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Abstract. The notion of multiplicative hyperrings is an important class
of algebraic hyperstructures which generalize rings where the multipli-
cation is a hyperoperation, while the addition is an operation . Let R
be a commutative multiplicative hyperring and α ∈ End(R). A proper
hyperideal I of R is called α-prime if x ◦ y ⊆ I for some x, y ∈ R then
x ∈ I or α(y) ∈ I. Indeed, the α-prime hyperideals are a new gener-
alization of prime hyperideals. In this paper, we aim to study α-prime
hyperideals and give the basic properties of this new type of hyperideals.
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1 Introduction

Algebraic hyperstructures are a suitable generalization of classical al-
gebraic structures. This theory has been introduced by Marty in 1934
during the 8th Congress of the Scandinavian Mathematicians [24]. He
defined the hypergroups as a generalization of groups. Afterwards, many
researchers have been worked on this new field of modern algebra and
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developed it [11, 12, 13, 14, 15, 18, 25, 29, 35]. In an algebraic hyper-
structure, the composition of two elements is a set, while in a classical al-
gebraic structure, the composition of two elements is an element. Similar
to hypergroups, hyperrings are algebraic structures more general than
rings, subsitutiting both or only one of the binary operations of addition
and multiplication by hyperoperations. The hyperrings were introduced
and studied by many authors [3, 4, 28, 9]. Krasner introduced a type
of the hyperring where addition is a hyperoperation and multiplication
is an ordinary binary operation. Such a hyperring is called a Krasner
hyperring [23]. Mirvakili and Davvaz introduced (m,n)-hyperrings in
[26] and they defined Krasner (m,n)-hyperrings as a subclass of (m,n)-
hyperrings and as a generalization of Krasner hyperrings in [27]. The
notion of multiplicative hyperrings is an important class of algebraic hy-
perstructures that generalize rings, initiated the study by Rota in 1982
which the multiplication is a hyperoperation, while the addition is an
operation [31]. There exists a general type of hyperrings that both the
addition and multiplication are hyperoperations [36]. Ameri and Kordi
have studied Von Neumann regularity in multiplicative hyperrings [5].
Moreover, they introduced the concept of clean multiplicative hyper-
rings and studied some topological concepts to realize clean elements of
a multiplicative hyperring by clopen subsets of its Zariski topology[6].
The notions such as (weak)zero divisor, (weak)nilpotent and unit in an
arbitrary commutative hyperrings were introduced in [2]. Some equiva-
lence relations, called fundamental relations, play important roles in the
the theory of algebraic hyperstructures. The fundamental relations are
one of the most important and interesting concepts in algebraic hyper-
structures that ordinary algebraic structures are derived from algebraic
hyperstructures by them. For more details about hyperrings and fun-
damental relations on hyperrings see [17, 18, 20, 21, 22, 24, 32, 36].
Prime ideals and primary ideals are two of the most important struc-
tures in commutative algebra. The notion of primeness of hyperideal
in a multiplicative hyperring was conceptualized by Procesi and rota
in [30]. Dasgupta extended the prime and primary hyperideals in mul-
tiplicative hyperrings in [16]. Beddani and Messirdi [10] introduced a
generalization of prime ideals called 2-prime ideals and this idea is fur-
ther generalized by Ulucak and et. al. [34]. In [8], we investigated
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δ-primary hyperideals in a Krasner (m,n)-hyperring which unify prime
hyperideals and primary hyperideals. α-prime ideals in a commutative
ring with nonzero identity have been introduced and studied by Akray
and Mohammad-Salih in [7].

In this paper we consider the class of multiplicative hyperring as a
hyperstructure (R,+, ◦), where (R,+) is an abelian group, (R, ◦) is a
semihypergroup and the hyperoperation ”◦” is distributive with respect
to the operation ” + ”. In this paper we introduce and study the no-
tion of α-prime hyperideals of a multiplicative hyperring which is a new
generalization to prime hyperideals. Several properties of them are pro-
vided. For example we show (Theorem 3.18) that if R is a multiplicative
hyperring such that it has zero absorbing property and ⟨0⟩ is a prime
hyperideal of R, then

Nilα(R) =
⋂

I is α−prime of R

I.

It is shown (Theorem 3.25) that the hyperideal I of R is α-prime if
and only if I/Kerα is prime in R/Kerα. We show (Theorem 3.29)
that the hyperideal I is α-prime if and only if R/I is an α-integral
hyperdomain. Also, we investigate the stability of α-prime hyperideals
in some hyperring-theoric constructions.

2 Preliminaries

In this section we give some defnitions and results which we need to
develop our paper.

