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Abstract. In this work, we apply an efficient method based on hybrid
functions for solving linear and non-linear systems of fractional order
differential equations (SFDEs). Here, we consider the fractional deriva-
tives in the Caputo sense. By using the present method, a system of
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FDEs is reduced to a system of algebraic equations which can be solved
by a proper numerical method. In convergence discussion of the method,
an upper bound of the error is obtained. To show the efficiency and the
accuracy of this method, some examples are simulated and then some
comparisons between the outputs with those of several other methods
are carried out.
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1 Introduction

Integer order differential and integral equations and their systems due to
the varied and widespread applications in physics, medicine, engineering,
biology, and other fields [32, 17, 10, 13, 15, 44, 3, 49] have always been
considered by researchers. But the problem is that the behavior of many
dynamical systems and consequently their mathematical models cannot
be described based on the differential and integral calculus of integer
order. Hence, fractional calculus (FC) as a generalization of classical
calculus has been noticed especially extensively by researchers [41, 37,
43, 29, 7]. The significant role of FC in describing phenomena with
memory effects and hereditary properties in diverse fields [46, 21, 33,
12, 42, 48, 14] has made it a powerful instrument in the mathematical
modeling of these phenomena.

Since that the exact solutions of FDEs and their systems are not
available in general, the numerical methods such as the homotopy per-
turbation method [2, 28], homotopy analysis method [9, 45], the residual
power series [5, 18], the Adomian decomposition method [39, 24], the
variational iteration method [19, 40], the differential transform method
[16, 26], spectral collocation method [27, 8] and some other methods
[4, 51, 1, 25] have been introduced to solve the fractional models.

In recent years, by using hybrid functions consisting of the combina-
tion of polynomials such as Legendre, Chebyshev, Lagrange, Bernoulli,
Bernstein, and Taylor or Fourier series with the Block-pulse functions
(BPFs), various numerical methods have been proposed for solving math-
ematical models of integer and fractional orders [6, 23, 22, 50, 38, 36,



AN EFFICIENT NUMERICAL METHOD FOR SOLVING ... 3

47, 35, 20].

In this work, an attempt is made to solve the system of FDEs by
using the hybrid Legendre Block-pulse functions (HLBPFs). To do this,
we consider the general form of the system of FDEs as

C
0 Dα

t u1 = f1(t, u1, u2, ..., un),
C
0 Dα

t u2 = f2(t, u1, u2, ..., un),

...
C
0 Dα

t un = fn(t, u1, u2, ..., un),

(1)

where 0 < α ≤ 1 and the initial conditions are u1(0) = λ1, u2(0) = λ2,
. . . , un(0) = λn. In addition to the present section, this paper is divided
into four other sections. In Section 2, some FC concepts and some
definitions and properties of HLBPFs are reviewed. In Section 3, we
apply the hybrid Legendre Block-pulse functions method (HLBPM) to
construct approximate solutions for linear and non-linear systems of
FDEs. The error and convergence analysis of the method is studied in
Section 4. Finally, in Section 5, the applicability and effectiveness of the
method are illustrated by means of some examples.

2 Preliminaries and Definitions

In this section, some required concepts of FC and some definitions are
presented.

2.1 Fractional calculus

Although, there is not a uniform definition for the fractional derivative
and the fractional integral, and several definitions have been presented
by Grünwald-Letnikov, Riemann-Liouville, Hadamard, Erdélyi-Kober,
Caputo, and others, two common and accepted definitions which have
defined by Riemann-Liouville and Caputo are demonstrated as follows:

Definition 2.1. [43] The Riemann-Liouville fractional integral operator
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0Iα
t for a function ω ∈ L1(a, b) is defined as

(0Iα
t ω)(t) =


1

Γ(α)

∫ t

0

ω(ς)

(t− ς)1−α
dς, α > 0,

f(t), α = 0,

where α is the order of operator and Γ(.) denotes the well-known Gamma
function.

Definition 2.2. [43] The Caputo fractional derivative operator of order
α > 0 for t > 0 is defined as

(C0 Dα
t ω)(t) = (0In−α

t
C
0 D

n

t ω)(t) =
1

Γ(n− α)

∫ t

0
(t− ς)n−α−1ω(n)(ς) dς,

where n− 1 < α ≤ n ∈ N. For any constant C ∈ R, it yields C
0 Dα

t C = 0.

