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Abstract. In this paper, we generalize the concepts of the relative
commutativity degree d(G,N) of a subgroup N of a finite group G and
also the tensor degree of a finite group. We introduce the relative n-
tensor nilpotent degree of a finite group G with respect to a subgroup
H of G and some bounds on this topic are given.
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1 Introduction and Preliminaries

All groups considered in this paper are finite. Let G be a group with
a normal subgroup N . Then (G,N) is said to be a pair of groups. Let
G and N act on each other and on themselves by conjugation. The
nonabelian tensor product G⊗N is the group generated by the symbols
g ⊗ n subject to the relations

gg′ ⊗ n = (gg′ ⊗ gn)(g ⊗ n)
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g ⊗ nn′ = (g ⊗ n)(ng ⊗ nn′)

for all g, g′ in G and n, n′ in N , where for example gg′ is the conjugate
of g′ by g. For an element x ∈ G, we consider the tensor centralizer of
x as

C⊗
G(x) = {a ∈ G : a⊗ x = 1G⊗G}

which is a subgroup of G. The intersection of all tensor centralizers
of elements of G is called the tensor center of G and it is denoted by
Z⊗(G). The commutator map κ : G ⊗ N −→ [G,N ] which is given by
g ⊗ n −→ [g, n] for all g ∈ G and n ∈ N , is an epimorphism of groups
and we denote kerκ by J2(G). We define the tensor upper central series
of G as Z⊗

1 (G) = Z⊗(G) and

Z⊗
n (G) = {a ∈ G : [a, x1, . . . , xn−1]⊗ xn = 1; for all x1, . . . , xn ∈ G}

for all n ≥ 2. In fact Z⊗
n (G)/Z⊗(G) = Zn−1(G/Z⊗(G)) for all n ⩾ 1.

Hence we have the ascending tensor central series as

1 ≤ Z⊗
1 (G) = Z⊗(G) ≤ Z⊗

2 (G) ≤ Z⊗
3 (G) ≤ · · · .

In [1], the concept of the tensor degree of a group is introduced as

d⊗(G) =
|{(x, y) ∈ G×G : x⊗ y = 1⊗}|

|G|2

which may be considered as the distance ofG from being equal to Z⊗(G),
because d⊗(G) = 1 if and only if Z⊗(G) = G. On the other hand, one
may easily check that d⊗(G) = 1 if and only if G is abelian.

One of the most important concepts in probabilistic group theory
is the commutativity degree d(G) of a finite group G (See [4]). Erfa-
nian et. al. in [3] generalized the notation of d(G) by defining the
relative commutativity degree of a pair of groups (G,N). Let N be
a subgroup of G. The relative commutativity degree d(G,N) is the
probability of commuting an element of N with an element of G. It is
obviously seen that d(G) = d(G,G) and d(G,N) = 1 if and only if N is
contained in the center of G. They also proved the following theorem:
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Theorem 1.1. (See [3] Theorem 3.9) Let H and N be two subgroups of
G such that N ⊴G and N ⊆ H. Then

d(H,G) ≤ d(H/N,G/N)d(N),

equality holds if N ∩ [H,G] = 1.

Theorem 1.2. [7] Let G be a group and p be the smallest prime divisor
of the order of G and d = d(G). Then

d

|J2(G)|
+

|Z⊗(G)|
|G|

(1− 1

|J2(G)|
) ≤ d⊗(G)

≤ d− (p− 1)(|Z(G)| − |Z⊗(G)|)
p|G|

The special case when Z⊗(G) = 1 is described by the next result
and has analogies with Theorem 2.8 in [6]. There are analogous to the
commutativity degree of groups in [1, 2, 7, 8].

Theorem 1.3. [7] Let G be a nonabelian group with Z⊗(G) = 1 and p
be the smallest prime dividing |G|. Then d⊗(G) ≤ 1

p .

