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Van Yuzuncu Yil University
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1 Introduction

Optimization theory is the most important and oldest classical area,
which is of foremost concern in many disciplines. Engineering, Medicine,
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Operation Research, Artificial Intelligence, and many other fields.

In most real-world systems, uncertainty is inherent. There are sev-
eral theories to describe uncertainty such as probability theory, fuzzy
set theory, and possibility theory. Fuzzy mathematics is a powerful tool
for processing subjective or vague information in mathematical models,
for modeling uncertainty, and for formulating imprecise real-world prob-
lems. Zadeh introduced the fuzzy numbers concept [30] and in [4] Chang
and Zadeh proposed the fuzzy-valued function notion. Many researchers
study the notions of fuzzy calculus.

Fuzzy optimization problems (FOPs) are optimization problems with
imprecision/ambiguity that could appear in parameter values or initial
conditions. Fuzzy optimization is one area where considerable progress
has been made. Farhadinia, [9], studied necessary optimality conditions
for fuzzy variational problems using the fuzzy differentiability concept
of Buckley and Feuring, see [3], but this work was generalized by Fard
et al., [6]; Fard and Salehi, [8]; Fard and Zadeh, [7]. Fard et al. [6],
presented the fuzzy Euler-Lagrange condition for fuzzy constrained and
unconstrained variational problems under the generalized Hukuhara dif-
ferentiability of several variables. There is extensive literature establish-
ing necessary and sufficient conditions for fuzzy optimization problems,
interested readers also can see [13, 23, 24, 25].

Accurate modeling of many dynamic systems leads to a set of frac-
tional differential equations. Fractional derivatives played a significant
role in engineering, science, and mathematics. Most recent advances,
and application of this field in science, engineering, and mathematics,
can be found in [15]-[16]. Fard and Salehi, [8], investigated fuzzy frac-
tional Euler-Lagrange equations for fuzzy fractional variational problems
using their generalized fuzzy fractional Caputo-type derivatives.

As we have known that the concept of stationary point plays a crucial
role in classical optimization since it enables us to find the potential
candidates to be optimums. Necessary fuzzy optimality conditions are
based on a derivative definition. Fuzzy stationary points definitions
[14, 23, 24, 25], are very restrictive because of their definition and others
because of the derivative definition used.

The fundamental difference between the work that we present here is
that other works required H-differentiability, level-wise differentiability,
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or GH-differentiability notions. These differentiability notions are very
restrictive, as shown in [12].

So we use a differentiability notion defined in [13], that generalized
all definitions of fuzzy stationary points existing in the literature. Opti-
mality conditions that we prove here are simple and equivalent to check
that zero belongs to an interval or not. A list of novel contributions of
this paper is as follows:

1. Introducing the concepts of maxima and minima for fuzzy-valued
functions that generalized the classic ones, and deducing some re-
lated results.

2. Defining new convexity notions for fuzzy-valued functions.

3. Proposing the necessary and sufficient optimality conditions for
fuzzy optimization problems based on the differentiability concept
introduced in [12].

However, distinct efforts have been made in fuzzy optimization to
define analogous concepts of convexity and to establish necessary and
sufficient optimality conditions (see, [4, 10, 14, 18, 19, 20, 21, 22, 23,
26, 27, 28, 29]). It seems a new idea to derive the necessary and suffi-
cient optimality conditions for fuzzy optimization problems based on the
differentiability concept introduced in [12]. First, some basic concepts-
are introduced, such as fuzzy differentiability, and then necessary con-
ditions of these functions are derived. We define some new convexity
notions that generalize the classic ones. Finally, sufficient conditions are
discussed.

2 Preliminaries

RI is a family of all bounded closed intervals in R, i.e.,

RI = {[al, au] : al, au∈ R and al≤ au} .

(RI ,D) is a complete metric space [5], where D is defined as

D(A,B)=max {|al−bl| , |au−bu|}
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for all A = [al,au] and B = [bl, bu] belongs to RI .
A fuzzy set ñ on R is a mapping ñ : R → [0, 1] . a-level sets of

each fuzzy set ñ is defined as [ñ]a = {υ ∈ R : ñ(υ) ≥ a} for all a∈ (0, 1] .
Support of fuzzy set ñ (supp ñ) is a collection of all real numbers υ such
that ñ(υ) is greater than zero, i.e. {υ ∈ R : ñ(υ) > 0} . [ñ]0 denotes a
closure of support ñ.

Definition 2.1. A fuzzy number ñ on R is a fuzzy set with following
properties:

1. ñ is normal ( there must exist υ̂ ∈ R such that ñ (υ̂) = 1);
2. ñ is convex (ñ (λυ + (1− λ)ω) ≥ min {ñ (υ) , ñ (ω)} , for all

υ,ω ∈ R and λ ∈ [0, 1]);
3. ñ is an upper semi continuous function;
4. [ñ]0 is compact.