Property 2.3. The above-defined fractional operators satisfy the fol-
lowing properties:

(i) (C0 D
α1
t

C
0 D

α2

t ω)(t) = (C0 D
α1+α2
t ω)(t),

(ii) (0Iα1
t 0Iα2

t ω)(t) = (0Iα2
t 0Iα1

t ω)(t) = (0Iα1+α2
t ω)(t),

(iii) C
0 Dα

t t
β =


0, β ∈ Z+ and β < α,

Γ(β + 1)

Γ(β − α+ 1)
tβ−α, otherwise,

(iv) (0Iα
t

C
0 D

α
t ω)(t) = ω(t)−

∑⌈α⌉−1
k=0

tk

k!ω
(k)(0+), n− 1 < α ≤ n ∈ N.

2.2 Hybrid functions

Definition 2.4. A P -set of BPFs bp(t) on the interval [0, 1) is defined
as

bp(t) =

1,
p− 1

P
≤ t <

p

P
,

0, o.w,

where p = 1, 2, . . . , P , is the order of BPFs. The set {bp(t)} has orthog-
onality and disjointness properties on [0, 1).
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Definition 2.5. [34] A PQ-set of HLBPFs φpq(t) on the interval [0, 1)
is defined as

φpq(t) =

Lq(2Pt− 2p+ 1),
p− 1

P
≤ t <

p

P
,

0, o.w,

where Lq is the well-known Legendre polynomial of order q = 0, 1, 2, . . .,
Q− 1, which is obtained with the following formulas:

L0(t) = 1, L1(t) = t,

(q + 1)Lq+1(t) = (2q + 1)tLq(t)− qLq−1(t), t ∈ [−1, 1].

Note that since the BPFs and Legendre polynomials are both orthogo-
nal and complete, then the set {φpq(t)} forms an orthogonal complete
system in L2[0, 1). We can expand a function ω ∈ L2[0, 1) using the
basis functions {φpq(t)} as [34]

ω(t) =
∞∑
p=1

∞∑
q=0

cpq φpq(t).

Theorem 2.6. [31] Let Y be a finite dimensional subspace of a strictly
convex normed space Θ. Then, for each ω ∈ Θ there exists a unique best
approximation ω̄ ∈ Y.

We let Θ = L2[0, 1) and consider the normed space Θ with the following
norm:

||ω||2 = ⟨ω, ω⟩
1
2 =

(∫ 1

0
|ω(t)|2 dt

) 1
2

,

where ⟨., .⟩ denotes the inner product.

Remark 2.7. Since Θ is a Hilbert space, it is also strictly convex.

Let

Y = span{φ10(t), . . . , φ1(Q−1)(t), φ20(t), . . . , φ2(Q−1)(t), . . ., φP0(t), . . . ,

φP (Q−1)(t)}.
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Since Y is a finite dimensional subspace of Θ, using Theorem 2.6 we
have

ω(t) ≃ ω̄(t) = ωPQ(t) =

P∑
p=1

Q−1∑
q=0

cpq φpq(t) = CTΦ(t) = ΦT (t)C, (2)

where

Φ(t) = [φ10(t), . . . , φ1(Q−1)(t), φ20(t), . . . , φ2(Q−1)(t), . . . ,φP0(t), . . . ,

φP (Q−1)(t)]
T ,

and

C = [c10, c11, . . . , c1(Q−1), c20, c21, . . . , c2(Q−1), . . . , cP0, cP1, . . . , cP (Q−1)]
T .

The hybrid coefficients cpq are obtained by

cpq =
⟨ω(t), φpq(t)⟩
⟨φpq(t), φpq(t)⟩

, p = 1, 2, . . . , P, q = 0, 1, . . . , Q− 1.

2.3 Operational matrices

The integration of the vector Φ(t) is approximated as [34]∫ t

0
Φ(ς) dς ≃ ΥΦ(t), (3)

where Υ, i.e. the operational matrix of integration is defined as

Υ =


M S S . . . S
0 M S . . . S
0 0 M . . . S
...

