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Abstract. One of the considerable strategies for the investigation of
integro-differential equation is stability. The notion of this strategy
shows us that we can rest assured of the numerical results obtained
from the computer software. Since there are usually large errors in
the numerical results of singular differential equations, this strategy
will help us to be able to examine singular equations more easily with
computer software. In this work, we study the stability of a multi-
singular fractional boundary value problem in the sense of Hyers-Ulam
stability.We also present three examples and three figures to illustrate
our main result.
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1 Introduction

The issue of stability has a long history and was studied by scientists
more than 120 years ago, although at that time, information process-
ing was not a concept for them. In fact, this was natural because from
their point of view, physical phenomena had to be somehow sustain-
able [8, 14, 28, 29, 39, 51, 52]. After the second world war, which gave
mathematicians more leisure time, some research groups flourished in
European countries, Russia, and the United States, and talented young
people became active.

One of these young people was an individual named Stanislaw Marcin
Ulam who played an effective role in creating the concept of stability and
significant progress in achieving various results in this field [17]. A few
years later, Hyers became interested in this field. They were able to
publish several joint articles on stability [18, 19, 20, 21, 59, 60]. In the
last years of the last century, Rassias joined Hyers for extending the
stability theory [22, 23]. Rassias was introduced as a considerable re-
searcher before joining Ulam [24, 25, 40, 41, 42, 43, 44, 45, 46, 47, 48].

With the advent of computers and spread of numerical computations,
numerous software applications in mathematics have emerged which be-
came an effective factor for researchers. These calculations show that
there are often errors in calculating numerical solutions of differential
equations, and these errors sometimes get out of control, especially when
we want to find a numerical solution of a singular differential equation.
It was here when the concept of stability came to its true application. In
fact, by using this old notion introduced by Ulam, we can rest assured
of the numerical results obtained from the computer software. This was
one of the main reasons why many researchers worked on the stability
of differential equations in recent decades [1, 2, 3, 5, 6, 7, 9, 11, 12, 15,
16, 26, 30, 31, 32, 33, 36, 37, 49, 57, 62, 63, 64].

It is commonly known that in mathematical modeling of some phe-
nomena, we encounter differential equations that have singularities ([27]).
How can we be sure that the obtained errors in numerical calculations
for finding the solution of a singular differential equation are related to
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computer software or not? The answer is easy. If we can prove that the
singular differential equation is stable, then we can be sure that the nu-
merical sequence which we obtain in our calculations, will be convergent
to the solution. A researcher naturally tends to study complicated differ-
ential equations, and this sense has led many researchers to investigate
singular equations because those are one of the certain complicated cases
(see, for example, [4, 50, 53, 54, 55]). Our aim in this work is to study
the stability of a multi-singular fractional integro-differential equation
which the existence of its solutions has been studied by Shabibi et al.

In 2015, Muniyappan and Rajan [34] investigated stability of the
following BVP; D

κv(t) = f(t, v(t)),

av(0) + bv(t) = c.

Also, Rezapour and Shabibi [50] studied the existence of solutions for
the following singular BVP;


Dκv(t) = f(t, v(t)),

v(0) = 0,

av(1) = Ipv(1).

where a ≥ 1, κ ≥ 3, p ≥ 1, t ∈ (0, 1) and f is singular at t = 0. In 2017,
Haq et al. [15] reviewed the stability of the following problem;


Dκu(t) = f(t, u(t), Dκ−1u(t)),

u(0) = δu(1),

Dpu(1) = γDpu(ξ),

where 1 < κ ≤ 2, t ∈ J = [0, 1], 0 < p < 1 and ξ ∈ (0, 1). Also, Shabibi
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et al. [54] investigated the following singular problem;
Dαx(t) = f(t, x(t), x′(t), Dβx(t),

∫ 1
0 h(ξ)x(ξ)dξ),

x(0) = 0,

x(1) = Dγx(µ),

where x ∈ c1[0, 1], α ≥ 2, β, γ, µ ∈ (0, 1), 0 < t < 1, h ∈ L1[0, 1] is
nonnegative with ∥h∥1 = m and f is singular. Also, they introduced the
multi-singular notion [56] and studied the complicated problem

Dµx(t) = f(t, x(t), x′(t), Dβx(t), Ipx(t)),

x′(0) = x(ξ),

x(1) =
∫ η
0 x(s)ds,

under some different conditions. In fact, f is said to be multi-singular
whenever it is singular at more than one point t.