2 Relative n-Tensor Nilpotent Degree

This section is devoted to define the concept of relative n-tensor nilpo-
tent degree of a finite group G and a subgroup H. Then we obtain some
results on this concept.

Definition 2.1. Let H be a subgroup of a finite group G. We define
d⊗n (H,G), the relative n-tensor nilpotent degree of H in G, as

|{(h1, . . . , hn, g) : [h1, . . . , hn]⊗ g = 1H⊗G, hi ∈ H, g ∈ G}|
|H|n|G|

.

In the special case when H = G, it is called the n-tensor nilpotent degree
of G is denoted by d⊗n (G).

We begin with two following elementary results.

Lemma 2.2. Let G be a group, x ∈ G and H ≤ G, then
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(i) [H : C⊗
G(x) ∩H] ≤ [G : C⊗

G(x)];

(ii) Equality holds in (i), if G = HZ⊗(G). The converse is not true.

Proof. (i) Since C⊗
G(x) ≤ G, we have HC⊗

G(x) ⊆ G and hence

|HC⊗
G(x)| =

|H||C⊗
G(x)|

|H ∩ C⊗
G(x)|

≤ |G|.

Therefore

|H|
|H ∩ C⊗

G(x)|
≤ |G|

|C⊗
G(x)|

.

(ii) We know that Z⊗(G) = ∩x∈GC
⊗
G(x). So, if G = HZ⊗(G), then

G = HC⊗
G(x), for all x ∈ G. Thus,

|HC⊗
G(x)| =

|H||C⊗
G(x)|

|H ∩ C⊗
G(x)|

= |G|.

Therefore

[H : C⊗
G(x) ∩H] = [G : C⊗

G(x)], (1)

as required. For the converse, let equation (1) holds. Then obviously we
have

|HC⊗
G(x)| = |G|.

This does not require to imply G = HZ⊗(G). For example, let G =
Q8 = ⟨a, b|b2 = a4 = 1, b−1ab = a−1⟩ and H = ⟨b⟩. By Lemma 4.2.
of ([7]) we have Z⊗(G) = 1 and hence G ̸= HZ⊗(G). However, by
proof of Theorem 4.3. of ([7]) we have C⊗

G(a2) = ⟨a⟩ and therefore
G = HC⊗

G(a2). □

Theorem 2.3. Let H ≤ G. Then d⊗n (H,G) ≤ [G : H]n+1d⊗n (G) for all
n ≥ 1.
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Proof. Using Lemma 2.2, we have

d⊗n (H,G) =
1

|H|n|G|
∑
x1∈H

· · ·
∑
xn∈H

|C⊗
G([x1, . . . , xn])|

=
1

|H|n
∑
x1∈H

· · ·
∑
xn∈H

|C⊗
G([x1, . . . , xn])|

|G|

≤ 1

|H|n
∑
x1∈H

· · ·
∑
xn∈H

|C⊗
G([x1, . . . , xn]) ∩H|

|H|

≤ 1

|H|n
∑
x1∈H

· · ·
∑
xn∈H

|C⊗
G([x1, . . . , xn])|

|H|

≤ |G|n+1

|H|n+1|G|n+1

∑
x1∈G

· · ·
∑
xn∈G

|C⊗
G([x1, . . . , xn])|

= [G : H]n+1d⊗n (G)

□
The inequalities that we have here, are obtained with a series of

inequalities. The equalities do not need to be true in general. Even
in special cases, we cannot obtain a good condition. For example, in
Theorem 2.3, if we want the equality to hold, we need to have
1. [G : C⊗

G([x1, . . . , xn])] = [H : C⊗
G([x1, . . . , xn]) ∩H] and

2. C⊗
G([x1, . . . , xn]) ⊆ H and

3. If xi ∈ G−H for some 1 ≤ i ≤ n, then C⊗
G([x1, . . . , xn]) = ∅.

Theorem 2.4. Let H ≤ G. Then

d⊗n+1(H,G) ≤ 1

2
(1 + d⊗n (

H

H ∩ Z⊗(G)
)).