A hyperoperation ”◦” on nonempty set G is a mapping of G×G into
the family of all nonempty subsets of G. Assume that ”◦” is a hyperop-
eration on G. Then (G, ◦) is called hypergroupoid. The hyperoperation
on G can be extended to subsets of G as follows. Let X,Y be subsets of
G and g ∈ G, then

X ◦ Y = ∪x∈X,y∈Y x ◦ y, X ◦ g = X ◦ {g}.

A hypergroupoid (G, ◦) is called a semihypergroup if for all x, y, z ∈ G,
(x ◦ y) ◦ z = x ◦ (y ◦ z), which is associative. A semihypergroup is said
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to be a hypergroup if g ◦ G = G = G ◦ g for all g ∈ G. A nonempty
subset H of a semihypergroup (G, ◦) is called a subhypergroup if for all
x ∈ H we have x ◦H = H = H ◦ x. A commutative hypergroup (G, ◦)
is canonical if

(i) there exists e ∈ G with e ◦ x = {x}, for every x ∈ G.

(ii) for every x ∈ G there exists a unique x−1 ∈ G with e ∈ x ◦ x−1.

(iii) x ∈ y ◦ z implies y ∈ x ◦ z−1.

A nonempty set R with two hyperoperations ” + ” and ” ◦ ” is called a
hyperring if (R,+) is a canonical hypergroup , (R, ◦) is a semihypergroup
with r ◦ 0 = 0 ◦ r = 0 for all r ∈ R and the hyperoperation ” ◦ ” is
distributive with respect to +, i.e., x ◦ (y + z) = x ◦ y + x ◦ z and
(x+ y) ◦ z = x ◦ z + y ◦ z for all x, y, z ∈ R.

Definition 2.1. [19] A multiplicative hyperring is an abelian group
(R,+) in which a hyperoperation ◦ is defined satisfying the following:

(i) for all a, b, c ∈ R, we have a ◦ (b ◦ c) = (a ◦ b) ◦ c;

(ii) for all a, b, c ∈ R, we have a◦ (b+c) ⊆ a◦b+a◦c and (b+c)◦a ⊆
b ◦ a+ c ◦ a;

(iii) for all a, b ∈ R, we have a ◦ (−b) = (−a) ◦ b = −(a ◦ b).

If in (ii) the equality holds then we say that the multiplicative hyper-
ring is strongly distributive. Recall that R has a zero absorbing property
if for all r ∈ R, {0} = 0 ◦ r = r ◦ 0.
A non empty subset I of a multiplicative hyperring R is a hyperideal if

(i) If a, b ∈ I, then a− b ∈ I;

(iii) If x ∈ I and r ∈ R, then rox ⊆ I.

Let (Z,+, ·) be the ring of integers. Corresponding to every subset
A ∈ P ⋆(Z) such that |A| ≥ 2, there exists a multiplicative hyperring
(ZA,+, ◦) with ZA = Z and for any a, b ∈ ZA, a ◦ b = {a.r.b | r ∈ A}.
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Definition 2.2. [16] A proper hyperideal P of R is called a prime hy-
perideal if x ◦ y ⊆ P for x, y ∈ R implies that x ∈ P or y ∈ P . The
intersection of all prime hyperideals of R containing I is called the prime
radical of I, being denoted by

√
I. If the multiplicative hyperring R does

not have any prime hyperideal containing I, we define
√
I = R.

Definition 2.3. [1] A proper hyperideal I of R is maximal in R if for
any hyperideal J of R with I ⊆ J ⊆ R then J = R. Also, we say that R
is a local multiplicative hyperring, if it has just one maximal hyperideal.

Let C be the class of all finite products of elements of R i.e. C =
{r1 ◦ r2 ◦ ... ◦ rn : ri ∈ R,n ∈ N} ⊆ P ∗(R). A hyperideal I of
R is said to be a C-hyperideal of R if, for any A ∈ C, A ∩ I ̸= ∅
implies A ⊆ I. Let I be a hyperideal of R. Then, D ⊆

√
I where

D = {r ∈ R : rn ⊆ I for some n ∈ N}. The equality holds when I is a
C-hyperideal of R ([16], proposition 3.2). In this paper, we assume that
all hyperideals are C-hyperideal.

