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Frames are a generalization of orthonormal bases in Hilbert spaces.
In 1946, Gabor [13] formulated a fundamental approach to a signal de-
composition in terms of elementary signals. In 1952, Du�n and Scha�er

Received:January 2022; Accepted:February 2022
∗Corresponding Author

1



2 F. VALIZADEH et al.

[9] presented some problems in nonharmonic Fourier series and frames
for Hilbert spaces. Later, Daubechies, Grossman and Mayer [8] revived
the study of frames and applications. The main property of frames that
makes them useful is their redundancy. Many properties of frames make
them useful in various applications in mathematics, sciences and engi-
neering. For a nice and comprehensive survey on various types of frames,
one may refer to [3, 6, 7, 14] and the references therein.

Frames of translates are an important class of frames that have a
special structure. These frames are central in approximation, sampling,
Gabor and wavelet theory and they were investigated in the context
of general properties of shift invariant spaces in a number of articles,
including [10, 15, 16]. Frames of translates are natural examples of frame
sequences. Frame sequences are useful in cases where we are interested
only in expansions in subspaces. For the literature regarding frames and
frame sequences, one may refer to [4, 5, 7, 14]. We �x a real invertible
d × d matrix A and consider AZd as an index set. For f ∈ L2(Rd),
let ΦA

f := 1
|detA|

∑
k∈Zd |f̂(AT )−1(· + k)|2 be the periodization of |f̂ |2.

By using ΦA
f , among other things, we characterize when the sequence

τA(f) := {f(·−Ak)}k∈Zd is a Bessel sequence, frame of translates, Riesz
basis, or orthonormal basis. Finally, we construct an example, in which
τA(f) is a Parseval frame of translates, but not a Riesz sequence. This
is a generalization of regular frames of translates of the form {λkf}k∈Zd ,
where {λk}k∈Zd ⊆ Rd and f ∈ L2(Rd); see [1, 2, 4].

1 Preliminaries and Notation

Let H be a separable Hilbert space with inner product ⟨·, ·⟩. A se-
quence {fk}∞k=1 is called a basis for H if for every f ∈ H there is a
unique sequence of scalars {ck}∞k=1 such that f =

∑∞
k=1 ckfk. A se-

quence {ek}∞k=1 ⊆ H is an orthonormal system if ⟨ek, ej⟩ = δk,j . An
orthonormal basis is an orthonormal system {ek}∞k=1 that is a basis for
H. A Riesz basis for H is a family of the form {Uek}∞k=1, where {ek}∞k=1

is an orthonormal basis for H and U : H −→ H is a bounded bijective
operator. A Riesz basis is actually a basis. In fact, a basis {fk}∞k=1 in H
is a Riesz basis if

∑∞
k=1 ckfk converges in H only when

∑∞
k=1 |ck|2 <∞.

A sequence {fk}∞k=1 of elements in H is a frame for H if there exist
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constants A,B > 0 such that

A∥f∥2 ⩽
∞∑
k=1

|⟨ f, fk⟩|2 ⩽ B∥f∥2, for all f ∈ H. (1)

The numbers A and B are called frame bounds which are not unique.
A frame with bounds A = B = 1 is called Parseval frame. A sequence
{fk} ⊆ H is called a Bessel sequence if the right-hand side of inequality
(1) holds. A frame is called exact if it ceases to be a frame whenever
any single element is deleted from the sequence and a frame that is not
exact is called overcomplete frame. We recall that every orthonormal
basis is an exact Parseval frame and every exact Parseval frame is an
orthonormal basis. A sequence {fk}∞k=1 is called a Riesz sequence if there
exist A,B > 0 such that A

∑∞
k=1 |ck|2 ⩽ ∥

∑∞
k=1 ckfk∥2 ⩽ B

∑∞
k=1 |ck|2,

for all sequences {ck}∞k=1 ∈ l2. A Riesz sequence {fk}∞k=1 in a Hilbert
space H is a Riesz basis for the Hilbert space span{fk}∞k=1, which might
just be a subspace of H and a sequence {fk}∞k=1 is a frame sequence if
it is a frame for span{fk}∞k=1; see [7, 14]. For A ∈ GLd(R) (the set of
all d× d invertible real matrices), let Λ = AZd and QA = A[0, 1)d, then
Rd =

⋃
λ∈Λ(λ + QA) where (λ + QA)

⋂
(λ

′
+ QA) = ∅ if and only if

λ ̸= λ
′
.

A function f : Rd −→ C is called Λ-periodic if f(x + λ) = f(x) for
all x ∈ Rd and λ ∈ Λ. It is easy to check that f is Λ-periodic if and
only if foA is periodic. For simplicity, we denote foA by fA. Recall
that for f ∈ L1(Rd), the Fourier transform of f is Ff(ξ) := f̂(ξ) =∫
Rd f(x)e

−2πiξ·xdx, where ξ ∈ Rd and the inversion Fourier transform is

f̌(x) = f̂(−x). As usual, the de�nition of Fourier transform extends to a
unitary operator f 7−→ f̂ on L2(Rd), known as the Plancharel theorem.