Proof. Put H for H
H∩Z⊗(G)

and for each x ∈ H let x stands for x(H ∩
Z⊗(G)) as an element of H. We know that

d⊗n+1(H,G) =

|{(x1, . . . , xn+1, y) : [x1, . . . , xn+1]⊗ y = 1H⊗G, xi ∈ H, y ∈ G}|
|H|n+1|G|

.
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Therefore

|H|n+1|G|d⊗n+1(H,G)

=|{(x1, . . . , xn+1, y) : [x1, . . . , xn+1]⊗ y = 1, xi ∈ H, y ∈ G}|

=
∑
x1∈H

· · ·
∑

xn+1∈H
|C⊗

G([x1, . . . , xn+1])|

=
∑
x1∈H

· · ·
∑

xn+1∈H, [x1,...,xn+1]∈H∩Z⊗(G)

|C⊗
G([x1, . . . , xn+1])|

+
∑
x1∈H

· · ·
∑

xn+1∈H, [x1,...,xn+1]/∈H∩Z⊗(G)

|C⊗
G([x1, . . . , xn+1])|.

On the other hand,

d⊗n (H) =(
1

|H|

)n+1

|{(x1, . . . , xn+1) : [x1, . . . , xn]⊗ xn+1 = 1, xi ∈ H}| =(
|H ∩ Z⊗(G)|

|H|

)n+1

×

|{(x1, . . . , xn+1) : [x1, . . . , xn+1] ∈ H ∩ Z⊗(G), xi ∈ H}|
|H ∩ Z⊗(G)|n+1

and we have∑
x1∈H

· · ·
∑

xn+1∈H, [x1,...,xn+1]∈H∩Z⊗(G)

|C⊗
G([x1, . . . , xn+1])| =

|H|n+1d⊗n (H)|G|.

Therefore

|H|n+1|G|d⊗n+1(H,G) ≤

|H|n+1d⊗n (H)|G|+ (|H|n+1 − |H|n+1d⊗n (H))
|G|
2

and

|H|n+1|G|
2

d⊗n (H) +
|H|n+1|G|

2
=

|H|n+1|G|
2

(1 + d⊗n (H)).
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Hence we have

d⊗n+1(H,G) ≤ 1

2
(1 + d⊗n (H)).

□

3 Tensor Nilpotent Groups

We are ready to define the concept of tensor nilpotency of a group.

Definition 3.1. Let G be a group. Then G is called tensor nilpotent
if Z⊗

n (G) = G for some n ≥ 0. For a tensor nilpotent group G, the
smallest c ≥ 0 in which Z⊗

c (G) = G is called the tensor nilpotency class
or briefly the tensor class of G.

Theorem 3.2. For a finite group G, we have

d⊗n+1(G) ≤ 1

2n
(2n − 1 + d⊗(

G

Z⊗
n (G)

))

for all n ≥ 1.

Proof. We khow that

Z⊗
n (G)/Z⊗(G) = Zn−1(G/Z⊗(G))

for all n ≥ 1. We proceed by induction on n. For n = 1, by using
Theorem 2.4, we have

d⊗2 (G) ≤ 1

2
(1 + d(

G

G ∩ Z⊗(G)
))

=
1

2
(1 + d(

G

Z⊗(G)
)).



8 H. GOLMAKANI AND A. JAFARZADEH

Using Theorem 2.4 and the induction, we have

d⊗n+1(G) ≤ 1

2
(1 + d⊗n (

G

G ∩ Z⊗(G)
))

≤ 1

2
(1 +

1

2n−1
(2n−1 − 1 + d⊗(

G
Z⊗(G)

Zn−1(
G

Z⊗(G)
)
))

=
1

2
(1 +

1

2n−1
(2n−1 − 1 + d⊗(

G

Z⊗
n (G)

))

=
1

2
(

1

2n−1
(2n−1 + 2n−1 − 1 + d⊗(

G

Z⊗
n (G)

)))

=
1

2n
(2n − 1 + d⊗(

G

Z⊗
n (G)

)),

as required. □

Theorem 3.3. If G is not a tensor nilpotent group of class at most n,
then

d⊗n (G) ≤ 2n+2 − 3

2n+2
.

