\lambda_{G}(s)d\mu(tH) \quad (z = \xi s^{-1}t, \xi \in H) \\ &= \lambda_{G}(HE) \int_{G/H} |\varphi(tH)| d\mu(tH) < \infty. \end{split}$$

Moreover, for $g \in L^1(G/H)$ and $x \in G$ we have

$$\Pi(\rho(\varphi))(xH) = \int_{G} \rho(\varphi)(y, y^{-1}xH) d\lambda_{G}(y)$$
$$= \varphi(xH) \int_{G} \chi_{K}(y^{-1}H) d\lambda_{G}(y) = \varphi(xH)\lambda_{G}(HE) = \varphi(xH).$$

Let $f \in L^1(G)$, $\varphi \in L^1(G/H)$ and $s, t \in G$. Then

$$\rho(f \cdot \varphi)(s, tH) = \chi_K(tH) \int_G f(y)\varphi(y^{-1}stH)d\lambda_G(y)$$

= $f \cdot \rho(\varphi)(s, tH).$

Since $L^1(G/H)$ is unital as a left Banach M(G)-module, the result follows by Theorem 2.1 and [6, Theorem 3.1.1]. \Box

Lemma 2.4. Let G be a locally compact group, H a closed subgroup of G and μ_1 , μ_2 two strongly quasi-invariant measures on G/H that they arising from rho-functions ρ_1 , ρ_2 , respectively. Then $L^1(G/H, \mu_1)$ is isometrically isomorphic to $L^1(G/H, \mu_2)$ as left Banach $L^1(G)$ -modules.

Proof. Let $\eta : G/H \longrightarrow (0, \infty)$ be defined by $\eta(xH) = \frac{\rho_1(x)}{\rho_2(x)}$. Then according to [3, Theorem 2.59], $d\mu_1 = \eta d\mu_2$. Thus the mapping

$$T: L^1(G/H, \mu_1) \longrightarrow L^1(G/H, \mu_2), \quad \varphi \mapsto \eta \varphi.$$

is well defined and $\int_{G/H} |\varphi| d\mu_1 = \int_{G/H} |\varphi| \eta d\mu_2 = \int_{G/H} |T(\varphi)| d\mu_2 < \infty$. Moreover, if $\varphi \in L^1(G/H, \mu_2)$, then $T(\frac{1}{\eta}\varphi) = \varphi$. Therefore, T is a surjective linear isometry. For $\varphi \in L^1(G/H, \mu_1)$ there exists $g_{\varphi} \in L^1(G)$ such that $T_{\rho_1}(g_{\varphi}) = \varphi$ and thus $T_{\rho_1}(g_{\varphi}) = \frac{1}{\eta}T_{\rho_2}(g_{\varphi})$. Finally for $f \in L^1(G)$, $\varphi \in L^1(G/H, \mu_1)$ we have

$$T(f \cdot \varphi) = T(T_{\rho_1}(f \star g_{\varphi})) = T(\frac{1}{\eta}T_{\rho_2}(f \star g_{\varphi}))$$
$$= f \cdot T_{\rho_2}(g_{\varphi})$$
$$= f \cdot T(\varphi).$$

Corollary 2.5. Let G, H, μ_1 and μ_2 be as in Lemma 2.4. If $L^1(G/H, \mu_1)$ is projective as a left $L^1(G)$ -module, then $L^1(G/H, \mu_2)$ is projective as a left $L^1(G)$ -module too.

Corollary 2.6. Let H be a compact subgroup of G. Then $L^1(G/H)$ is projective as a left Banach $L^1(G/H)$ -module.