...
...

. . .
...

0 0 0 . . . M


θ×θ

,

where θ = PQ, 0 is the Q × Q zero matrix, and S and M have the
following forms:

S =
1

P


1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0


Q×Q

,
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M =
1

2P



1 1 0 0 0 . . . 0 0 0 0 0
− 1

3 0 1
3 0 0 . . . 0 0 0 0 0

0 − 1
5 0 1

5 0 . . . 0 0 0 0 0
0 0 − 1

7 0 1
7 . . . 0 0 0 0 0

0 0 0 − 1
9 0 . . . 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 . . . 0 1

2Q−9 0 0 0

0 0 0 0 0 . . . −1
2Q−7 0 1

2Q−7 0 0

0 0 0 0 0 . . . 0 −1
2Q−5 0 1

2Q−5 0

0 0 0 0 0 . . . 0 0 −1
2Q−3 0 1

2Q−3

0 0 0 0 0 . . . 0 0 0 −1
2Q−1 0


Q×Q

.

We note that Φ(t) can be approximated by using the BPFs as

Φ(t) ≃ Ψθ×θ B(t), (4)

where

� Ψθ×θ = [Φ(τ1) Φ(τ2) . . . Φ(τθ)], where τs = 2s−1
2θ for s =

1, 2, . . . , θ are the collocation points.

� B(t) = [b1(t), b2(t), . . . , bθ(t)]
T , where bp(t) is the pth BPF.

To obtain the operational matrix of the fractional integration Υα
θ×θ for

HLBPFs, we put

(IαΦ)(t) ≃ Υα
θ×θ Φ(t). (5)

Using Eq. (4), we can write

(IαΦ)(t) ≃ (IαΨθ×θ B)(t) = Ψθ×θ (IαB)(t). (6)

From Eqs. (5) and (6), we get

Υα
θ×θ Φ(t) ≃ Ψθ×θ (IαB)(t). (7)

Furthermore,

(IαB)(t) ≃ FαB(t), (8)
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where Fα has the following shape [30]:

Fα =
1

θα Γ(α+ 2)


1 µ1 µ2 . . . µθ−1

0 1 µ1 . . . µθ−2

0 0 1 . . . µθ−3
...

...
...

. . .
...

0 0 0 . . . 1


θ×θ

.

where µs = (s + 1)α+1 − 2sα+1 + (s − 1)α+1; s = 1, 2, . . . , θ − 1. By
substituting Eq. (8) in Eq. (7), and considering Eq. (4), the following
relation is derived:

Υα
θ×θΨθ×θ B(t) ≃ Ψθ×θ FαB(t).

And finally, Υα
θ×θ is obtained as

Υα
θ×θ ≃ Ψθ×θ FαΨ−1

θ×θ.

3 Method Implementation

In this section, we consider system (1) in which the fractional deriva-
tive operator C

0 Dα
t is in the Caputo sense. For solving this system by

the HLBPM, it is necessary that C
0 Dα

t uk(t) be approximated by the
HLBPFs. To do this, we put

C
0 Dα

t uk(t) ≃ UT
kΦ(t), k = 1, 2, . . . , n, (9)

where Uk = [uk,1, uk,2, . . . ,uk,θ]
T is the unknown vector.

If we apply the Riemann-Liouville fractional integral operator 0Iα
t de-

fined in Definition 2.1 to both sides of Eq. (9), then we get

(0Iα
t

C
0 Dα

t uk)(t) ≃ UT
k (0Iα

t Φ)(t).

By using item (iv) in property (2.3) and Eq. (5), we rewrite the last
equation as

uk(t) ≃
⌈α⌉−1∑
j=0

tj

j!
u
(j)
k (0+) + UT

k Υα
θ×θ Φ(t).
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Particularly for 0 < α ≤ 1, we have

uk(t) ≃ uk(0
+) + UT

k Υα
θ×θ Φ(t).