Definition 2.4. [19] Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplica-
tive hyperrings. A mapping f from R1 into R2 is said to be a good
homomorphism if for all x, y ∈ R1, f(x +1 y) = f(x) +2 f(y) and
f(x ◦1 y) = f(x) ◦2 f(y).
Moreover, the kernel of f is defined by Kerf = f−1(⟨0⟩) = {x ∈
R1 | f(x) ∈ ⟨0⟩}.
Definition 2.5. [16] A nonzero proper hyperideal Q of R is called a
primary hyperideal if x ◦ y ⊆ Q for x, y ∈ R implies that x ∈ Q or
y ∈

√
Q. Since

√
Q = P is a prime hyperideal of R by Propodition 3.6

in [16], Q is referred to as a P-primary hyperideal of R.

Definition 2.6. [1] Let R be a multiplicative hyperring. The element
x ∈ R is said to be nilpotent if 0 ∈ xn for some integer n > 0.

Definition 2.7. A hyperring R is called an integral hyperdomain, if for
all x, y ∈ R, 0 ∈ x ◦ y implies that x = 0 or y = 0.

Definition 2.8. [2] An element a ∈ R is said to be zero divizor if there
exists 0 ̸= b ∈ R such that 0 ∈ a ◦ b.
Definition 2.9. [1] Let R be commutative multiplicative hyperring and
e be an identity (i.e., for all a ∈ R, a ∈ a ◦ e). An element x in R is
called unit, if there exists y ∈ R, such that e ∈ x ◦ y.
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3 α-Prime hyperideals

Definition 3.1. Let R be a multiplicative hyperring and let α : R → R
be a fixed good endomorphism. We say that hyperideal I of R is α-prime
if for all x, y ∈ R, x ◦ y ⊆ I implies x ∈ I or α(y) ∈ I.

Example 3.2. Assume that (Z,+, ·) is the ring of integers. Consider
the multiplicative hyperring (Z,+, ◦) in which a ◦ b = {2ab, 3ab}, for all
a, b ∈ Z. Let α is an identity mapping on (Z,+, ◦). Then ⟨2⟩ and ⟨3⟩
are α-prime hyperideals of (Z,+, ◦).

Example 3.3. Let (Z,+, ·) be the ring of integers. Consider the mul-
tiplicative hyperring (Z,+, ⟨2⟩). Define the mapping α : Z −→ Z by
α(x) = 3x. By Theorem 4.2.3 in [19], α is a homomorphism of the
multiplicative hyperring (Z,+, ⟨2⟩). In the multiplicative hyperring, the
hyperideal ⟨2⟩ is α-prime.

Theorem 3.4. If I is an α-prime hyperideal of R, then α(I) ⊆ I.

Proof. Let x ∈ I. Since I is a C-hyperideal of R then x ∈ 1 ◦ x ⊆ I.
Since I is an α-prime hyperideal of R and 1 /∈ I then α(x) ∈ I for all
x ∈ I. Thus we have α(I) ⊆ I. □

Lemma 3.5. If I is an α-prime hyperideal of R, then
√
I is an α-prime

hyperideal of R.

Proof. Assume that a ◦ b ⊆
√
I for a, b ∈ R. This means (a ◦ b)n =

an ◦ bn ⊆ I. Since I is an α-prime hyperideal of R, then we get an ⊆ I
or α(bn) = (α(b))n ⊆ I. This implies that a ∈

√
I or α(b) ⊆

√
I. Thus√

I is an α-prime hyperideal of R. □
The next example shows that the inverse of Lemma 3.5 is not true,

in general.

Example 3.6. In Example 3.2, the hyperideal ⟨4⟩ is not α-prime how-
ever its radical is an α-prime hyperideal of (Z,+, ◦).

Theorem 3.7. Let I be an α-prime hyperideal of R. Then E = {s ∈
R | α(s) ∈ I} is an α-prime hyperideal of R containing I.
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Proof. It is clear that E is a hyperideal of R containing I. Let a◦b ⊆ E
for some a, b ∈ R. This means α(a ◦ b) = α(a) ◦ α(b) ⊆ I. Since I is
an α-prime hyperideal of R then α(a) ∈ I or α(α(b)) ∈ I. This implies
that a ∈ E or α(b) ∈ E. Thus E = {s ∈ R | α(s) ∈ I} is an α-prime
hyperideal of R. □

Lemma 3.8. Let I be an α-prime hyperideal of R and let I be maximal
with respect to the fact that s ∈ I implies α(s) ∈ I. Then I is prime.