Proof. Since $L^1(G/H)$ is an $L^1(G/H)$ -bimodule and T_{ρ} is a surjective left $L^1(G)$ -module morphism, the result follows by Theorem 2.3 and the proof of [4, IV Proposition1.7]. \Box

Definition 2.7. Let G be a locally compact group, E a left Banach $L^1(G)$ -module and φ_G the augmentation character defined by $\varphi_G(f) = \int_G f d\lambda_G$. Then E is termed augmentation-invariant, if there exists a non-zero $\lambda \in E'$ such that

$$\langle f \cdot x, \lambda \rangle = \varphi_G(f) \langle x, \lambda \rangle \quad (f \in L^1(G), x \in E).$$

Remark 2.8. Let E be a left Banach $L^1(G)$ -module. If E is augmentation-invariant, then E'' will also be augmentation-invariant.

Let $\lambda \in E'$. Then $\langle f \cdot x, \lambda \rangle = \varphi_G(f) \langle x, \lambda \rangle$ for $f \in L^1(G), x \in E$. For each $\varphi \in E''$ there exists $(x_\alpha)_\alpha \in E$ such that $x_\alpha \longrightarrow \varphi$ in $\sigma(E'', E')$ -topology. So, if $f \in L^1(G)$ and $\varphi \in E''$, we have

$$\begin{aligned} \langle f \cdot \varphi, \lambda \rangle &= \langle \varphi, \lambda \cdot f \rangle = \lim_{\alpha} \langle x_{\alpha}, \lambda \cdot f \rangle = \lim_{\alpha} \langle f \cdot x_{\alpha}, \lambda \rangle \\ &= \lim_{\alpha} \varphi_G(f) \langle x_{\alpha}, \lambda \rangle = \varphi_G(f) \langle \varphi, \lambda \rangle. \end{aligned}$$

Lemma 2.9. Let E and F be left Banach $L^1(G)$ -modules and $T \in L^1(G)B(E,F)$ be an isometric isomorphism of Banach space. If E is augmentation-invariant, then F is augmentation-invariant as well.

Proof. Let $\lambda \in E'$ such that,

$$\langle f \cdot x, \lambda \rangle = \varphi_G(f) \langle x, \lambda \rangle \quad (f \in L^1(G), x \in E)$$

Since $\lambda \circ T^{-1} \in F'$, for any $y \in F$ we have

$$\langle f \cdot y, \lambda \circ T^{-1} \rangle = \lambda \circ T^{-1}(f \cdot y) = \lambda(f(T^{-1}(y))) = \varphi_G(f) \langle y, \lambda \circ T^{-1} \rangle.$$

Corollary 2.10. Let H be a closed subgroup of G. Then the left $L^1(G)$ -module $L^1(G/H)$ is augmentation-invariant.

Proof. For $f \in \ker T_{\rho}$ we have

$$0 = \int_{G/H} T_{\rho} f(xH) d\mu(xH) = \int_{G} f(x) d\lambda_{G}(x) = \varphi_{G}(f).$$

Let $\lambda : L^1(G) / \ker T_\rho \longrightarrow \mathbb{C}$ by $\lambda(f + \ker T_\rho) = \varphi_G(f)$. Then

$$\lambda(f \cdot (g + \ker T_{\rho})) = \varphi_G(f)\lambda(g + \ker T_{\rho}).$$

Thus $L^1(G)/\ker T_{\rho}$ is augmentation-invariant as a left $L^1(G)$ -module, and so $L^1(G/H)$ is augmentation-invariant by Lemma 2.9.

Definition 2.11. Let A be an algebra, and E be a left A-module. Then E is said to be faithful if for each $x \in E \setminus \{0\}$ there exists $a \in A$ such that $a \cdot x \neq 0$

Lemma 2.12. Let E and F be left Banach A-modules and $T : E \longrightarrow F$ be an isomorphism of left Banach A-modules. If E is faithful, then F is also faithful.

Lemma 2.13. The Banach space $L^1(G)/\ker T_{\rho}$ is faithful as a left $L^1(G)$ -module. Consequently, $L^1(G/H)$ is faithful as a left $L^1(G)$ -module.