If we expand the constant uk(0
+) in terms of the HLBPFs as

uk(0
+) ≃ UT

k(0)Φ(t)

where Uk(0) is defined as [34]

Uk(0) =

[
uk(0

+)

Q−1︷ ︸︸ ︷
0 0 . . . 0 uk(0

+)

Q−1︷ ︸︸ ︷
0 0 . . . 0 . . . uk(0

+)

Q−1︷ ︸︸ ︷
0 0 . . . 0︸ ︷︷ ︸

θ

]T
,

then, we will have

uk(t) ≃ (UT
k(0) +UT

k Υα
θ×θ)Φ(t) = UT

k,αΦ(t), k = 1, 2, . . . , n. (10)

Now, for implementation of the method, the system (1) is considered in
two forms. At first, we rewrite the system in linear form as follows:

C
0 Dα

t u1(t) = x1(t) +

n∑
r=1

y1,r(t)ur(t),

C
0 Dα

t u2(t) = x2(t) +
n∑

r=1

y2,r(t)ur(t),

...

C
0 Dα

t un(t) = xn(t) +

n∑
r=1

yn,r(t)ur(t),

(11)

where the known functions xk and yk,r for k, r = 1, 2, . . . , n, can be
approximated by the HLBPFs as

xk(t) ≃ XT
kΦ(t), (12)

yk,r(t) ≃ YT
k,rΦ(t). (13)

For approximating the term yk,r(t)uk(t), we use Eqs. (10) and (13), and
get

yk,r(t)uk(t) ≃ (YT
k,rΦ(t))(UT

k,αΦ(t)) = YT
k,rΦ(t)ΦT (t)Uk,α = YT

k,rŨk,αΦ(t),
(14)
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where the evaluation procedure of Φ(t)ΦT (t) and matrix Ũk,α are given
in [34].
If we subtitute Eqs. (9), (12) and (14) into Eq. (11), then by replacing ≃
with =, we will have the following linear system of algebraic equations:(

UT
k −XT

k −
n∑

r=1

YT
k,rŨk,α

)
Φ(t) = 0, k = 1, 2, . . . , n. (15)

Now, before further details about this system, we also obtain a system
of algebraic equations for the non-linear form of system (1). Here, in
addition to the previously obtained approximations, we approximate
non-linear terms by the HLBPFs as

uk(t)ur(t) ≃ (UT
k,αΦ(t))(UT

r,αΦ(t)) = UT
k,αΦ(t)ΦT (t)Ur,α

= UT
k,αŨr,αΦ(t), r, k = 1, 2, . . . , n,

and

u3
k(t) = u2

k(t).uk(t) ≃ (UT
k,αŨk,αΦ(t))(UT

k,αΦ(t)) = UT
k,αŨk,αΦ(t)ΦT (t)Uk,α

= UT
k,αŨ

2
k,αΦ(t).

Likewise, we have
umk (t) ≃ UT

k,αŨ
m−1
k,α Φ(t),

where m is a positive integer number. By substituting the obtained
approximations in terms of the vector Φ(t) into function fk, we can
write

fk(t, u1, u2, . . . , un) ≃ F̄
T
k,αΦ(t), k = 1, 2, . . . , n.

Hence, the non-linear system of algebraic equations associated with the
non-linear form of system (1) can be written as(

UT
k − F̄

T
k,α

)
Φ(t) = 0, k = 1, 2, . . . , n. (16)

Now, we collocate systems of algebraic equations (15) and (16) at the
points t = τs =

2s−1
2θ ; s = 1, 2, . . . , θ, and solve them by a proper numeri-

cal method such as Newton’s method. After obtaining the vectors Uk for
k = 1, 2, . . . , n, the approximate solution of system (1) are determined
by using Eq. (2).
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4 Error Analysis

In current section, by using a Hilbert space called the Sobolev space as
well as the relevant norm, an upper bound of the error for the present
method is obtained.

Definition 4.1. [11] Let γ ≥ 0 be an integer and (a, b) be a bounded
real interval. The vector space of the functions v ∈ L2(a, b) with the
following definition, is called the Sobolev space.

Hγ(a, b) =

{
v| v(m) ∈ L2(a, b), for 0 ≤ m ≤ γ

}
.

For the Sobolev space, the relevant norm is defined as

∥v∥Hγ(a,b) =

( γ∑
m=0

∥v(m)∥2L2(a,b)

) 1
2

.