We must try to show that not only well-known differential equations
are stable, but also some complicated equations are stable. This issue
will show us that if we can not obtain numerical solutions of multi-
singular differential equations which are stable, we should be sure that
the existence of computer software is incomplete, and those need new
versions by using modern mathematical methods. Thus, we study only
the stability of some special cases of the multi-singular problem which
has been studied in [56]. Note that, studying each type of multi-singular
equation is important in a sense. We choose the problem because it is
one of the most complicated cases for studying stability.

Here, ∥.∥1 is the norm of L1[0, 1], ∥.∥ is the norm of Y = C[0, 1]
and ∥x∥∗ = max{∥x∥, ∥x∥′} is the norm of X = C1[0, 1]. We need next
result.

Lemma 1.1. ([38]) Let n − 1 ≤ α < n and u ∈ C(0, 1) ∩ L1(0, 1).
Then, we have Iα(cDαu(t)) = u(t) +

∑n−1
i=0 cit

i, where c1, . . . , cn−1 are
some real numbers.
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In next section, we provide our man results on the existence and the
Hyers-Ulam stability of the above complicated problem. In last section,
we give thee examples to illustrate our main result. In this way, we
provide some figures for more illustration of readers on special cases of
the examples.

2 Main Results

Here, we are going to investigate the Hyers-Ulam stability of the multi-
singular problem

Dµz(s) = f(s, z(s), z′(s), Dβz(s), Ipz(s)), (1)

via the following conditions

z
′(0) = z(ξ),

z(1) =
∫ η
0 z(s)ds,

where µ ∈ [2, 3) and z(j)(0) = 0 for j = 2, ..., [µ] − 1. Also, we check it
for the case µ ∈ [3,∞), where t ∈ J = [0, 1], z ∈ C1[0, 1], µ ∈ [2,+∞),
β, ξ, η ∈ (0, 1), p > 1, Dµ is the Caputo fractional derivative of order µ
and f : [0, 1]×R4 → R is a function such that f(s, ., ., ., .) is singular at
some points s ∈ [0, 1] (see [56]). This problem has been studied in [56]
and one can find the following results in the work.

Lemma 2.1. [56] Let η ≥ 2, µ, ξ ∈ (0, 1) and y0 ∈ L1[0, 1]. Then,
z(s) =

∫ 1
0 H1(s, r)y0(r)dr is a solution for the pointwise defined problem

Dµx(s)+y0(s) = 0 via the conditions z′(0) = z(µ) and z(1) =
∫ η
0 x(s)ds

whenever µ ∈ [2, 3), and also x′(0) = x(ξ), x(1) =
∫ ξ
0 z(s)ds and

z(j)(0) = 0 for j = 2, ..., [η]− 1 whenever η ∈ [3,∞). Here,

H(s, r) = H1(s, r) +
1

1− ξ

∫ ξ

0
H1(s, r)dt,
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and the mapping H1 is defined by

H1(s, r) =



−(s−r)η−1−s(µ−r)η−1+(1−r)η−1+(µ−r)η−1

Γ(η) , 0 ≤ r ≤ s ≤ 1, r ≤ µ,

−(s−r)η−1+(1−r)η−1

Γ(η) , 0 ≤ µ ≤ r ≤ s ≤ 1,

−s(ξ−r)η−1+(1−r)η−1+(ξ−r)η−1

Γ(η) , 0 ≤ s ≤ r ≤ µ ≤ 1,

(1−r)η−1

Γ(η) , 0 ≤ s ≤ r ≤ 1, µ ≤ r.

One can check that H∗ = sups∈J |
∫ 1
0 H(s, r)ds| = 1 + η

1−η <∞.

Theorem 2.2. [56] Assume that f : [0, 1] × (C[0, 1])4 → R is a sin-
gular function at some points s ∈ [0, 1], b1, ..., b4 ∈ L1[0, 1] are some
nonnegative real valued maps that

|f(s, x1, ..., x4)− f(s, y1, ..., y4)| ≤
4∑

i=1

bi(s)∥xi − yi∥,

for almost all s ∈ [0, 1] and all x1, ..., x4, y1, ..., y4 ∈ X. Suppose that
there exists a natural number k0, M1, ...,Mk0 ∈ L1[0, 1] and Λ1, ...,Λk0 :
R4 → [0,∞) such that M1, ...,Mk0 are nonnegative, Λ1, ...,Λk0 are non-
negative and nondecreasing functions in their components,

|f(s, x1, ..., x4)| ≤
k0∑
i=1

Mi(s)Λi(x1, ..., x4),

for all (x1, ..., x4) ∈ X4, almost all s ∈ [0, 1] and limz→∞
Λi(z,z,z,z)

z = θ0,
where θ0 is a nonnegative real number with 0 ≤ θ0 ≤ γ0

Cµ,η
∑k0

i=1 ∥Mi∥+δ0

for some δ0 > 0, γ0 = min{1,Γ(p+ 1),Γ(2− β)} and

Cµ,η = max{Aµ,η, Bµ,η},

such that Aµ,η = 3
(1−η)Γ(µ) , Bµ,η = 2

(1−η)Γ(µ−1) . Assume that [b̂1 +

b̂2 +
b̂3

Γ(2−β) +
b̂4

Γ(p+1) ]Cµ,η < 1. Then the pointwise defined problem (1)
via the both cases of conditions has a solution. Here, we considered
b̂i =