Proof. Let $g + \ker T_{\rho} \neq 0$ and let $\{f_v\}_v$ be a bounded approximate identity for $L^1(G)$. Since $f_v \star g + \ker T_{\rho} \longrightarrow g + \ker T_{\rho} \neq 0$, there exists v such that $f_v \star g + \ker T_{\rho} \neq 0$. \Box

Remark 2.14. Since $L^1(G/H)$ is a left Banach $L^1(G)$ -module, $L^{\infty}(G/H, \mu) = L^1(G/H, \mu)'$ and $C_0(G/H)$ become right Banach $L^1(G)$ -modules. For $\psi \in C_0(G/H)$ and $f \in L^1(G)$ consider $g_{\varphi} \in L^1(G)$ with $T_{\rho}(g_{\varphi}) = \varphi$. Then

$$\begin{split} \langle \varphi, \psi \cdot f \rangle &= \langle f \cdot \varphi, \psi \rangle \\ &= \int_{G/H} f \cdot \varphi(xH) \psi(xH) d\mu(xH) \\ &= \int_G \int_{G/H} \int_H \frac{f(y)g_{\varphi}(y^{-1}x\xi)}{\rho(x\xi)} \psi(xH) \frac{\rho(y^{-1}x\xi)}{\rho(y^{-1}x\xi)} d\lambda_H(\xi) d\lambda_G(y) d\mu(xH) \\ &= \int_{G/H} \int_G f(y) \psi(xH) \varphi(y^{-1}xH) \theta(y^{-1}, xH) d\lambda_G(y) d\mu(xH) \\ &= \int_{G/H} \int_G f(y) \psi(yxH) \varphi(xH) d\lambda_G(y) d\mu(xH). \end{split}$$

Thus $\psi \cdot f(xH) = \int_G f(y) R_x(\psi \circ q)(y) d\lambda_G(y)$ and so $\psi \cdot f \in C_0(G/H)$.

Theorem 2.15. Let G/H be a discrete space. Then $\ell^1(G/H)$ is injective as a left Banach $L^1(G)$ -module if and if G is amenable.

Proof. According to Lemma 2.13, Corollary 2.10 and Remark 2.14, the result is obtained by [1, Proposition 4.6].

3 The Modules $C_0(G/H)$ and $L^{\infty}(G/H)$

Let G be a locally compact group and H be a compact subgroup of G with a normalized Haar measure. The surjective linear map T_{∞} : $L^{\infty}(G) \longrightarrow L^{\infty}(G/H)$ with $T_{\infty}f(xH) = \int_{H} f(x\xi)d\lambda_{H}(\xi)$ for $x \in G$ and $f \in L^{\infty}(G)$ was defined in [5]. It has been proved that $||T_{\infty}|| \leq 1$ and $T_{\infty}(C_{c}(G)) \subset C_{c}(G/H)$ [5, Theorem 3.4] and [3, Proposition 2.48]. Moreover, for $\varphi \in L^{\infty}(G/H)$,

$$\|\varphi\|_{\infty} = \inf\{\|f\|_{\infty} : f \in L^{\infty}(G), \varphi = T_{\infty}(f)\}.$$

Let $L^{\infty}(G:H) = \{f \in L^{\infty}(G) : R_{\xi}f = f, \xi \in H\}$. Then the restriction of T_{∞} on $L^{\infty}(G:H)$ is an isometric isomorphism. The left module action of $L^{1}(G)$ on $L^{\infty}(G/H)$ is defined by

$$f \cdot \varphi = T_{\infty}(f \star g) \quad (\varphi \in L^{\infty}(G/H), f \in L^{1}(G), g \in L^{\infty}(G)),$$

where $T_{\infty}(g) = \varphi$. The space $C_0(G/H)$ is a closed $L^1(G)$ -submodule of the left Banach $L^1(G)$ -module $L^{\infty}(G/H)$, and $C_0(G/H)$ is essential.