Let R�̃� be a family of all fuzzy numbers on R. a-levels of fuzzy number
ñ is defined as [ñ]a = [na, na] , na, na ∈ R for all a∈ [0, 1] . So, for any
ñ ∈ R�̃�, [ñ]

a ∈ RI for all a∈ [0, 1] . A bounded closed interval B = [Bl,Bu]
in R is a special case of fuzzy number encoded as

B̃ (υ) =

{
1 if υ ∈ [Bl,Bu] ,
0 if υ /∈ [Bl,Bu] .

Also note that a real number ”b” is a special case of fuzzy number
encoded as

b̃ (υ) =

{
1 if υ = b,
0 if υ ̸= b.

For fuzzy numbers ñ, ṽ ∈ R
F̃
, with a-levels representation [na, na] and

[va, va] , respectively, and for real number λ, the addition ñ + ṽ and
scalar multiplication λñ are defined as follows:

(ñ+ ṽ) (υ) = sup
ω+σ=υ

min {ñ (ω) , ṽ (σ)}

and

(λñ) (υ) =

{
ñ
(
υ
λ

)
if λ ̸= 0,

0 if λ = 0.

For every a∈ [0, 1]

[ñ+ ṽ]a = [ua + va, ua + va] ,
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and
[λñ]a = [min {λna, λna} ,max {λna, λna}] .

The Pompeiu-Housdorff metric on R�̃� is defined as

D(ñ,ṽ) = sup
a∈[0,1]

max {|na − na| , |na − na|} .(
R
F̃
,D

)
is a complete metric space [5].

Usual order for fuzzy numbers is defined in [13, 14, 21, 13].

Definition 2.2. For ñ, ṽ ∈ R
F̃
,it is said that

ñ ≾ ṽ, if for every a∈ [0, 1] , na ≤ va and na ≤ va.
ñ ⪯ ṽ, if ñ ≾ ṽ and ∃a0 ∈ [0, 1] , such that na0 < va0 or na0 < va0 .
ñ ≺ ṽ if ñ ≾ ṽ and ∃a0 ∈ [0, 1] , such that na0 < va0 and na0 < va0 .

Remark 2.3. Partial order relation on R
F̃
is ” ≾ ”. If ñ ≺ ṽ then ñ ⪯ ṽ

and then ñ ≾ ṽ.

Definition 2.4. The Hukuhara difference of two fuzzy numbers ñ and ṽ
exists if w̃ ∈ R�̃� such that

ñ⊖H ṽ = w̃ ⇐⇒ ñ = ṽ + w̃.

Definition 2.5. Generalized Hukuhara difference of two fuzzy numbers
ñ and ṽ exists if w̃ ∈ R�̃� such that

ñ⊖gH ṽ = w̃ ⇐⇒
{

ñ = ṽ + w̃
or ṽ = ñ+ (−1) w̃.

For any two fuzzy numbers ñ and ṽ, ñ ⊖ ṽ is called first Hukuhara
difference or H+-difference of ñ and ṽ if there exist w̃ ∈ R�̃� such that
ñ = ṽ+ w̃ and ñ⊟ ṽ is called second Hukuhara difference or H−-difference
of ñ and ṽ if there exist w̃ ∈ R�̃� such that ṽ = ñ + (−1) w̃. This means
that ñ⊖gH ṽ = ñ⊖ ṽ if ñ = ṽ+ w̃ for some w̃ ∈ R�̃� and ñ⊖gH ṽ = ñ⊟ ṽ
if ṽ = ñ+ (−1) w̃ for some w̃ ∈ R

F̃
.

Definition 2.6. Let Ψ̃ : [a, b] −→ R�̃� be a fuzzy function. Ψ̃ is H-

differentiable at t0 ∈ (a, b) if there exists a fuzzy number B̃ such that:

lim
h→0+

Ψ̃(t0 + h)⊖H Ψ̃(t0)

h
= lim

h→0+

Ψ̃(t0)⊖H Ψ̃(t0 − h)

h
= B̃.
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Then Ψ̃ is Hukuhara differentiable at t0and B̃ is Hukuhara derivative
at of Ψ̃ at t0.