∫ 1
0 (1− s)µ−1bi(s)ds.
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Consider the map H : X → X defined by

Hz(t) =

∫ 1

0
H(t, s)f(s, z(s), z′(s), Dβz(s), Ipz(s))ds,

where H(t, s) was introduced in Lemma 2.1. By using Lemma 2.1, one
can check that the fractional problem (1) has a solution z∗ if and only
if z∗ is a fixed point of H. We say that the problem (1) is Ulam-Hyers
stable whenever there is cf > 0 so that for every ε > 0 and ϕ ∈ C(J,R)
satisfying the inequality

|cDµϕ(s)− f(s, ϕ(s), ϕ′(s), Dβϕ(s), Ipϕ(s))| ≤ ε, (s ∈ J)

there is a solution y ∈ C(J,R) of the problem (1) such that |ϕ(s)−y(s)| ≤
cfε for all s ∈ J . Consider the Banach space X = C1[0, 1] via the norm
∥z∥ = sups∈J |z(s)|+ sups∈J |z′(s)|.

In below theorem, m(t) =
∑4

i=1 bi(t) and the other condition satis-
fied. Thus, we provide our main result.

Theorem 2.3. Let f : J × R4 → R be a continuous function and ψ :
[0,∞) → [0,∞) a nondecreasing upper semi-continuous map with ψ(t) <
t for all t > 0. Assume that there exists m ∈ L1[0, 1] such that m∗ =
supt∈J | 1

m(t) | <∞ and∣∣∣f(s, x1, x2, x3, x4)−f(s, y1, y2, y3, y4)∣∣∣ ≤ m(t)ψ
(
|x1−y1|+|x2−y2|+|x3−y3|+|x4−y4|

)
,

for all s ∈ J and x1, x2, x3, x4, y1, y2, y3, y4 ∈ R. If m∗

H∗ (2 + 1
Γ(p+1) +

1
Γ(2−β)) < 1, then the problem (1) is Ulam-Hyers stable, where H∗ =

supt∈J |
∫ 1
0 H(t, s)ds| <∞.

Proof. Put cf = 1

Γ(µ+1)

(
1−m∗

H∗ (2+
1

Γ(p+1)
+ 1

Γ(2−β)
)

) . Since
m∗

H∗ (2 +
1

Γ(p+ 1)
+

1

Γ(2− β)
) < 1,

and Γ(µ + 1) > 0, we get cf > 0. Let ε > 0 be given. Assume that
ϕ ∈ C(J,R) satisfying the inequality

|Dµϕ(s)− f(s, ϕ(s), ϕ′(s), Ipϕ(s), Dβϕ(s))| ≤ ε,
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for all s ∈ J . Then, we have

−ε ≤ Dµϕ(s)− f(s, ϕ(s), ϕ′(s), Dβϕ(s), Ipϕ(s)) ≤ ε

for all s ∈ J and so

∣∣∣IµDµϕ(s)− Iµ
(
f(s, ϕ(s), ϕ′(s), Dβϕ(s)), Ipϕ(s)

) ∣∣∣ ≤ Iµε =
sµ

Γ(µ+ 1)
ε.

Thus,
∣∣∣ϕ(s) − ∫ 1

0 H(s, r)f(t, ϕ(t), ϕ′(s), Dβϕ(s), Ipϕ(s))dr
∣∣∣ ≤ sµ

Γ(µ+1)ε.

We have to show that the inequality |ϕ(t) − x∗(t)| ≤ cfε holds. Note
that,

|ϕ(t)− x∗(t)| = |ϕ(t)− Fx∗(t)|

≤
∣∣∣ϕ(t)− ∫ 1

0
H(s, r)f(s, ϕ(s), ϕ′(s), Ipϕ(s), Dβϕ(s))dr

∣∣∣
+
∣∣∣ ∫ 1

0
H(s, r)

[
f(s, ϕ(s), ϕ′(s), Ipϕ(s), Dβϕ(s))

− f(s, x∗(s), x∗′(s), Ipx∗(s), Dβx∗(s))
]
dr
∣∣∣

≤ tµ

Γ(µ+ 1)
ε+

∫ 1

0
H(s, r)m(t)ψ

[
|ϕ(s)− x∗(s)|+ |ϕ′(s)− x∗′(s)|

+ |Ipϕ(s)− Ipx∗(s)|+ |Dβϕ(s)−Dβx∗(s)|
]
dr.