Remark 3.1. Since $L^{\infty}(G/H)$ is a left $L^{1}(G)$ -module, $L^{\infty}(G/H)'$ will be a right $L^{1}(G)$ -module. We show that $L^{1}(G/H)$ is also a right $L^{1}(G)$ -module.

For $f \in L^1(G)$, $\varphi \in L^1(G/H)$, $\psi \in L^{\infty}(G/H)$ and $g_{\psi} \in L^{\infty}(G)$ such that $T_{\infty}(g_{\psi}) = \psi$ we have

$$\begin{aligned} \langle \psi, \varphi \cdot f \rangle &= \langle f \cdot \psi, \varphi \rangle \\ &= \int_{G/H} \int_H \int_G f(y) g_{\psi}(y^{-1}x\xi) \varphi(xH) d\lambda_H(\xi) d\mu(xH) d\lambda_G(y) \\ &= \int_{G/H} \int_G f(y) \psi(xH) \varphi(yxH) \theta(y,xH) d\lambda_G(y) d\mu(xH). \end{aligned}$$

Thus $\varphi \cdot f(xH) = \int_G f(y)\varphi(yxH)\theta(y,xH)d\lambda_G(y)$, and so $\varphi \cdot f \in L^1(G/H)$. Furthermore,

$$\begin{aligned} \|\varphi \cdot f\|_{1} &\leq \int_{G/H} \int_{G} |f(y)| |\varphi(yxH)| \theta(y,xH) d\lambda_{G}(y) d\mu(xH) \\ &= \int_{G/H} \int_{G} |f(y)| |\varphi(xH)| \theta(y^{-1},xH) \theta(y,y^{-1}xH) d\lambda_{G}(y) d\mu(xH) \\ &= \|f\|_{1} \|\varphi\|_{1}. \end{aligned}$$

It is known that $L^1(G/H \times G) \cong L^1(G/H) \hat{\otimes} L^1(G)$ is a right $L^1(G)$ -module. Indeed, for $F \in L^1(G/H \times G)$ and $f \in L^1(G)$,

$$F.f(tH,s) = \int_G F(tH,sy^{-1})f(y)\Delta_G(y^{-1})d\lambda_G(y).$$

Notice if G is compact and $\rho = 1$, $L^1(G/H)$ is essential as a right $L^1(G)$ -module.

Theorem 3.2. Let G be a compact group and H be a closed subgroup of G. Then $L^1(G/H)$ is projective as a right $L^1(G)$ -module and flat as a right $L^1(G)$ -module.

Proof. Let $\Pi: L^1(G/H) \hat{\otimes} L^1(G) \longrightarrow L^1(G/H)$ be given by

$$\Pi(\varphi \otimes f) = \varphi \cdot f \quad (\varphi \in L^1(G/H), f \in L^1(G)),$$

where

$$\varphi \cdot f(xH) = \int_G f(y)\varphi(yxH)\theta(y,xH)d\lambda_G(y).$$

Define $\rho: L^1(G/H) \longrightarrow L^1(G/H) \hat{\otimes} L^1(G) \cong L^1(G/H \times G)$ by

$$\rho(\varphi)(tH,s)) = \varphi(s^{-1}tH)\theta(s^{-1},tH).$$

Then

$$\Pi(\rho)(\varphi)(xH) = \int_{G} \varphi(xH)\theta(y^{-1}, yxH)\theta(y, xH)d\lambda_{G}(y)$$
$$= \lambda_{G}(G)\varphi(xH) = \varphi(xH),$$

and

$$\rho(\varphi \cdot f)(tH,s) = \int_{G} f(y)\varphi(ys^{-1}tH)\theta(y,s^{-1}tH)\theta(s^{-1},tH)d\lambda_{G(y)}$$
$$= (\rho(\varphi) \cdot f)(tH,s).$$

The following theorem is proved with a similar argument as in [1, Theorem 3.1].