Definition 2.7. Let Ψ̃ : [a, b] −→ R�̃� be a fuzzy function. Ψ̃ is GH-

differentiable at t0 ∈ (a, b) if there exists a fuzzy number B̃ such that:

i) lim
h→0+

Ψ̃(t0 + h)⊖H Ψ̃(t0)

h
= lim

h→0+

Ψ̃(t0)⊖H Ψ̃(t0 − h)

h
= B̃ or

ii) lim
h→0+

Ψ̃(t0)⊖H Ψ̃(t0 + h)

−h
= lim

h→0+

Ψ̃(t0 − h)⊖H Ψ̃(t0)

−h
= B̃ or

iii) lim
h→0+

Ψ̃(t0 + h)⊖H Ψ̃(t0)

h
= lim

h→0+

Ψ̃(t0 − h)⊖H Ψ̃(t0)

−h
= B̃ or

iv) lim
h→0+

Ψ̃(t0)⊖H Ψ̃(t0 + h)

−h
= lim

h→0+

Ψ̃(t0)⊖H Ψ̃(t0 − h)

h
= B̃ .

Then Ψ̃ is Hukuhara differentiable at t0and B̃ is strictly generalized
Hukuhara derivative at of Ψ̃ at t0.

Note that the GH-differentiability in the first form (i) of the Defini-
tion [2] coincides with the H-differentiability Thus, GH-differentiability
is a more general than the H-differentiability notion for fuzzy mappings.

H-derivative is one of the first derivatives for fuzzy-valued functions,
based on the Hukuhara difference of intervals [11]. There are some
drawbacks of H-derivative:

It exists only under very restrictive conditions. If a fuzzy function Ψ
is H-differentiable, then it presents a non-decreasing diameter, and the
function has non-decreasing fuzziness.

To overcome this difficulty, Bede et al. [1] introduced the concept of
a strongly generalized Hukuhara derivative (GH-derivative). The class
of GH-differentiable fuzzy functions is more general than that of H-
differentiable fuzzy functions. Recently, Bede et al. rigorously study the
strongly generalized Hukuhara differentiable (GH-differentiable) fuzzy
functions [2], and obtain sufficient conditions for theGH-differentiability
fuzzy functions.

However, some fuzzy functions are not GH-differentiable. This re-
striction is because of the use of the H-difference in the definition of the
GH-derivative. A more general concept of differentiability is obtained
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if we use a less restrictive difference definition. Luplescu et al. intro-
duce a new derivative of fuzzy-valued functions [12], being more general
than the H-derivative and GH-derivative, in the sense that the latter is
strictly contained in the former.

Definition 2.8. Let Ψ̃ : [a, b] −→ R�̃� be a fuzzy function. Ψ̃ is left

differentiable at t0 ∈ (a, b] if there exists a fuzzy number B̃ such that:

lim
h−→0+

1

h
H(Ψ̃(t0), Ψ̃(t0 − h) + hB̃) = 0,

or

lim
h−→0+

1

h
H(Ψ̃(t0 − h), Ψ̃(t0)− hB̃) = 0.

B̃ is called left derivative of function Ψ̃ at t0and it is denoted by Ψ̃
′
−(t0).

Ψ̃ is said to be left differentiable on (a, b], if Ψ̃ is left differentiable at
each t0 ∈ (a, b] .

Definition 2.9. Let Ψ̃ : [a, b] −→ R�̃� be a fuzzy function. Ψ̃ is right

differentiable at t0 ∈ [a, b) if there exists a fuzzy number B̃ such that:

lim
h−→0+

1

h
H(Ψ̃(t0 + h), Ψ̃(t0) + hB̃) = 0,

or

lim
h−→0+

1

h
H(Ψ̃(t0), Ψ̃(t0 + h)− hB̃) = 0.

B̃ is called right derivative of function Ψ̃ at t0 and it is denoted by
Ψ̃

′
+(t0). Ψ̃ is said to be right differentiable on [a, b), if Ψ̃ is right differ-

entiable at each t0 ∈ [a, b) .

Definition 2.10. Ψ̃ is differentiable at t0 ∈ [a, b] if Ψ̃ is left and right
differetiable at t0 and Ψ̃

′
−(t0) = Ψ̃

′
+(t0).

Theorem 2.11. If Ψ̃ : [a, b] −→ R�̃� is H-differentiable at t0 ∈ (a, b),

then Ψ̃ is differentiable at t0 and DHΨ̃ (t0) = Ψ̃
′
(t0) .

Note that converse of above theorem is not true in general.
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3 Optimality Conditions

3.1 Necessity

Hereafter consider D be an open subset of R and Ψ̃ : D ⊆ R −→ R�̃�
be a fuzzy-valued function and suppose that it is differentible on D. We
introduce the following definitions for Ψ̃.

Definition 3.1. Let t0 ∈ D.