Proof. Assume that I is not prime hyperideal of R. Then we get x, y ∈
R with x◦y ⊆ I such that neither x ∈ I nor y ∈ I. Let a = p+t ∈ I+⟨x⟩
for p ∈ I and t ∈ ⟨x⟩. Then there exists r ∈ R with t ∈ r ◦ x such that
a ∈ p+r◦x. Therefore we have a◦y ⊆ (p+r◦x)◦y ⊆ p◦y+r◦x◦y ⊆ I.
Since I is an α-prime hyperideal of R and y /∈ I then α(a) ∈ I ⊆ I+⟨x⟩.
By hypothesis, I is maximal. Hence I = I + ⟨x⟩ which implies x ∈ I.
This a contradiction. Thus I is a prime hyperideal of R. □

Theorem 3.9. The hyperideal I of R is α-prime if and only if for any
hyperideals I1, I2 of R, I1 ◦ I2 ⊆ I =⇒ I1 ⊆ I or α(I2) ⊆ I.

Proof. Let I be an α-prime hyperideal of R. Assume that I1 ◦ I2 ⊆ I
for some hyperideals I1, I2 of R such that I1 ⊈ I. Then there exists
x ∈ I1 but x /∈ I. Clearly, x ◦ y ⊆ I1 ◦ I2 ⊆ I for all y ∈ I2. Since
the hyperideal I is α-prime and x /∈ I then α(y) ∈ I for all y ∈ I2
which means α(I2) ⊆ I. Conversely, suppose that x ◦ y ⊆ I for some
x, y ∈ R. Hence ⟨x⟩ ◦ ⟨y⟩ ⊆ ⟨x ◦ y⟩ ⊆ I. By hypothesis, we get ⟨x⟩ ⊆ I
or α(⟨y⟩) ⊆ I which implies x ∈ I or α(y) ∈ I. Thus I is an α-prime
hyperideal of R. □

Theorem 3.10. Let I be an α-prime hyperideal of R and S is a subset
of R. Then (I : S) is an α-prime hyperideal of R.

Proof. Let x ◦ y ⊆ (I : S) for some x, y ∈ R. It is easy to see (I :
x ◦ S) = (I : S) ∪ (I : x). Since y ∈ (I : x ◦ S) then we have y ∈ (I : S)
or y ◦ x ⊆ I. Hence we get y ∈ (I : S) or y ∈ I or α(x) ∈ I, since I is an
α-prime hyperideal of R. This implies that y ∈ (I : S) or α(x) ∈ (I : S).
Thus (I : S) is an α-prime hyperideal of R. □

Lemma 3.11. Let I be an α-prime hyperideal of R. If xn ⊆ I for some
x ∈ R, then α(x) ∈ I.
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Proof. Let xn ⊆ I for some x ∈ R. Assume that t ∈ xn−1. Then
t ◦ x ⊆ I. Since I is an α-prime hyperideal of R then we have t ∈ I or
α(x) ∈ I. Let t ∈ I. Since t ∈ xn−1 and I is a C-hyperideal of R then
we get xn−1 ⊆ I. Continuing this process, we obtain x ∈ I or α(x) ∈ I.
If x ∈ I, then x ∈ 1 ◦ x ⊆ I, that is, α(x) ∈ I. □

Theorem 3.12. Let I be an α-prime hyperideal of R. If (α(y))n ⊆ I
for some y ∈ R, then α2(y) ∈ I.

Proof. Let I be an α-prime hyperideal of R such that (α(y))n ⊆ I for
some y ∈ R. Assume that x = α(y). Now the claim follows by Lemma
3.11. □

Definition 3.13. Let R be a multiplicative hyperring. An element x of
R is said to be α-nilpotent, if 0 ∈ α(xn), for some integer n > 0. We
denote the set of α-nilpotent elements of R by Nilα(R) and call it the
α-nilradical of R.

Theorem 3.14. The set Nilα(R) of all α-nilpotent elements of R with
scalar identity 1, is a hyperideal.

Proof. Suppose that x ∈ Nilα(R). Then 0 ∈ α(xn) for some integer
n > 0. Hence for all r ∈ R, we get 0 ∈ α(rn) ◦ α(xn) = α((r ◦ x)n)
which implies r ◦x ∈ Nilα(R). Now, Suppose that x, y ∈ Nilα(R), then
there exist n,m ∈ N such that 0 ∈ α(xn) and 0 ∈ α(yn). Thus we have
0 ∈ α((x− y)n+m). Therefore x− y ∈ Nilα(R). Consequently, Nilα(R)
is a hyperideal. □

Theorem 3.15. Let R1 and R2 be two multiplicative hyperrings and
f : R1 → R2 a good homomorphism. If α ∈ End(R1) ∩ End(R2) such
that α(f(r)) = f(α(r)) for every r ∈ R1, then f−1(I2) is an α-prime
hyperideal of R1 for some α-prime hyperideal I2 of R2.