Proof. Since G is not a tensor nilpotent group of class at most n,
Z⊗
n (G) ̸= G and G/Z⊗

n−1(G) is a nonabelian group. We khow that

d⊗(G) ≤ d(G), therefore using Theorem 2.2 in [3] implies d⊗( G
Z⊗
n−1(G)

) ≤
5
8 . So we have

d⊗n (G) ≤ 1

2n−1
(2n−1 − 1 + d⊗(

G

Z⊗
n−1(G)

))

≤ 1

2n−1
(2n−1 − 1 +

5

8
)

=
1

2n−1
(2n−1 − 3

23
)

=
2n+2 − 3

2n+2
,

as required. □

Lemma 3.4. If G is tensor nilpotent of class at most n, then G is
nilpotent of class n.
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Proof. We khow that Z⊗
n (G) ≤ Zn(G), so the result followes. □

Theorem 3.5. If G is a nontrivial group and Z(G) = 1, then

d⊗n (G) ≤ 2n − 1

2n

Proof. We proceed by induction on n. Let n = 1 since Z(G) = 1, G
is not nilpotent and Theorem 3 in [5] implies that d(G) ≤ 1

2 . We know
that d⊗(G) ≤ d(G) ≤ 1

2 . Therefore

d⊗n+1(G) ≤ 1

2n
(2n − 1 + d⊗(G))

≤ 1

2n
(2n − 1 +

1

2
)

=
1

2n
(2n − 1

2
)

=
2n+1 − 1

2n+1
.

□

Theorem 3.6. Let H be a proper subgroup of G. Then for all n ≥ 1,
we have

(i) If H ⊆ Z⊗
n (G), then d⊗n (H,G) = 1.

(ii) If H ⊈ Z⊗
n (G) and H/H ∩ Z⊗(G) is tensor nilpotent of class at

most n− 1, then d⊗n (H,G) = 1.

(iii) If H ⊈ Z⊗
n (G) and H/H ∩ Z⊗(G) is not tensor nilpotent of class

at most n− 1, then d⊗n (H,G) ≤ 2n+2−3
2n+2 .

Proof. (i) If H ⊆ Z⊗
n (G), then [h1, ..., hn]⊗x = 1 for all h1, . . . , hn ∈ H

and x ∈ G. So

d⊗n (H,G) =
1

|H|n|G|
∑
h1∈H

· · ·
∑
hn∈H

|C⊗
G([h1, . . . , hn])| = 1.

(ii) Since H/H ∩ Z⊗(G) is a tensor nilpotent group of class at most
n− 1, for all h1, . . . , hn in H/H ∩ Z⊗(G) where hi = hiH/H ∩ Z⊗(G),
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hi ∈ H, i = 1, . . . , n and [h1, . . . , hn−1] ⊗ hn = 1. We know that
there exists homomorphism H/H ∩Z⊗(G)⊗H/H ∩Z⊗(G) −→ (H/H ∩
Z⊗(G))

′
given [h1, . . . , hn−1]⊗hn −→ [h1, . . . , hn]. Since [h1, . . . , hn−1]⊗

hn = 1, then [h1, . . . , hn] = 1. Therefore there exist h1, . . . , hn in
H such that [h1, . . . , hn]H ∩ Z⊗(G) = H ∩ Z⊗(G), so [h1, . . . , hn] ∈
H ∩ Z⊗(G). Therefore for all x in G, we have [h1, . . . , hn] ⊗ x = 1.
Hence, C⊗

G([h1, . . . , hn]) = G. Thus,

|Hn||G|d⊗n (H,G)