Remark 4.2. Some properties of the Sobolev spaces are considered as
follows:

� H0(a, b) ≡ L2(a, b),

� . . . Hγ+1(a, b) ⊂ Hγ(a, b) ⊂ . . . ⊂ H1(a, b) ⊂ L2(a, b).

Lemma 4.3. [11] Let {Lq}q=0 be the sequence of Legendre polynomials.

Also, assume that ωJ(t) =
∑J

j=0 djLj(t) be the best polynomial approx-

imation of degree J for ω ∈ L2(−1, 1). Then, for γ ≥ 1, there exists a
positive constant δ0 > 0 such that

∥ω − ΩJ∥L∞(−1,1) ≤ δ0J
3
4
−γ∥ω∥Hγ(−1,1),

for all functions ω in Hγ(−1, 1).

Lemma 4.4. Let ω ∈ Hγ [0, 1) and ωPQ be the approximation of ω
defined in Eq. (2). Then,

∥ω − ωPQ∥L∞[0,1) ≤ δ0(PQ)
3
4
−γ max

1≤p≤P
∥ω∥Hγ(Ip),

where Ip = [p−1
P , p

P ).
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Proof. It can be obviously concluded by using Lemma 4.3. □
Before we express the following theorem, we apply operator 0Iα

t to both
sides of equations in system (1) and obtain

0Iα
t

C
0 Dα

t u1 = 0Iα
t f1(t, u1, u2, . . . , un),

0Iα
t

C
0 Dα

t u2 = 0Iα
t f2(t, u1, u2, . . . , un),

...

0Iα
t

C
0 Dα

t un = 0Iα
t fn(t, u1, u2, . . . , un).

(17)

Now, by considering Definitions 2.1, 2.2 and Property 2.3, system (17)
can be written as

u1(t)− u1(0
+) =

∫ t

0

(t− ς)α−1

Γ(α)
f1(ς, u1(ς), u2(ς), . . . , un(ς)) dς,

u2(t)− u2(0
+) =

∫ t

0

(t− ς)α−1

Γ(α)
f2(ς, u1(ς), u2(ς), . . . , un(ς)) dς,

...

un(t)− un(0
+) =

∫ t

0

(t− ς)α−1

Γ(α)
fn(ς, u1(ς), u2(ς), . . . , un(ς)) dς.

(18)
We represent the system (18) in matrix form as

U(t) = U(0+) +

∫ t

0

(t− ς)α−1

Γ(α)
F (ς, U(ς)) dς, (19)

where
U(t) = [u1(t), u2(t), . . . , un(t)]

T ,

and

F (ς, U(ς)) =


f1(ς, U(ς))
f2(ς, U(ς))

...
fn(ς, U(ς))

 .

Theorem 4.5. Let U ∈ Hγ [0, 1) be the exact solution of Eq. (19),
Û(t) = UPQ(t) be the approximate solution obtained by the HLBPM and

e(t) = U(t)− Û(t) be the error term. Moreover, assume that
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(a) fk(ς, U(ς)), k = 1, 2, . . . , n be a continuous function for 0 ≤ ς ≤ t <
1 and satisfies the Lipschitz condition∣∣fk(ς, U(ς))− fk(ς,W (ς))

∣∣ ≤ Lk ∥U −W∥∞,

where Lk > 0, k = 1, 2, . . . , n, is Lipschitz constant.

(b) Kα = 1
Γ(α) sup

0≤t<1

∫ t
0 (t− ς)α−1 dς.

Then, there exists a positive constant δ such that

∥e∥∞ = ∥U − Û∥∞ ≤ Kαδ max
1≤p≤P

∥ur∥Hγ(Ip).

Proof. Let ũk(t) = uk(PQ)(t), k = 1, 2, . . . , n, be the approximate
solution of the system defined in Eq. (19), and ek(t) = uk(t)− ũk(t) be
the error term. Then,

ek(t) = uk(t)− ũk(t) =

∫ t

0

(t− ς)α−1

Γ(α)

(
fk(ς, U(ς))− fk(ς, Ũ(ς))

)
dς.

By considering assumptions a and b and 0 ≤ t < 1, we obtain

|ek(t)| ≤ KαLk ∥U − Ũ∥∞ = KαLk max
1≤k≤n

∥uk − ũk∥∞.