Theorem 3.3. Let G be a locally compact group, H a compact subgroup of G and E a closed, left $L^1(G)$ -submodule of $L^{\infty}(G/H)$ such that $C_c(G/H) \subset E \subset C^b(G/H)$. If E is projective, then G/H is compact.

Proof. Suppose that G/H is not compact. Then clearly G is not compact. So, there exists compact and symmetric neighborhoods V, W of e_G such that $V^2 \subset W$ and there exists $0 \leq f_1 \leq 1, f_1 \in C_c(G)$ with $f_1(e_G) = 1$, $\operatorname{supp} f_1 \subset V$ and $||f_1||_1 \leq 1$. Then $\operatorname{supp}(f_1 \star f_1) \subset V^2 \subset W$, $f_1 \star f_1(e_G) \neq 0$ and $f_1 \star f_1 \geq 0$. Set $T_\rho(f_1) = f$. Since f_1 is continuous and $f_1 \geq 0, f_1 \cdot f = T_\rho(f_1 \star f_1) \neq 0$ and $T_\rho(f_1 \star f_1) \in C_c(G/H)$. Set $A = L^1(G)$. Because E is projective, there exists $T \in AB(E, A^{\flat})$ such that $T(f_1 \cdot f) \neq 0$ by [1, Proposition1.2].

Without loss of generality we may suppose that $T(E) \subset A$. Let $n \in \mathbb{N}$ and F be a compact subset of G. Since G is not compact, there exist $s_1, \ldots, s_n \in G$ such that $s_i F \cap s_j F = \emptyset$ for $i \neq j$.

Set $\eta = \frac{\|f_1 \star T(f)\|_1}{2} > 0$ and pick $k \in \mathbb{N}$ with $\frac{1}{k} < \eta$. There exists $g \in C_c(G)$ such that $\|T(f) - g\|_1 < \frac{1}{k}$, and so

$$||f_1 \star (T(f) - g)||_1 \le ||f_1||_1 ||T(f) - g||_1 \le \frac{1}{k} < \eta.$$

Therefore, we have

$$\|f_1 \star g\|_1 = \|f_1 \star g - f_1 \star T(f) + f_1 \star T(f)\|_1 \geq \|f_1 \star T(f)\|_1 - \|f_1 \star g - f_1 \star T(f)\|_1 > 2\eta - \eta = \eta.$$

Set K = supp(g) and observe that $(K \cup V)^2$ is compact. There exist $s_1, \ldots, s_k \in G$ such that the sets $s_i(K \cup V)^2$ are pairwise disjoint for

 $i = 1, \ldots, k$. Set $f_{1j} = s_j \star f_1 = L_{s_j} f$. Then $\operatorname{supp} f_{1j} \subset s_j V$, $\operatorname{supp} (f_{1j} \star f) \subset s_j V.V$ and $|\sum_{j=1}^k f_{1j}|_G = 1$. Therefore, $\|\sum_1^k f_{1j} \star g\|_1 = \sum_1^k \int_{s_j(K \cup V)^2} |f_{1j} \star g| = k \|f_1 \star g\|_1$. Now set $\lambda = \sum_{j=1}^k (f_{1j} \cdot f)$. Since $s_j V.V \cap s_i V.V = \emptyset$ for $i \neq j$ and $f_{1j} \star f_1 \geq 0$, we have

$$\begin{aligned} \lambda|_{G/H} &= \sup_{t \in G} |\lambda(tH)| \\ &= \sup_{t \in G} |\sum_{1}^{k} T_{\rho}(f_{1j} \star f_{1})(tH)| \\ &= M|f_{1} \star f_{1}|_{G}, \end{aligned}$$

in which $M = \sup(\frac{1}{\rho})$ on $\bigcup_{j=1}^{k} (s_j V.V)$. Since

$$||f_{1j} \star (T(f) - g)||_1 \le ||f_{1j}||_1 ||T(f) - g||_1 \le \frac{1}{k},$$

we have

$$||T(\lambda)||_1 = ||\sum_{1}^{k} f_{1j} \star T(f)||_1 \ge ||\sum_{1}^{k} f_{1j} \star g||_1 - 1 = k||f_1 \star g||_1 - 1$$
$$\ge k\eta - 1.$$