= |{(h1, . . . , hn, x) ∈ Hn ×G : [h1, . . . , hn]⊗ x = 1}|
=

∑
h1∈H

· · ·
∑
hn∈H

|C⊗
G([h1, . . . , hn])|

= |H|n|G|,

and so, d⊗n (H,G) = 1.
(iii) Since H/H ∩ Z⊗(G) is not tensor nilpotent of class at most n− 1,
by Theorem 3.3 we have

d⊗n−1(
H

H ∩ Z⊗(G)
) ≤ 2n+1 − 3

2n+1
.

Hence

d⊗n (H,G) ≤ 1

2
(1 + d⊗n (

H

H ∩ Z⊗(G)
))

≤ 1

2
(1 +

2n+1 − 3

2n+1
)

≤ 1

2
(
2n+1 + 2n+1 − 3

2n+1
)

=
2n+2 − 3

2n+2
.

□

Theorem 3.7. Let G be finite group, H and N be subgroups of G such
that N ⊴G and N ⊆ H. Then

d⊗n (H,G) ≤ d⊗n (H/N,G/N).
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Proof. We have

|H|n|G|d⊗n (H,G)

=|{(h1, . . . , hn, y) : [h1, . . . , hn]⊗ y = 1, hi ∈ H, y ∈ G}|

=
∑
h1∈H

· · ·
∑
hn∈H

|C⊗
G([h1, . . . , hn])|

=
∑
h1∈H

· · ·
∑
hn∈H

|C⊗
G([h1, . . . , hn])N ||C⊗

N ([h1, . . . , hn])|
|N |

≤
∑
h1∈H

· · ·
∑
hn∈H

|C⊗
G/N ([h1N, . . . , hnN ])||C⊗

N ([h1, . . . , hn])|

=
∑

t1∈H/N

∑
h1∈H

· · ·
∑

tn∈H/N

∑
hn∈H

|C⊗
G/N ([t1, . . . , tn])||C⊗

N ([h1, . . . , hn])|

=
∑

t1∈H/N

· · ·
∑

tn∈H/N

|C⊗
G/N ([t1, . . . , tn])|

∑
h1∈H

· · ·
∑
hn∈H

|C⊗
N ([h1, . . . , hn])|

≤|N |n+1
∑

t1∈H/N

· · ·
∑

tn∈H/N

|C⊗
G/N ([t1, . . . , tn])|

=|H/N |n|G/N |d⊗n (H/N,G/N)|N |n+1

=|H|n|G|d⊗n (H/N,G/N).

Therefore

d⊗n (H,G) ≤ d⊗n (H/N,G/N).

□

Corollary 3.8. If N ⊴ G, then d⊗n (G) ≤ d⊗n (G/N)

Proof. Let H = G. Then by using Theorem 3.7, the result follows .
□

4 Some Examples

In this section, we compute the relative n-tensor nilpotent degree of
some groups.
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Example 4.1. Let G = C4 and H = 2C4. Then

d⊗2 (2C4, C4) =
1

|2C4|2|C4|
∑

h1∈2C4

∑
h2∈2C4

|C⊗
C4
([h1, h2])|

=
1

22 × 4
× 16 = 1.

Example 4.2. Let G = D8 =< a, b|a4 = b2 = 1, ba = a−1b > be the
dihedral group of order 8 and H the subgroup generated by {a2, ab}.
Let n ≥ 3. Since G is a nilpotent group of class 2, we have γn(G) = 1.
Hence

d⊗n (H,D8) =
1

|H|n|D8|
∑
h1∈H

· · ·
∑
hn∈H

|C⊗
D8

([h1, . . . , hn])|

=
1

|H|n × 8
× |H|n =

1

8
.

The same is true if G = Q8 =< a, b|a4 = 1, a2 = b2, ba = a−1b >, the
quaternion group of order 8, and H = {a2, ab}.
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