1. t0 is local weak minima for Ψ̃ if there exist δ > 0 such that for all
0 < h < δ, we have

Ψ̃(t0 − h)⊖ Ψ̃(t0) ≿ 0,

Ψ̃(t0 + h)⊖ Ψ̃(t0) ≿ 0,

or

Ψ̃(t0 − h)⊟ Ψ̃(t0) ≿ 0,

Ψ̃(t0 + h)⊟ Ψ̃(t0) ≿ 0.

Ψ̃(t0) is called local weak minimum of fuzzy function Ψ̃.

2. t0 is local minima for Ψ̃ if there exist δ > 0 such that for all
0 < h < δ, we have

Ψ̃(t0 − h)⊖ Ψ̃(t0) ⪰ 0,

Ψ̃(t0 + h)⊖ Ψ̃(t0) ⪰ 0,

or

Ψ̃(t0 − h)⊟ Ψ̃(t0) ⪰ 0,

Ψ̃(t0 + h)⊟ Ψ̃(t0) ⪰ 0.

Ψ̃(t0) is called local minimum of fuzzy function Ψ̃.

3. t0 is local strict minima for Ψ̃ if there exist δ > 0 such that for all
0 < h < δ, we have

Ψ̃(t0 − h)⊖ Ψ̃(t0) ≻ 0,

Ψ̃(t0 + h)⊖ Ψ̃(t0) ≻ 0,
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or

Ψ̃(t0 − h)⊟ Ψ̃(t0) ≻ 0,

Ψ̃(t0 + h)⊟ Ψ̃(t0) ≻ 0.

Ψ̃(t0) is called local strict minimum of fuzzy function Ψ̃.

Definition 3.2. Let t0 ∈ D.

1. t0 is local weak maxima for Ψ̃ if there exist δ > 0 such that for all
0 < h < δ, we have

Ψ̃(t0)⊖ Ψ̃(t0 − h) ≿ 0,

Ψ̃(t0)⊖ Ψ̃(t0 + h) ≿ 0,

or

Ψ̃(t0)⊟ Ψ̃(t0 − h) ≿ 0,

Ψ̃(t0)⊟ Ψ̃(t0 + h) ≿ 0.

Ψ̃(t0) is called local weak maximum of fuzzy function Ψ̃.

2. t0 is local maxima for Ψ̃ if there exist δ > 0 such that for all
0 < h < δ, we have

Ψ̃(t0)⊖ Ψ̃(t0 − h) ⪰ 0,

Ψ̃(t0)⊖ Ψ̃(t0 + h) ⪰ 0,

or

Ψ̃(t0)⊟ Ψ̃(t0 − h) ⪰ 0,

Ψ̃(t0)⊟ Ψ̃(t0 + h) ⪰ 0.

Ψ̃(t0) is called local maximum of fuzzy function Ψ̃.

3. t0 is local strict maxima for Ψ̃ if there exist δ > 0 such that for all
0 < h < δ, we have

Ψ̃(t0)⊖ Ψ̃(t0 − h) ≻ 0,

Ψ̃(t0)⊖ Ψ̃(t0 + h) ≻ 0,
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or

Ψ̃(t0)⊟ Ψ̃(t0 − h) ≻ 0,

Ψ̃(t0)⊟ Ψ̃(t0 + h) ≻ 0.

Ψ̃(t0) is called local stricat maximum of fuzzy function Ψ̃.

Lemma 3.3. If t0 is a local strict minima for a fuzzy-valued function
Ψ̃, then t0 is local minima for Ψ̃, and t0 is also local weak minimum for
Ψ̃.

Proof. Let t0 be a local strict minima for a fuzzy-valued function Ψ̃. By
Remark 2.3, t0 is local minima for Ψ̃, and t0 is a local weak minimum
for Ψ̃.

□
Note that the above definitions of maxima and minima for fuzzy-

valued function generalized the concepts of maxima and minima for a
real-valued function.

Proposition 3.4. Let 𭟋 : D ⊆ R −→ R be real-valued function and
consider the fuzzy-valued function Ψ̃ : D ⊆ R −→ R

F̃
, defined by Ψ̃(υ) =

𭟋 (υ) for all υ ∈ D. Then t0 is a local strict minima for 𭟋 iff t0 is a
local strict minima for Ψ̃.

Proof. For all a∈ [0, 1] , we have
[
Ψ̃(υ)

]a
= {𭟋(υ)} , singleton. Then

result is immediate. □

Remark 3.5. If 𭟋 : D ⊆ R −→ R is a real-valued function and the
fuzzy-valued function Ψ̃ : D ⊆ R −→ R

F̃
, defined by Ψ̃(υ) = 𭟋 (υ) for

all υ ∈ D. Then:

1. t0 is local minima for Ψ̃ iff t0 is local minima for 𭟋 (υ) .