Let L = max
1≤k≤n

Lk, then

∥ek∥∞ ≤ KαL ∥ur − ũr∥∞, r ∈ {1, 2, . . . , n}. (20)

Now, by using Lemma 4.4 and Eq. (20), we have

∥ek∥∞ ≤ KαL ∥ur−ũr∥∞ = KαL ∥ur−ũr∥L∞[0,1) ≤ Kαδ max
1≤p≤P

∥ur∥Hγ(Ip),

(21)

where δ = Lδ0(PQ)
3
4
−γ .

If e(t) = U(t)− Ũ(t), then using (21), we get

∥e∥∞ = ∥U − Ũ∥∞ ≤ Kαδ max
1≤p≤P

∥ur∥Hγ(Ip).

□
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5 Numerical Examples

In this section, the effectiveness of the present method is studied by ap-
plying the HLBPM on several examples of linear and non-linear systems
of FDEs. For all computations, a Matlab 2017a software package on a
laptop with core i5-3210M CPU Intel processor and 4GB RAM is used.

Example 5.1. As the first example, a linear system of FDEs is consid-
ered as [51, 1] {

C
0 Dα

t u1(t) = u1(t) + u2(t),
C
0 Dα

t u2(t) = −u1(t) + u2(t),
(22)

subject to the initial conditions u1(0) = 0, u2(0) = 1. For α = 1, the
exact solution of the system (22) is u1(t) = et sin(t), u2(t) = et cos(t).
By taking P = 2, Q = 10, we apply the HLBPM for solving this system
when α = 1. Figure 1 shows the obtained absolute errors of u1 and u2.
Also, in Table 1 a comparison between the absolute errors of u1 and
u2 obtained by the present method and the method in [51] is shown.
It is noted that the maximum absolute errors of u1 and u2 on [0, 1] by
Haar wavelet collocation method (HWCM) [1] are 4.03865E − 07 and
1.14139E − 07, respectively. It can be obtained from Figure 1 and the
tabulated data in Table 1 that the obtained numerical solutions by the
HLBPM are in high agreement with the exact solutions.

t
HLBPM (P = 2, Q = 4) HLBPM (P = 2, Q = 6) Method of [51] (M = 3, k = 4)

eu1 eu2 eu1 eu2 eu1 eu2

0.1 2.22e-05 8.00e-05 3.86e-08 7.59e-09 5.09E-04 6.79E-05
0.2 6.95e-06 4.02e-05 1.38e-08 4.59e-10 2.02E-04 7.59E-05
0.3 1.62e-05 5.00e-05 2.80e-08 1.03e-08 2.50E-04 2.85E-05
0.4 1.83e-05 7.51e-05 5.32e-08 1.62e-08 2.16E-04 4.26E-05
0.5 4.07e-05 1.55e-04 1.54e-07 3.96e-08 8.34E-04 6.53E-04
0.6 9.78e-05 1.01e-04 3.40e-08 2.64e-08 5.48E-03 1.39E-04
0.7 3.53e-05 4.59e-05 6.96e-09 4.86e-10 1.39E-03 3.69E-04
0.8 6.86e-05 6.54e-05 4.40e-08 4.81e-08 2.72E-03 7.74E-04
0.9 8.13e-05 8.96e-05 7.62e-08 7.68e-08 1.71E-03 7.66E-03
1.0 1.42e-04 1.52e-04 9.84e-08 9.04e-08 2.81E-03 1.43E-03

Table 1: Comparison between the absolute errors of u1 and u2 in Ex-
ample 5.1 for α = 1.

Also, for fractional derivatives, we take P = 2, Q = 10 and use the
HLBPM for αj = 0.7 + 0.1j; j = 0, 1, 2, 3 on [0, 1]. The obtained results
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Figure 1: The absolute errors of u1 and u2 for α = 1 in Example 5.1.
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Figure 2: The solution behavior of Example 5.1 for αj = 0.7+0.1j; j =
0, 1, 2, 3.

are shown in Figures 2a and 2b. In Figure 2, we see that when α → 1, the
numerical solutions converge to the solutions of system (22) for α = 1,
which indicate that the presented method is practicable.