Therefore,

$$k\eta - 1 \le ||T(\lambda)||_1 \le ||T|| |\lambda|_{G/H} \le |f_1 \star f_1|_G M ||T||$$

This holds for any $k \in \mathbb{N}$, which is a contradiction with boundedness of T. \Box

Theorem 3.4. Let H be a compact subgroup of G and G/H be a compact space. Then C(G/H) is projective as a left $L^1(G)$ -module.

Proof. Since H and G/H are compact, G is compact and so $L^1(G)$ is biprojective. If $C_0(G : H) = \{\varphi \in C_0(G) : \varphi(x\xi) = \varphi(x), x \in G, \xi \in H\}$, then $C_0(G : H)$ is a left $L^1(G)$ -module by the module action defined by

$$f \cdot \varphi(x) = f \star \varphi(x) = \int_G f(y) \varphi(y^{-1}x) d\lambda_G(y), \ (f \in L^1(G), \varphi \in C_0(G : H)).$$

Let $(f_{\alpha})_{\alpha}$ be a bounded approximate identity for $L^{1}(G)$. Then $f_{\alpha} \cdot \varphi = f_{\alpha} \star \varphi \longrightarrow \varphi$ and so $L^{1}(G) \cdot C_{0}(G:H) = L^{1}(G) \star C_{0}(G:H) = C_{0}(G:H)$. By [4, IV, Proposition 5.3] $C_{0}(G:H)$ is projective as a left $L^{1}(G)$ -module. Since T_{∞} is an isometric isomorphism of $C_{0}(G:H)$ onto $C_{0}(G/H) = C(G/H)$ as a left $L^{1}(G)$ -module, C(G/H) is projective. \Box

Corollary 3.5. Let H be a compact subgroup of G. Then $C_0(G/H)$ is projective as a left $L^1(G)$ -module (M(G)-module) if and only if G/H is a compact space.

Remark 3.6. If G is a locally compact group, and if H is a compact subgroup of G, then by Theorem 2.3, $L^{\infty}(G/H)$ is an injective right $L^{1}(G)$ -module. If G/H is finite, by Theorem 3.4 and the proof of [4, IV Proposition1.7], $L^{\infty}(G/H)$ is projective as a left $L^{1}(G/H)$ -module.

Let G be a locally compact group and H be a compact subgroup of G. According to [7], we can define a norm decreasing linear map $\tilde{T}: M(G) \longrightarrow M(G/H)$ by $\tilde{T}m(E) = m(q^{-1}(E))$, where E is a Borel subset of G/H, that satisfies

$$\int_{G/H} \varphi(xH) d\tilde{T}m(xH) = \int_{G} \varphi(xH) dm(x) \quad (\varphi \in C_0(G/H)).$$

Set $M(G : H) = \{m \in M(G) : m(Ah) = m(A), A \in B_G, h \in H\}$, where B_G is the σ -algebra of Borel sets. Then M(G : H) is a closed left ideal of M(G) and $\tilde{T} : M(G : H) \longrightarrow M(G/H)$ is an isometric isomorphism of Banach spaces ([2]).