Since |Ipx1− Ipx2| ≤
∥x1 − x2∥
Γ(p+ 1)

and |Dβx1−Dβx2| ≤
∥x′1 − x′2∥
Γ(2− β)

. Also,
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we assume that H∗ = supt∈J
∫ 1
0 H(s, r)dr and m∗ = supt∈J | 1

m(t) |. Thus,

|ϕ(t)− x∗(t)| ≤ tµ

Γ(µ+ 1)
ε+

1

H∗

∫ 1

0

m(t)ψ
[
|ϕ(s)− x∗(s)|

+ |ϕ′(s)− x∗′(s)|+ ∥ϕ− x∗∥
Γ(p+ 1)

+
∥ϕ′ − x∗′∥
Γ(2− β)

]
dr

≤ tµ

Γ(µ+ 1)
ε+

1

H∗

∫ 1

0

m(t)ψ

[
∥ϕ− x∗∥+ ∥ϕ′ − x∗′∥+ ∥ϕ− x∗∥

Γ(p+ 1)
+

∥ϕ′ − x∗′∥
Γ(2− β)

]
dr

≤ tµ

Γ(µ+ 1)
ε+

1

H∗

∫ 1

0

m(t)ψ

[
(1 +

1

Γ(p+ 1)
)∥ϕ− x∗∥+ (1 +

1

Γ(2− β)
)∥ϕ′ − x∗′∥

]
dr

≤ tµ

Γ(µ+ 1)
ε+

1

H∗

∫ 1

0

m(t)ψ

[
(2 +

1

Γ(p+ 1)
+

1

Γ(2− β)
)∥ϕ− x∗∥∗

]
dr

≤ tµ

Γ(µ+ 1)
ε+

1

H∗

∫ 1

0

m(t)

[
2 +

1

Γ(p+ 1)
+

1

Γ(2− β)

]
∥ϕ− x∗∥∗dr

≤ tµ

Γ(µ+ 1)
ε+

m∗

H∗

[
2 +

1

Γ(p+ 1)
+

1

Γ(2− β)

]
∥ϕ− x∗∥∗.

Hence, we get ∥ϕ − x∗∥ ≤ 1

Γ(µ+1)
(
1−m∗

H∗

(
2+ 1

Γ(p+1)
+ 1

Γ(2−β)

))ε. Thus, we

obtain ∥ϕ− x∗∥ ≤ cfε. Therefore (1) is Hyers-Ulam stable. □

3 Examples

Example 3.1. Consider the multi singular fractional integro-differential

equation D
5
2x(t)− 3

(t− 1
10

)
× 1

2

(
|x(t)|

1+|x(t)| + x′(t) + 1
Dβx(t)

+ Ipx(t)
)
= 0 for

almost all t ∈ [0, 1], with boundary condition x′(0) = x(ξ), x(1) =∫ η
0 x(s)ds when µ ∈ [2, 3), x′(0) = x(ξ), x(1) =

∫ η
0 x(s)ds, x

(j)(0) = 0,

j = 2, ..., [µ] − 1 when µ ∈ [3,∞) and x ∈ C1[0, 1], β, ξ, η ∈ (0, 1) and
p > 1. Put β = η = 1

2 , p = 2, ξ = 1
7 , µ = 5

2 and

F (t, x(t), x′(t), Dβx(t), Ipx(t)) =
3

(t− 1
10
)
× 1

2

( |x(t)|
1 + |x(t)| +x

′(t)+
1

Dβx(t)
+ Ipx(t)

)
.

For x, y ∈ C3[0, 1] and t ∈ J , clearly we have

|F (t, x(t), x′(t), Dβx(t), Ipx(t))− F (t, y(t), y′(t), Dβy(t), Ipy(t))|
≤ m(t)ψ(|x(t)− y(t)|+ |x′(t)− y′(t)|+ |Dβx(t)−Dβy(t)|+ |Ipx(t)− Ipy(t)|)
with m(t) = 3

(t− 1
10

)
, m∗ = 9

20 < ∞, H∗ = 1 + 1
1−η = 3 < ∞, ψ(t) = t

2 .

Since all the assumptions in Theorem (2.3) are satisfied, this fractional
integro-differential equation is Ulam-Hyers stable.
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Figure 1: The graph of m(t) in Example 3.1.