Example 5.2. Stiff systems are observed in the study of electrical cir-
cuit theory, ballistics, aerodynamics, chemical kinetics and other areas
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of applications. Here, we consider a non-linear stiff system of FDEs as
[18, 1] {

C
0 Dα

t u1(t) = −1002u1(t) + 1000u22(t),
C
0 Dα

t u2(t) = u1(t)− u2(t)− u22(t),
(23)

where the initial conditions are u1(0) = 1, u2(0) = 1. When α =
1, the exact solution of the system (23) is u1(t) = e−2t, u2(t) = e−t.
The absolute errors of u1 and u2 obtained by the HLBPM (for P =
4, Q = 12) and the fractional residual power series method (FRPS) [18]
are shown in Table 2. In Table 3, we give a comparison between the
maximum absolute errors by HLBPM, FRPS [18] and HWCM [1] on
[0, 2].

t
Absolute error of u1 Absolute error of u2

Exact u1(t) HLBPM FRPS [18] Exact u2(t) HLBPM FRPS [18]

0.2 0.670320046035 2.22e-16 0.00e+00 0.818730753077 0.00e+00 0.00e+00
0.4 0.449328964117 1.11e-16 5.55e-17 0.670320046035 0.00e+00 0.00e+00
0.6 0.301194211912 2.22e-16 0.00e+00 0.548811636094 0.00e+00 0.00e+00
0.8 0.201896517994 1.94e-16 5.55e-16 0.449328964117 0.00e+00 5.55e-17
1.0 0.135335283236 1.67e-16 3.76e-14 0.367879441171 5.55e-17 5.55e-17
1.2 0.090717953289 2.50e-16 1.70e-12 0.301194211912 1.11e-16 0.00e+00
1.4 0.060810062625 2.08e-16 4.26e-11 0.246596963941 1.39e-16 1.39e-16
1.6 0.040762203978 1.73e-16 6.93e-10 0.201896517994 8.33e-17 5.55e-16
1.8 0.027323722447 1.70e-16 8.09e-09 0.165298888221 8.33e-17 4.22e-15
2.0 0.018315638888 1.77e-16 7.28e-08 0.135335283236 5.55e-17 3.76e-14

Table 2: The numerical results of Example 5.2 for α = 1.

HLBPM FRPS [18] (HWCM) [1]

u1 2.50e-16 7.28e-08 4.48e-06
u2 1.39e-16 3.76e-14 1.37e-06

Table 3: The maximum absolute errors of u1 and u2 for Example 5.2
for α = 1.

For fractional derivatives, the HLBPM (for P = 2, Q = 8) is used for
αj = 0.7+0.1j; j = 0, 1, 2, 3 on [0, 1]. The obtained results are shown in
Figures 3a and 3b. As the Example 5.1, we see that when α → 1, the
numerical solutions converge to the solutions of system (23) for α = 1.
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Figure 3: The solution behavior of Example 5.2 for αj = 0.7+0.1j; j =
0, 1, 2, 3.

Example 5.3. In this example, an other non-linear system of FDEs is
considered as [51, 1]

C
0 Dα

t u1(t) =
3

4
u21(t),

C
0 Dα

t u2(t) = u1(t)u2(t)−
1

8
u42(t) + 2,

(24)

with the initial conditions u1(0) = 0, u2(0) = 0. When α = 1, the exact
solution of this system is u1(t) = t3, u2(t) = 2t. Here, we take P =
2, Q = 4 and apply the present method for solving system (24). Some
numerical results including a comparison between the absolute errors of
u1 and u2 obtained by the HLBPM and the method in [51] are shown in
Table 4. Also, it is noted that the maximum absolute errors of u1 and u2
on [0, 1] by HWCM [1] are 7.10139E−06 and 4.90903E−06, respectively.
It can be found from Figure 4 and Table 4 that the approximate solution
by HLBPM and the exact solution are in excellent agreement. Also,
Figures 5a and 5b show the solution behavior obtained by the present
method at the fractional orders αj = 0.5 + 0.1j; j = 0, 1, . . . , 5 on [0, 1]
which indicate that when α → 1, the numerical solutions converge to
the solutions of system (24) for α = 1.