For $m \in M(G)$ and $\nu \in M(G/H)$ define a left M(G)-module action on M(G/H) by

$$m \cdot \nu(\varphi) = \int_{G/H} \int_{G} \varphi(yxH) dm(y) d\nu(xH) \quad (\varphi \in C_0(G/H).$$

Then M(G/H) is a left Banach $L^1(G)$ -module and $\tilde{T}(m_1 \star m_2) = m_1 \cdot \tilde{T}(m_2)$ for all $m_1, m_2 \in M(G)$. Also, if $\omega, \nu \in M(G/H)$, then $\omega \star \nu = \tilde{T}(\omega_v \star \nu_v)$, where $\omega_v, \nu_v \in M(G : H)$ such that $\tilde{T}(\omega_v) = \omega$, $\tilde{T}(\nu_v) = \nu$. Moreover, M(G/H) with this convolution is a Banach algebra and $L^1(G/H)$ is an ideal of M(G/H) (see [2] for more details).

15

Remark 3.7. If G/H is discrete, then $M(G/H) = \ell^1(G/H)$ is projective as a left $L^1(G)$ -module $(M(G) \text{ module}, L^1(G/H)\text{-module})$.

Lemma 3.8. Let G be a locally compact group and H be a compact subgroup of G. Then M(G/H) is faithful and augmentation-invariant as a left $L^1(G)$ -module.

Proof. Since M(G:H) is a submodule of the faithful Banach module M(G) as a left $L^1(G)$ -module, M(G/H) is faithful. Since M(G) is augmentation-invariant, there exists $\lambda \in M(G)'$ such that $\langle f \cdot m, \lambda \rangle = \varphi_G(f)\langle m, \lambda \rangle$ for $f \in L^1(G)$ and $m \in M(G)$. The map $\lambda \circ \iota \circ \tilde{T}^{-1}$ is an element of M(G/H)' that satisfies definition of augmentation-invariance for M(G/H), where $\iota : M(G:H) \longrightarrow M(G)$ is the inclusion map. \Box

Theorem 3.9. Let G be a locally compact group and H be a compact subgroup of G. The following conditions are equivalent.

- (a) G is amenable;
- (b) M(G/H) is injective as a left Banach $L^1(G)$ -module;
- (c) $L^{\infty}(G/H)$ is flat as a right Banach $L^{1}(G)$ -module;
- (d) $C_0(G/H)$ is flat as a right Banach $L^1(G)$ -module.

Proof. According to Lemma 3.8, M(G/H) is augmentation-invariant as a left Banach $L^1(G)$ -module, and also based on Remark 2.8, $(L^{\infty}(G/H))'$ is augmentation-invariant as a left Banach $L^1(G)$ -module. Therefore, according to [6, Theorem 3.4.2], the implications $(d) \Leftrightarrow (a) \Leftrightarrow (b) \Leftrightarrow (c)$ follow. \Box

Acknowledgements

The authors express their sincere thanks to the reviewer for the careful reading of the manuscript and very helpful suggestions that improved the manuscript.

References

 H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, *Proc. London Math. Soc.* 89 (2) (2004), 390-426.

- [2] T. Derikvand, R. A. Kamyabi-Gol, M. Janfada, Banach algebra of complex Radon measures on homogeneous space, *Iran. J. Sci. Technol. Trans. Sci.* 44 (2020), 1429-1437.
- [3] G. B. Folland, A Course In Abstract Harmonic Analysis. CRC Press, Boca Raton (1995).
- [4] A. YA. Helemskii, The Homology Of Banach And Topological Algebras, Kluwer Academic (1989).
- [5] B. Olfatian Gillan, M. Ramezanpour and N. Tavallaei , Structural transition between $L^p(G)$ and $L^p(G/H)$, Banach J. Math. Anal. 9 (3) (2015), 194-205.
- [6] P. Ramsden, Homological Properties Of Semigroup Algebra, PhD thesis, University of Leeds (2008).
- [7] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, 2nd Ed Oxford Science Publications, Clarendon Press, New York, (2000).

Mohammad Hossein Sattari

Associate Professor of Mathematics Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran E-mail: sattari@azaruniv.ac.ir

Vahideh Yousefiazar

PhD student Department of Mathematics Azarbaijan Shahid Madani University Tabriz, Iran E-mail: v.yousefiazar@azaruniv.ac.ir