Example 3.2. Consider the multi singular fractional integro-differential

equation D
9
2x(t)− 1

t(t− 1
3
)
× 2

3

(
1

2+|x(t)| + x′(t) + 2
3Dβx(t)

+ 1
Ipx(t)

)
= 0 for

almost all t ∈ [0, 1], with boundary condition x′(0) = x(ξ), x(1) =∫ η
0 x(s)ds when µ ∈ [2, 3) and x′(0) = x(ξ), x(1) =

∫ η
0 x(s)ds, x

(j)(0) =

0, j = 2, ..., [µ]− 1 when µ ∈ [3,∞) and x ∈ C1[0, 1], β, ξ, η ∈ (0, 1) and
p > 1. Put η = β = 1

2 , p = 3, ξ = 1
9 , µ = 9

2 and

F (t, x(t), x′(t), Dβx(t), Ipx(t)) =
1

t(t− 1
3
)
× 2

3

( 1

2 + |x(t)|+x
′(t)+

2

3Dβx(t)
+

1

Ipx(t)

)
.

For x, y ∈ C3[0, 1] and t ∈ J , we have

|F (t, x(t), x′(t), Dβx(t), Ipx(t))− F (t, y(t), y′(t), Dβy(t), Ipy(t))|

≤ m(t)ψ(|x(t)−y(t)|+|x′(t)−y′(t)|+|Dβx(t)−Dβy(t)|+|Ipx(t)−Ipy(t)|)

with m(t) = 1
t(t− 1

3
)
, m∗ = 1

3 < ∞, H∗ = 1 + 1
1−η = 3 < ∞, ψ(t) = 2

3 t.

Since all the assumptions in Theorem (2.3) are satisfied, this fractional
integro-differential equation is Ulam-Hyers stable.
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Figure 2: The graph of m(t) in Example 3.2.

Example 3.3. Consider the multi-singular fractional differential equa-

tion D
9
2x(t) − 1

(t− 1
2
)2(t− 1

3
)
.12(

∑4
i=1

∥xi∥2
1+∥xi∥) = 0 for almost all t ∈ [0, 1],

with boundary condition x′(0) = x(ξ), x(1) =
∫ η
0 x(s)ds when µ ∈ [2, 3)

and x′(0) = x(ξ), x(1) =
∫ η
0 x(s)ds, x

(j)(0) = 0, j = 2, ..., [µ] − 1 when

µ ∈ [3,∞) and x ∈ C1[0, 1], β, ξ, η ∈ (0, 1) and p > 1. Put η = β = 1
2 ,

p = 4, ξ = 7
8 , µ = 9

2 and

F (t, x(t), x′(t), Dβx(t), Ipx(t)) =
1

(t− 1
2
)2(t− 1

3
)
× 1

2

( ||x(t)||2

1 + ||x(t)|| +
||x′(t)||2

1 + ||x′(t)||

+
||Dβx(t)||2

1 + ||Dβx(t)|| +
||Ipx(t)||2

1 + ||Ipx(t)||

)
.

For x, y ∈ C3[0, 1] and t ∈ J , we have

|F (t, x(t), x′(t), Dβx(t), Ipx(t))− F (t, y(t), y′(t), Dβy(t), Ipy(t))|
≤ m(t)ψ(|x(t)− y(t)|+ |x′(t)− y′(t)|+ |Dβx(t)−Dβy(t)|+ |Ipx(t)− Ipy(t)|)
with m(t) = 1

(t− 1
2
)2(t− 1

3
)
, m∗ = 1

6 < ∞, G∗ = 1 + 1
1−η = 3 < ∞,

ψ(t) = t
2 . Since all the assumptions in Theorem 2.3 are satisfied, this

fractional integro-differential equation is Ulam-Hyers stable.
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Figure 3: The graph of m(t) in Example 3.3.

4 Conclusion

One of the most important issues that researchers always consider in
computer calculations is to reduce computational error. Therefore, find-
ing numerical methods with high accuracy is always one of the hot topics
in the field of differential equations. Increasing this accuracy is espe-
cially important when the equation under study has single points. In
this study, we took a step in this direction by examining the issue of sta-
bility under different boundary conditions. We also provided examples
for our main result to better understand the subject. Young researchers
can use different ideas for continuing the results o this work. One of best
ideas is numerical approach. As you know, there are lot of published
numerical papers (see for example, [10, 13, 35, 58]). Now the key note is
that which numerical techniques can be used for finding the solution of
such complicate multi-singular fractional integro-differential equations?
Which numerical technique is better? This research path can be useful
for completing mathematical softwares in future.
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