2. t0 is local weak minima for Ψ̃ iff t0 is local weak minima for 𭟋 (υ) .

Theorem 3.6. Suppose that fuzzy-valued function Ψ̃ : D ⊆ R −→
R�̃� has a local weak minimum at an interior point t0 ∈ D and Ψ̃ is

differentiable at t0. Then deravetive of Ψ̃ at t0 is zero.
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Proof. Let fuzzy function Ψ̃ has a local weak minimum at an interior
point t0 ∈ D and Ψ̃ is differentiable at t0. This implies there exist δ > 0
such that for all 0 < h < δ, we have

Ψ̃(t0 − h)⊖ Ψ̃(t0) ≿ 0,

Ψ̃(t0 + h)⊖ Ψ̃(t0) ≿ 0,

or

Ψ̃(t0 − h)⊟ Ψ̃(t0) ≿ 0,

Ψ̃(t0 + h)⊟ Ψ̃(t0) ≿ 0.

Then for all α ∈ [0, 1] , we have

Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) ≥ 0,

Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) ≥ 0,

Ψ̃−
α (t0 + h)− Ψ̃−

α (t0) ≥ 0,

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0) ≥ 0.

As Ψ̃ is differentiable at t0. This implies

lim
h−→0+

1

h
H(Ψ̃(t0+h), Ψ̃(t0)+hB̃) = lim

h−→0+

1

h
H( Ψ̃(t0), Ψ̃(t0−h)+hB̃) = 0,

(1)
or

lim
h−→0+

1

h
H(Ψ̃(t0), Ψ̃(t0+h)−hB̃) = lim

h−→0+

1

h
H(Ψ̃(t0−h), Ψ̃(t0)−hB̃) = 0.

(2)
If equation (1) holds. Then Pompeiu-Housdorff metric on R�̃� gives

limh−→0+
1
h supα∈[0,1]max

{∣∣∣Ψ̃−
α (t0 + h)− Ψ̃−

α (t0)− hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α

∣∣∣ = 0,

limh−→0+
1
h supα∈[0,1]max

{∣∣∣Ψ̃−
α (t0)− Ψ̃−

α (t0 − h)− hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0)− Ψ̃+

α (t0 − h)− hB̃+
α

∣∣∣ = 0.

(3)
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Since for all α ∈ [0, 1] , we have

Ψ̃−
α (t0 + h)− Ψ̃−

α (t0) ≥ 0,

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0) ≥ 0.

Equivalently,

Ψ̃−
α (t0 + h)− Ψ̃−

α (t0)− hB̃−
α ≥ −hB̃−

α , (4)

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α ≥ −hB̃+

α .

Equation (3) and relation (4) implies:

0 = lim
h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0 + h)− Ψ̃−

α (t0)− hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α

∣∣∣}
≥ lim

h−→0+

1

h
sup

α∈[0,1]
max{Ψ̃−

α (t0 + h)− Ψ̃−
α (t0)− hB̃−

α ,

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α }

≥ lim
h−→0+

1

h
sup

α∈[0,1]
max{Ψ̃−

α (t0 + h)− Ψ̃−
α (t0)− hB̃−

α ,

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α }

≥ lim
h−→0+

1

h
sup

α∈[0,1]
max

{
−hB̃−

α ,−hB̃+
α

}
= sup

α∈[0,1]
max

{
−B̃−

α ,−B̃+
α

}
.

This implies −B̃−
α ≤ 0 and −B̃+

α ≤ 0 for all α ∈ [0, 1] . It shows B̃−
α ≥ 0

and B̃+
α ≥ 0 for all α ∈ [0, 1] .

Now since for all α ∈ [0, 1] , we have

Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) ≥ 0,

Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) ≥ 0.

Equivalently,

Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) + hB̃−
α ≥ hB̃−

α , (5)

Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) + hB̃+
α ≥ hB̃+

α .
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Equation (3) and (5) implies:

0 = lim
h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0)− Ψ̃−

α (t0 − h)− hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0)− Ψ̃+

α (t0 − h)− hB̃+
α

∣∣∣}
= lim

h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) + hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) + hB̃+
α

∣∣∣}
≥ lim

h−→0+

1

h
sup

α∈[0,1]
max{Ψ̃−

α (t0 − h)− Ψ̃−
α (t0) + hB̃−

α ,

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0) + hB̃+
α }

≥ lim
h−→0+

1

h
sup

α∈[0,1]
max

{
hB̃−

α , hB̃
+
α

}
= sup

α∈[0,1]
max

{
B̃−

α , B̃
+
α

}
.