Example 5.4. As the last example, we consider a variable coefficients
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Figure 4: The absolute errors of u1 and u2 for α = 1 in Example 5.3.
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Figure 5: The solution behavior of Example 5.3 for αj = 0.5+0.1j; j =
0, 1, 2, 3.
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t
Exact HLBPM (P = 2, Q = 4) Method of [51] (M = 3, k = 4)
u1 u2 eu1 eu2 eu1 eu2

0.2 0.008 0.4 1.56E-17 5.55E-17 4.19E-05 1.16E-06
0.4 0.064 0.8 4.16E-17 2.22E-16 8.52E-05 9.21E-06
0.6 0.216 1.2 1.39E-16 4.44E-16 1.39E-04 3.03E-05
0.8 0.512 1.6 1.11E-16 2.22E-16 2.02E-04 6.69E-05
1.0 1.000 2.0 0.00E+00 2.22E-16 2.76E-04 1.14E-04

Table 4: Numerical results for Example 5.3 for α = 1.

system of FDEs as 
C
0 Dα

t u1(t) = t u1(t),
C
0 Dα

t u2(t) = 2t u21(t),
C
0 Dα

t u3(t) = 3t u1(t)u2(t),

(25)

subject to the initial conditions u1(0) = 1, u2(0) = 1, u3(0) = 1. The

exact solutions of this system for α = 1 are given by u1(t) = e
1
2
t2 , u2(t) =

et
2
, u3(t) = e

3
2
t2 .

We apply the HLBPM (for P = 2, Q = 8) for solving this system and
report the obtained absolute errors for α = 1 in Table 5. The tabulated
results show that the approximate solutions are in a desired agreement
with the exact solutions. Also, to show the solution behavior for some
fractional orders, the reader is referred to Figures 6a, 6b and 6c.

t
Exact HLBPM Absolute error

u1 u2 u3 u1 u2 u3 eu1 eu2 eu3

0.1 1.005013 1.010050 1.015113 1.005013 1.010050 1.015113 2.63e-10 5.56e-09 3.61e-08
0.2 1.020201 1.040811 1.061837 1.020201 1.040811 1.061837 8.33e-11 1.98e-09 1.40e-08
0.3 1.046028 1.094174 1.144537 1.046028 1.094174 1.144537 5.75e-12 4.12e-10 4.17e-09
0.4 1.083287 1.173511 1.271249 1.083287 1.173511 1.271249 1.80e-10 3.44e-09 2.05e-08
0.5 1.133148 1.284025 1.454991 1.133148 1.284025 1.454991 4.47e-10 9.04e-09 5.66e-08
0.6 1.197217 1.433329 1.716007 1.197217 1.433329 1.716006 1.29e-09 6.20e-08 7.71e-07
0.7 1.277621 1.632316 2.085482 1.277621 1.632316 2.085482 5.97e-10 3.07e-08 4.01e-07
0.8 1.377128 1.896481 2.611696 1.377128 1.896481 2.611696 2.90e-10 1.67e-08 2.35e-07
0.9 1.499303 2.247908 3.370294 1.499302 2.247908 3.370294 4.28e-10 1.73e-08 1.82e-07
1.0 1.648721 2.718282 4.481689 1.648721 2.718282 4.481689 6.25e-11 4.91e-09 8.02e-08

Table 5: Numerical results of Example 5.4 for α = 1.
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Figure 6: The solution behavior of Example 5.4 for αj = 0.4+0.2j; j =
0, 1, 2, 3.
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Conclusion

In the present work, the hybrid Legendre Block-pulse method (HLBPM)
has been successfully used for solving both linear and non-linear systems
of fractional ordinary differential equations. By using this method, sys-
tems of FDEs were reduced to linear or non-linear systems of algebraic
equations which can be solved by a proper method such as Newton’s
method. Also, an upper bound of the error was obtained for the pro-
posed method. Finally, some numerical examples were simulated to
show the effectiveness of the method. It can be found from these exam-
ples that the obtained numerical solutions by the HLBPM are in high
agreement with the exact solutions. Also, for the fractional orders α
when α → 1, the obtained numerical solutions converge to the solu-
tion of systems for α = 1, which indicate that the presented method is
practicable.
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