Proof. Assume that the hyperideal I2 of R2 is α-prime. Let x ◦1 y ⊆
f−1(I2) for some x, y ∈ R1. Then f(x◦1 y) = f(x)◦2 f(y) ⊆ I2. Since I2
is an α-prime hyperideal of R2 then f(x) ∈ I2 which implies x ∈ f−1(I2)
or α(f(y)) = f(α(y)) ∈ I2 which implies α(y) ∈ f−1(I2). Thus f−1(I2)
is an α-prime hyperideal of R1. □

Lemma 3.16. Let α ∈ End(R). Then Kerα ⊆
⋂

I is α−prime of R I.
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Proof. Let r ∈ Kerα. Therefore α(r) ∈ ⟨0⟩. This means α(r) is in
every α-prime hyperideal I of R. Now by using Theorem 3.15, the claim
can be proved. □

Lemma 3.17. Let ⟨0⟩ be a prime hyperideal of R and let α ∈ End(R).
Then Kerα is a prime hyprideal of R.

Proof. Let a◦ b ⊆ Kerα for some a, b ∈ R. This implies that α(a◦ b) =
α(a) ◦ α(b) ⊆ ⟨0⟩. Since ⟨0⟩ is a a prime hyperideal of R, then we have
α(a) ∈ ⟨0⟩ or α(b) ∈ ⟨0⟩. This implies that a ∈ Kerα or a ∈ Kerα.
Thus Kerα is a prime hyprideal of R. □

Theorem 3.18. Let R be a multiplicative hyperring such that it has
zero absorbing property. If ⟨0⟩ is a prime hyperideal of R, then

Nilα(R) =
⋂

I is α−prime of R

I.

Proof. Let r ∈ Nilα(R). Then we have 0 ∈ α(rn) which means rn ⊆
Kerα. Thus we get r ∈ Kerα, by Lemma 3.17. Hence we conclude
that r ∈

⋂
I is α−prime of R I. Then Nilα(R) is in the intersection of all

α-prime hyperideals of R.
Now, assume that r ∈

⋂
I is α−prime of R I but r /∈ Nilα(R). Consider

the set

Σ = {J | J is a hyperideal of R and for all n¿0, α(rn) ⊈ J }.

Since 0 ∈ Σ then Σ ̸= ∅. Order Σ by inclusion. Assume that {Ji}i∈∆ is a
chain of hyperideals in Σ, then for each pair of indices t, s we have either
Jt ⊆ Js or Js ⊆ Jt. Let J =

⋃
i∈∆ Ji. Clearly, J is a hyperideal and is

an upper bound of the chain. Thus by Zorn’s lemma Σ has a maximal
element. Let P is a maximal element of Σ. Assume that α(x) /∈ P and
α(y) /∈ P for some x, y ∈ R. Hence P + ⟨α(x)⟩ and P + ⟨α(y)⟩ are not in
Σ. Then we have α(rm) ⊆ P + ⟨α(x)⟩ and α(rn) ⊆ P + ⟨α(y)⟩ for some
integers m,n > 0. Therefore α(rm+n) ⊆ P + ⟨α(x ◦ y)⟩. This means
P + ⟨α(x ◦ y)⟩ /∈ Σ which implies α(x ◦ y) = α(x) ◦ α(y) ⊈ P . Thus
by Lemma 3.11 x ◦ y ⊈ P . Since P is an α-prime hyperideal of R and
α(rn) ⊈ P then r /∈ P which is a contradiction. Therefore r ∈ Nilα(R)
and the proof is completed. □
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Definition 3.19. Let J be a hyperideal of R such that R has zero ab-
sorbing property. The α-radical of J is defined by

α
√
J = {r ∈ R | α(rn) ⊆ J for some n ∈ N}

Theorem 3.20. Nilα(R) ⊆ α
√
⟨0⟩

Proof. Let r ∈ Nilα(R). Then there exists some n ∈ N such that
0 ∈ α(rn). Since ⟨0⟩ is a C-hyperideal and 0 ∈ ⟨0⟩ then α(rn) ⊆
⟨0⟩. Therefore r ∈ α

√
⟨0⟩. Thus Nilα(R) ⊆ α

√
⟨0⟩. □ If R is a

multiplicative hyperring such that it has zero absorbing property, then
we have Nilα(R) = α

√
⟨0⟩

Theorem 3.21. Let A,B be two hyperideals of R. Then we have the
following statements:

(i) If A ⊆ B, then α
√
A ⊆ α

√
B.

(ii) α
√
A+B ⊆ α

√
α
√
A+ α

√
B

(iii) α
√
A ◦B = α

√
A ∩B = α

√
A ∩ α

√
B.