This implies B̃−
α ≤ 0 and B̃+

α ≤ 0 for all α ∈ [0, 1] . Hence B̃−
α = 0 and

B̃+
α = 0 for all α ∈ [0, 1] . Equivalently B̃ = 0.
If equation (2) holds. Then Pompeiu-Housdorff metric on R�̃� gives

lim
h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0)− Ψ̃−

α (t0 + h) + hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0)− Ψ̃+

α (t0 + h) + hB̃+
α

∣∣∣} = 0,

lim
h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) + hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) + hB̃+
α

∣∣∣} = 0. (6)

Since for all α ∈ [0, 1] , we have

Ψ̃−
α (t0 + h)− Ψ̃−

α (t0) ≥ 0 and Ψ̃+
α (t0 + h)− Ψ̃+

α (t0) ≥ 0.

Equivalently,

Ψ̃−
α (t0 + h)− Ψ̃−

α (t0)− hB̃−
α ≥ −hB̃−

α , (7)

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α ≥ −hB̃+

α .
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Equation (6) and relation (7) implies:

0 = lim
h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0)− Ψ̃−

α (t0 + h) + hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0)− Ψ̃+

α (t0 + h) + hB̃+
α

∣∣∣}
= lim

h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0 + h)− Ψ̃−

α (t0)− hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α

∣∣∣}
≥ lim

h−→0+

1

h
sup

α∈[0,1]
max{Ψ̃−

α (t0 + h)− Ψ̃−
α (t0)− hB̃−

α ,

Ψ̃+
α (t0 + h)− Ψ̃+

α (t0)− hB̃+
α }

≥ lim
h−→0+

1

h
sup

α∈[0,1]
max

{
−hB̃−

α ,−hB̃+
α

}
= sup

α∈[0,1]
max

{
−B̃−

α ,−B̃+
α

}
.

This implies −B̃−
α ≤ 0 and −B̃+

α ≤ 0 for all α ∈ [0, 1]. It indicates
B̃−

α ≥ 0 and B̃+
α ≥ 0 for all α ∈ [0, 1] .

Now since for all α ∈ [0, 1] , we have

Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) ≥ 0,

Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) ≥ 0.

Equivalently,

Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) + hB̃−
α ≥ hB̃−

α , (8)

Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) + hB̃+
α ≥ hB̃+

α .
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Equation (6) and relation (8) implies

0 = lim
h−→0+

1

h
sup

α∈[0,1]
max{

∣∣∣Ψ̃−
α (t0 − h)− Ψ̃−

α (t0) + hB̃−
α

∣∣∣ ,∣∣∣Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) + hB̃+
α

∣∣∣}
≥ lim

h−→0+

1

h
sup

α∈[0,1]
max{Ψ̃−

α (t0 − h)− Ψ̃−
α (t0) + hB̃−

α ,

Ψ̃+
α (t0 − h)− Ψ̃+

α (t0) + hB̃+
α }

≥ lim
h−→0+

1

h
sup

α∈[0,1]
max

{
hB̃−

α , hB̃
+
α

}
= sup

α∈[0,1]
max

{
B̃−

α , B̃
+
α

}
.

This implies B̃−
α ≤ 0 and B̃+

α ≤ 0 for all α ∈ [0, 1] .Hence B̃−
α = 0 and

B̃+
α = 0 for all α ∈ [0, 1] . Equivalently, B̃ = 0. □

Theorem 3.7. Suppose that fuzzy function Ψ̃ : D ⊆ R −→ R�̃� has a

local maximum at an interior point t0 ∈ D and Ψ̃ is differentiable at t0.
Then deravetive of Ψ̃ at t0 is zero.

Proof. It is same as proof of Theorem 3.6. □

Definition 3.8. Let Ψ̃ : D ⊆ R −→ R�̃� be a fuzzy-valued function

and suppose that Ψ̃ is differentiable on D, an open subset of R. If

0 ∈
[
Ψ̃

′
(t0)

]α
for some α ∈ [0, 1] and t0 ∈ D, then t0 is called fuzzy

stationary point for Ψ̃.

Theorem 3.9. Let Ψ̃ : D ⊆ R −→ R�̃� be a differentiable fuzzy-valued

function. If t0 ∈ D is a local weak minima of Ψ̃ then 0 ∈
[
Ψ̃

′
(t0)

]α
for

all α ∈ [0, 1] .

Proof. Let Ψ̃ : D ⊆ R −→ R�̃� be a differentiable fuzzy-valued function

and t0 ∈ D is a local weak minima of Ψ̃ then by Theorem 3.6, it implies

that Ψ̃
′
(t0) = 0.Hence 0 ∈

[
Ψ̃

′
(t0)

]α
for all α ∈ [0, 1] . □
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Corollary 3.10. Let Ψ̃ : D ⊆ R −→ R�̃� be a differentiable fuzzy-valued

function. Then t0 ∈ D is a fuzzy stationary point for Ψ̃ if t0 is a local
weak minima of Ψ̃.