Proof.

i. Straightforward.

ii. Since A ⊆ α
√
A and B ⊆ α

√
B then we have A+B ⊆ α

√
A+ α

√
B.

Thus we get α
√
A+B ⊆ α

√
α
√
A+ α

√
B, by (i).

iii. Here A ◦ B ⊆ A ∩ B. Then α
√
A ◦B ⊆ α

√
A ∩B. Now, let

r ∈ α
√
A ∩B. So α(rn) ⊆ A ∩ B for some n ∈ N. Hence we have

α(rn)◦α(rn) = α(r2n) ⊆ A◦B which means r ∈ α
√
A ◦B. Finally,

let r ∈ α
√
A ∩ α

√
B. This means α(rs) ⊆ A and α(rt) ⊆ B for

some t, s ∈ N. Then we have α(rm) ⊆ A ∩ B for m = max{t, s}.
This implies that r ∈ α

√
A ∩B. For the reverse inclusion, since

A ∩B ⊆ A and A ∩B ⊆ A then we get α
√
A ∩B ⊆ α

√
A ∩ α

√
A.

□

Theorem 3.22. Let A be a hyperideal of R.

(1) If α(1) = 1, then α
√
A = R if and only if I = R.
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(2) If the hyperideal A is α-prime, then α
√
An = α

√
A, for all n ∈ N.

Proof.

(1) Let α
√
A = R. This means 1 ∈ α

√
A. Hence α(1n) ⊆ A which

implis α(1) = 1 ∈ A. Thus A = R

(2) Let the hyperideal A be α-prime. Then α
√
An = α

√
A ∩ ... ∩ α

√
A

for all n ∈ N, by Theorem 3.21 (iii). Thus α
√
An = α

√
A.

□

Theorem 3.23. Let R1 and R2 be two multiplicative hyperrings and
f : R1 → R2 a good homomorphism such that I1 and I2 are hyperideals
of R1 and R2, respectively. Assume that α ∈ End(R1) ∩ End(R2) such
that α(f(r)) = f(α(r)) for every r ∈ R1. Then

(1) f( α
√
I1) ⊆ α

√
f(I1).

(2) α
√

f−1(I2) ⊆ f−1( α
√
I2).

(3) If f is an isomorphism, then f( α
√
I1) =

α
√

f(I1)

Proof.

(1) Let y ∈ f( α
√
I1). Then there exists some x ∈ α

√
I1 such that

f(x) = y. Hence we have α(xn) ⊆ I1 for some n ∈ N. Therefore
α(yn) = α(f(x)n) = α(f(xn)). Since α commutes with f , then we
get α(f(xn)) = f(α(xn)) ⊆ f(I1). Thus y ∈ α

√
f(I1) which means

f( α
√
I1) ⊆ α

√
f(I1).

(2) Let x ∈ α
√

f−1(I2). Then we get α(xn) ⊆ f−1(I2) for some n ∈ N.
Therefore f(α(xn)) ⊆ I2 which implies α(f(x)n) ⊆ I2. So x ∈
f−1( α

√
I2).

(3) Let f is an isomorphism. The claim follows by (1).

□

Theorem 3.24. Let α ∈ End(R). Assume that I is a hyperideal of R
such that for all a, b ∈ R, a ◦ b ⊆ I implies a ∈ I or α(bn) ⊆ I for some
n ∈ N. Then α

√
I is an α-prime hyperideal of R.
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Proof. Let x ◦ y ⊆ α
√
I for some x, y ∈ R. This means α((x ◦ y)n) =

α(xn) ◦ α(yn) ⊆ I for some n ∈ N. Let t ∈ xn and s ∈ yn for some
t, s ∈ R. Therefore α(t) ◦ α(s) ⊆ α(xn) ◦ α(yn) ⊆ I. By assumption, we
get α(t) ∈ I or α(α(s)m) ⊆ I for some m ∈ N. Since I is a C-hyperideal
of R and α(xn) ∩ I ̸= ∅ or α(α(y)nm) ∩ I ̸= ∅, then we have α(xn) ⊆ I
or α(α(y)nm) ⊆ I. This implies that x ∈ α

√
I or α(y) ∈ α

√
I which means

α
√
I is an α-prime hyperideal of R. □

Theorem 3.25. Let I be a hyperideal of R. Then I is α-prime if and
only if every zero divizor of R/I is in Kerα.