Remark 3.11. Theorem 3.9 and Corollary 3.10 are also holds for local
weak maxima of differentiable fuzzy-valued function.

Theorem 3.12. t0 ∈ D is a fuzzy stationary point of differentiable

fuzzy-valued function Ψ̃ iff 0 ∈
[
Ψ̃

′
(t0)

]0
.

Proof. if t0 ∈ D is a fuzzy stationary point of Ψ̃ then by definition
of fuzzy stationary point, there must exists ã ∈ [0, 1] such that 0 ∈[
Ψ̃

′
(t0)

]ã
, but Ψ̃

′
(t0) ∈ R�̃� then 0 ∈

[
Ψ̃

′
(t0)

]a
for all a< ã. Inparticular

0 ∈
[
Ψ̃

′
(t0)

]0
. Conversely, If 0 ∈

[
Ψ̃

′
(t0)

]0
, then it varifies the definition

of stationary point. □

3.1.1 Sufficient

Now we introduce invexity notations for fuzzy mappings, to prove that
all stationary points are point of minimum.

Definition 3.13. A subset K of R is invex if there exists a function
η : R×R −→ R such that

υ,ω ∈ K,λ ∈ [0, 1] =⇒ ω + λη (υ,ω) ∈ K.

Definition 3.14. Let Ψ̃ be a differentiable fuzzy mapping. Ψ̃ is called
weak pseudoinvex on K, if for all υ,ω ∈ K, there exists η : K×K −→ R
such that

Ψ̃ (ω)⊖ Ψ̃ (υ) ≺ 0 =⇒ Ψ̃
′
(υ) η (υ,ω) ≺ 0,

and

Ψ̃ (ω)⊟ Ψ̃ (υ) ≺ 0 =⇒ Ψ̃
′
(υ) η (υ,ω) ≺ 0.

Remark 3.15. Weak pseudoinvex fuzzy function is called pseudoinvex
and strict pseudoinvex if above conditions holds for Ψ̃ (ω) ⊖ Ψ̃ (υ) ⪯ 0,
Ψ̃ (ω)⊟Ψ̃ (υ) ⪯ 0 and Ψ̃ (ω)⊖Ψ̃ (υ) ≾ 0, Ψ̃ (ω)⊟Ψ̃ (υ) ≾ 0 respectively.
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Example 3.16. Let us consider the fuzzy map Ψ̃ : R → R�̃� defined by

Ψ̃ (υ) = Bυ2,

where B is a fuzzy number and its α-cuts are

[B]α =
[
Bα, Bα

]
= [1 + α, 3− α] ; for all α ∈ [0, 1] .

Clearly, Ψ̃ is differentiable and[
Ψ̃

′
[υ]

]α
= [(1 + α) 2υ, (3− α) 2υ] ; for all α ∈ [0, 1] .

Thus, Ψ̃ is weak pseudoinvex, since there exist η (υ,ω) = ω − υ, such
that Ψ̃

′
(υ) η (υ,ω) ≺ 0 whenever Ψ̃ (ω)⊖Ψ̃ (υ) ≺ 0 or Ψ̃ (ω)⊟Ψ̃ (υ) ≺ 0.

Definition 3.17. Let Ψ̃ be a differentiable fuzzy mapping. Ψ̃ is known
as pseudoinvex on K if for all υ,ω ∈ K, there exists η : K × K −→ R
such that

Ψ̃ (ω)⊖ Ψ̃ (υ) ⪯ 0 =⇒ Ψ̃
′
(υ) η (υ,ω) ≺ 0,

and
Ψ̃ (ω)⊟ Ψ̃ (υ) ⪯ 0 =⇒ Ψ̃

′
(υ) η (υ,ω) ≺ 0.

Definition 3.18. Let Ψ̃ be a differentiable fuzzy mapping. Ψ̃ is called
strict pseudoinvex on K if for all υ,ω ∈ K, there exist η : K×K −→ R
such that

Ψ̃ (ω)⊖ Ψ̃ (υ) ≾ 0 =⇒ Ψ̃
′
(υ) η (υ,ω) ≺ 0,

and
Ψ̃ (ω)⊟ Ψ̃ (υ) ≾ 0 =⇒ Ψ̃

′
(υ) η (υ,ω) ≺ 0.

Lemma 3.19. If Ψ̃ is a strict pseudoinvex function then it is pseudoin-
vex function and also weak pseudoinvex function.

In following example we will show that these new convexity concepts
are generalized.

Example 3.20. Let Ψ̃ be an interval valued function with domain
[−1, 1], defined by
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-2

-1.5
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-0.5

0

0.5

1

1.5

2

F-(x)-F-(y)

F+(x)-F+(y)

Figure 1

Ψ̃(t) =

{ (
1 + t2 sin (1/t)

)
. [−1, 1] if t ∈ [−1, 1]∖ {0}

[−1, 1] if t = 0.

This function is differentiable at t= 0 and Ψ̃
′
(0) = 0̃, but not GH-

differentiable at t= 0 (see Example 5.37 [12]). It is weak pseudoinvex
function since Ψ̃ (ω)⊖ Ψ̃ (υ) ≺ 0 and Ψ̃ (ω)⊟ Ψ̃ (υ) ≺ 0 are never true,
pictured in Fig. 1.

Now, we relate the above definitions with classical ones [?].

Proposition 3.21. Consider a real valued function f : K −→ R. The

fuzzy function Ψ̃ is defined as Ψ̃ (υ) = f̃(υ) for all υ ∈ K. Then
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Ψ̃ is strict pseudoinvex on K iff f is strict pseudoinvex on K.
Ψ̃ is pseudoinvex on K iff f is pseudoinvex on K.
Ψ̃ is weak pseudoinvex on K iff f is weak pseudoinvex on K.

Proof. For all a∈ [0, 1] , we have
[
Ψ̃ (υ)

]a
= {f (υ)} a singleton. Then

result is immediate. □

Theorem 3.22. Let Ψ̃ be a weak pseudoinvex function on K. Then
every stationary point υ is a weak minimum if Ψ̃ (ω)⊖ Ψ̃ (υ) or Ψ̃ (ω)⊟
Ψ̃ (υ) exists for all ω ∈ K.

Proof. Let us consider υ is a stationary point but it is not a weak
minimum. Then for all δ > 0 there exists 0 < h < δ such that if
Ψ̃ (ω)⊖ Ψ̃ (υ) exists for all ω ∈ K. Then

Ψ̃(υ − h)⊖ Ψ̃(υ) ≺ 0,

or
Ψ̃(υ + h)⊖ Ψ̃(υ) ≺ 0.

if Ψ̃ (ω)⊟ Ψ̃ (υ) exists for all ω ∈ K. Then

Ψ̃(υ − h)⊟ Ψ̃(υ) ≺ 0,

or
Ψ̃(υ + h)⊟ Ψ̃(υ) ≺ 0.

We can say there exists ω ∈ K such that

Ψ̃(ω)⊖ Ψ̃(υ) ≺ 0,

or
Ψ̃(ω)⊟ Ψ̃(υ) ≺ 0.

This implies
Ψ̃ (ω) ≺ Ψ̃ (υ) .

By hypothesis there exists η (υ,ω) ̸= 0 such that Ψ̃
′
(υ) .η (υ,ω) ≺ 0.

If η (υ,ω) ≻ 0 then
[
Ψ̃

′
(υ)

]a
⊆ R+ for all a∈ [0, 1] and if η (υ,ω) ≺

0 then
[
Ψ̃

′
(υ)

]a
⊆ R− for all a∈ [0, 1] . This implies 0 /∈

[
Ψ̃

′
(υ)

]a
for

all a∈ [0, 1] and so υ is not fuzzy stationary point. □
Arguing in the same way the following results can be proved.
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Theorem 3.23. Let Ψ̃ is pseudo-invex on K. Then every stationary
point υ is minimum, if Ψ̃ (ω) ⊖ Ψ̃ (υ) or Ψ̃ (ω) ⊟ Ψ̃ (υ) exists for all
ω ∈ K.

Theorem 3.24. Let Ψ̃ is pseudo-invex on K. Then every stationary
point υ is strict minimum, if Ψ̃ (ω)⊖ Ψ̃ (υ) or Ψ̃ (ω)⊟ Ψ̃ (υ) exists for
all ω ∈ K.

4 Conclusion

In this article, we have considered fuzzy optimization problem based
on differentiability concept introduced in [12]. In Theorem 3.6 we have
derived necessary optimality conditions. For the sake of sufficient opti-
mality conditions, we have defined new generalized invexity notions for
fuzzy-valued functions. Also in Proposition 3.21, we have proved that
these invexity concepts generalize the classic ones. Moreover Example
3.20 illustrated that these invexity concepts are more general then all
that exist in litrature. Finally, in Theorem 3.22 we have derived suffi-
cient optimality conditions.

In future studies, the authors plan to study new classes of fuzzy
optimization problems based on new differentiability concepts and new
fuzzy fractional derivatives. Also investigate necessary and sufficient op-
timality conditions for these new classes of fuzzy optimization problems.
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