Proof. Let I be an α-prime hyperideal of R. Let 0R/I ̸= y + I be a
zero divizor of R/P . Then there exists 0R/I ̸= x + I such that 0R/I ∈
(x+I)(y+I) = x◦y+I. This implies that x◦y ⊆ I. Since the hyperideal
I of R is α-prime, then we get x ∈ I or α(y) ∈ I. Since 0R/I ̸= x + I,
then we have α(y) ∈ I and so α(y+I) ⊆ Iwhich means y+I is in Kerα.
Conversely, Let x ◦ y ⊆ I such that x, y /∈ I for some x, y ∈ R. Then
I ∈ x ◦ y + I = (x+ I)(y + I). Then y + I is a zero divizor of R/P . By
hypothesis, α(y + I) ⊆ I which means α(y) ∈ I, as claimed. □

The following lemma is needed in the proof of our next result.

Lemma 3.26. Let I be a hyperideal of R. Then I is prime if and only
if R/I has no zero divisors.

Proof. Let I be a prime hyperideal of R. Let I ̸= x+ I is a zero divisor
of R/I. Then there exists I ̸= y+I such that I ∈ (x+I)(y+I) = x◦y+I
which means x ◦ y ⊆ I. Since I is a prime hyperideal of R, then we get
x ∈ I or y ∈ I, contradicion. Conversely, let for some x, y ∈ R, x◦y ⊆ I.
Then I ∈ x ◦ y + I = (x + I)(y + I). Since R/I has no zero divisors,
then we have I = x+ I or I = y + I which means x ∈ I or y ∈ I. □

Theorem 3.27. Let I be a hyperideal of R. Then I is α-prime if and
only if I/Kerα is prime in R/Kerα.

Proof. By Lemma 3.16, we conclude that R/I ∼= R/Kerα
I/Kerα . Now, the

claim follows by Lemma 3.26 and Theorem 3.25. □

Definition 3.28. A hyperring R is called an α-integral hyperdomain, if
for all x, y ∈ R, 0 ∈ x ◦ y implies that x = 0 or α(y) = 0.
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Theorem 3.29. Let I be a hyperideal of R. Then I is α-prime if and
only if R/I is an α-integral hyperdomain.

Proof. Let the hyperideal I of R be α-prime. Assume that I ∈ (x +
I)(y + I) = x ◦ y + I for some x, y ∈ R. Then x ◦ y ⊆ I. Therefore
we get x ∈ I or α(y) ∈ I, since I is a α-prime hyperideal of R. Hence
we conclude that x + I = I or α(y) + I = I which implies x + I = I
or α(y + I) = I. Consequently, R/I is an α-integral hyperdomain.
Conversely, Let R/I be an α-integral hyperdomain. Suppose that x◦y ⊆
I for some x, y ∈ R. Then I ∈ x ◦ y+ I. This means I ∈ (x+ I)(y+ I).
Thus we have I = x + I or I = α(y + I), since R/I is an α-integral
hyperdomain. This means x ∈ I or α(y) ∈ I. Thus the hyperideal I of
R is α-prime. □

Theorem 3.30. Let R1 and R2 be two multiplicative hyperrings and
f : R1 → R2 a good epimorphism and α ∈ End(R1) ∩ End(R2) such
that α(f(r)) = f(α(r)) for every r ∈ R1. Let I1 be a hyperideal of R1

with Kerα ⊆ I1. Then the hyperideal I1 is α-prime if and only if the
hyperideal f(I1) of R2 is α-prime.

Proof. Let a2 ◦ b2 ⊆ f(I1) for some a2, b2 ∈ R2. Then for some a1, b1 ∈
R1 we have f(a1) = a2 and f(b1) = b2. So f(a1) ◦ f(b1) = f(a1 ◦ b1) ⊆
f(I1). Now, take any u ∈ a1 ◦ b1. Then f(u) ∈ f(a1 ◦ b1) ⊆ f(I1)
and so there exists w ∈ I1 such that f(u) = f(w). This means that
f(u − w) = 0, that is, u − w ∈ Kerf ⊆ I1 and then u ∈ I1. Since I1 is
a C-hyperideal of R1, then we get a1 ◦ b1 ⊆ I1. Since I1 is an α-prime
hyperideal of R1, then we obtain a1 ∈ I1 or α(b1) ∈ I1. This implies
that f(a1) = a2 ∈ f(I1) or α(b2) = α(f(b1)) = f(α(b1)) ∈ f((I1). Thus
f(I1) is an α-prime hyperideal of R2. The converse part is follows by
3.15. □

In view of Theorem 3.30, we have the following result.

Corollary 3.31. Let I and J be two hyperideals of R with J ⊆ I.
Assume that α ∈ End(R) and α⋆ is the induced mapping on R/J from
α. Then I is an α-prime hyperideal of R if and only if I/J is an α⋆-
prime hyperideal of R/J .

Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative hyperrings
with non zero identity. [33] Recall (R1 × R2,+, ◦) is a multiplicative
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hyperring with the operation + and the hyperoperation ◦ are defined
respectively as

(x1, x2) + (y1, y2) = (x1 +1 y1, x2 +2 y2) and
(x1, x2) ◦ (y1, y2) = {(x, y) ∈ R1 ×R2 | x ∈ x1 ◦1 y1, y ∈ x2 ◦2 y2}.

Assume that α1 ∈ End(R1) and α2 ∈ End(R2). We define the map
ᾱ : R1 × R2 −→ R1 × R2 by ᾱ(r1, r2) = (α1(r1), α2(r1)). It is easy to
see that ᾱ ∈ End(R1 ×R2).

Theorem 3.32. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative
hyperrings with non zero identity such that α1 ∈ End(R1) and α2 ∈
End(R2). Let I1 be a hyperideal of R1. Then I1 is an α1-prime hyperidea
of R1 if and only if I1 ×R2 is an ᾱ-prime hyperideal of R1 ×R2.

Proof. (=⇒) Let (x1, x2)◦(y1, y2) ⊆ I1×R2 for some (x1, x2), (y1, y2) ∈
R1 × R2. This means x1 ◦1 y1 ⊆ I1. Since I1 is a α1-prime hyperideal
of R1, then we get x1 ∈ I1 or α1(y1) ∈ I1. This implies that (x1, x2) ∈
I1 ×R2 or ᾱ(y1, y2) = (α1(y1), α2(y2) ∈ I1 ×R2. Consequently, I1 ×R2

is an ᾱ-prime hyperideal of R1 ×R2.
(⇐=) Assume on the contrary that I1 is not a α1-prime hyperideal

of R1. So x1 ◦1 y1 ⊆ I1 with x1, y1 ∈ R1 implies that x1 /∈ I1 and
α1(y1) /∈ I1. It is clear that (x1, 1R2) ◦ (y1, 1R2) ⊆ I1 × R2. Since
I1 × R2 is an ᾱ-prime hyperideal of R1 × R2, then we have (x1, 1R2) ∈
I1 × R2 or ᾱ(y1, 1R2) ∈ I1 × R2 which means (x1, 1R2) ∈ I1 × R2 or
(α1(y1), α2(1R2) ∈ I1 × R2. Hence we get x1 ∈ I1 or α1(y1) ∈ I1 which
is a contradiction. Thus, I1 is an α1-prime hyperideal of R1. □

Theorem 3.33. Let (R1,+1, ◦1) and (R2,+2, ◦2) be two multiplicative
hyperrings with non zero identity such that α1 ∈ End(R1) and α2 ∈
End(R2). Let I1 and I2 be some hyperideals of R1 and R2, respectively.
Then the following statements are equivalent:

(1) I1 × I2 is an ᾱ-prime hyperideal of R1 ×R2.

(2) I1 = R1 and I2 is an α2-prime hyperideal of R2 or I2 = R2 and
I1 is an α1-prime hyperideal of R1.

Proof. (1) =⇒ (2) Assume that I1 = R1. Then I2 is a α2-primary
hyperideal of R2, by Theorem 3.32.

(2) =⇒ (1) This can be proved by using Theorem 3.32. □



α-PRIME HYPERIDEALS IN A MULTIPLICATIVE HYPERRING 15

Example 3.34. Suppose that (Z,+, .) is the ring of integers. Then
(Z,+, ◦1) is a multiplicative hyperring with a hyperoperation a ◦1 b =
{ab, 7ab}. Also, (Z,+, ◦2) is a multiplicative hyperring with a hyperop-
eration a ◦2 b = {ab, 5ab}. Note that (Z × Z,+, ◦) is a multiplicative
hyperring with a hyperoperation (a, b) ◦ (c, d) = {(x, y) ∈ Z × Z | x ∈
a ◦1 c, y ∈ b ◦2 d}. Let α1 and α2 are the identity maps on (Z,+, ◦1)
and (Z,+, ◦2), respectively. Clearly, 7Z = {7t | t ∈ Z} and 5Z =
{5t | t ∈ Z} are α1-prime and α2-prime of (Z,+, ◦1) and (Z,+, ◦2), re-
spectively. Since (5, 0) ◦ (0, 7) ⊆ 7Z× 5Z but (5, 0), (0, 7) /∈ 7Z× 5Z and
ᾱ(5, 0), ᾱ(0, 7) /∈ 7Z × 5Z, then 7Z × 5Z is not a ᾱ-prime hyperideal of
Z× Z.
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