Also ˆ(fA)(ξ) =
1

| detA| f̂((A
T )−1ξ) [12] and the Fourier series of fA is∑

k∈Zd
f̂A(k)e

−2πik·x =
1

| detA|
∑
k∈Zd

f̂((AT )−1k)e−2πik·x

=
1

| detA|
∑
λ∈Λ⊥

f̂(λ)e−2πiATλx,

where Λ⊥ = (AT )−1Zd. For ψ ∈ L2(QA), put εA(ψ) = {(EAkψ)(γ)}k∈Zd
where (EAkψ)(x) = e2πiAk·xψ(x), (x ∈ QA) and set NA

ψ = {x ∈ QA :
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ψ(x) = 0}. For any function f on Rd and k ∈ Zd, the translation of

f by k is TAkf(x) = f(x − Ak) and the set of all translations of f is
denoted by τA(f) = {TAkf}k∈Zd , which is called a system of translates of

f . Moreover, F(τAf) := {(TAkf)∧}k∈Zd = {E−Akf̂}k∈Zd for f ∈ L2(Rd)
and A ∈ GLd(R). For f ∈ L2(Rd), we de�ne

ΦA
f (γ) :=

1

|detA|
∑
k∈Zd

|f̂
(
(AT )−1(γ + k)

)
|2, γ ∈ Rd.

We call ΦA
f the periodization of |f̂ |2. It is worthwhile to mention for f ∈

L1(Rd), the series
∑

k∈Zd TAkf converges point-wise almost everywhere
and it converges in L1(QA) to a function Pf such that ∥Pf∥L1(QA) ≤
∥f∥L1(Rd). Moreover, for γ ∈ Zd, it follows that (Pf)̂ (γ) (Fourier

transform on QA) equals f̂(γ) (Fourier transform on Rd); see [11]. For
f ∈ L2(Rd), one can check easily that

∥ΦA
f ∥L1(QA) =

1

| detA|
∥f∥2L2(Rd).

Consequently,

(ΦA
f )

1
2 (γ) =

1√
|detA|

( ∑
k∈Zd

|f̂
(
(AT )−1(γ + k)

)
|2
) 1

2

belongs to L2(QA) and ∥(ΦA
f )

1
2 ∥L2(QA) = 1√

| detA|
∥f∥L2(Rd). Therefore

the map from L2(Rd) into L2(QA) de�ned by f 7→ (ΦA
f )

1
2 is a norm-

preserving map. In this paper, among other things, we use ΦA
f for char-

acterization when τA(f) is a Bessel sequence, frame of translates, Riesz
basis, or an orthonormal basis.

2 MAIN RESULTS

It is known that for f ∈ L2(Rd), if τA(f) is a Bessel sequence then
for any {ck}k∈Zd ∈ l2(Zd),

∑
k∈Zd ckTAk(f) converges in L2(Rd) and∑

k∈Zd ckE−Ak converges in L2[0, 1)d, where E−Ak(x) = e−2πiAk·x , x ∈
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Rd. Now for f ∈ L1(Rd), let ψA
f (γ) =

∑
k∈Zd f(γ + Ak) be the Λ-

periodization of f . We show that ψA
f is absolutely convergent in L1(QA)

and that ∥ψA
f ∥L1(QA) = ∥f∥L1(Rd).

Lemma 2.1. Let f ∈ L1(Rd). With notations as above, the series ψA
f

converges absolutely in L1(QA) and
∫
QA

ψA
f (γ)dγ =

∫
Rd f(γ)dγ.

Proof. Let f ∈ L1(Rd), A ∈ GLd(R) and put ψA
f (γ) =

∑
k∈Zd f(γ +

Ak). Using the fact that ψA
f is Λ-periodic, we have∫

QA
|ψA
f (γ)|dγ ≤

∫
QA

∑
k∈Zd |f(γ +Ak)|dγ

=
∑

k∈Zd
∫
QA

|f(γ +Ak)|dγ
=

∫⋃
k∈Zd QA+Ak |f(γ +Ak)|dγ

=
∫
Rd |f(γ +Ak)|dγ = ∥f∥1 <∞,

which is �nite. This implies that ψA
f (γ) =

∑
k∈Zd f(γ +Ak) ∈ L1(QA)

and ∥ψA
f ∥L1(QA) ⩽ ∥f∥1. Using the dominated convergence theorem, we

have

ψN (γ) =
∑
|k|≤N

f(γ +Ak) →
∑
k∈Zd

f(γ +Ak) as N → ∞

where |k| =
∑n

1 kj , and

|ψN (γ)| ≤
∑
k∈Zd

|f(γ +Ak)| ∈ L1(QA).

Then ∫
QA

ψN (γ)dγ →
∫
QA

∑
k∈Zd

f(γ +Ak)dγ.

Moreover,∫
QA

∑
k∈Zd f(γ +Ak)dγ =

∑
k∈Zd

∫
QA

f(γ +Ak)dγ
=

∫⋃
k∈Zd QA+Ak ψ(γ)dγ

=
∫
Rd f(γ)dγ.

□
It is known that, εA(ψ) is a Bessel sequence in L

2(QA) if and only if
ψA ∈ L∞(QA). In this case, |ψ(γ)|2 ⩽ B a.e., where B is a Bessel bound.
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Proposition 2.2. Let f ∈ L2(Rd) and let B > 0. Then τA(f) is a

Bessel sequence with bound B if and only if ΦA
f (γ) ⩽ B for a.e. γ ∈ QA.

Proof. Given a �nite sequence {ck}k∈Zd ⊆ C, we put

ψ(γ) =
∑
k∈Zd

cke
−2πi(AT )−1k·γ .

Since ψ ∈ L2(Q(AT )−1), we have

∥T{ck}k∈Zd∥2 = ∥
∑
k∈Zd

ckT(AT )−1kf∥2

=
∥∥∥F(

∑
k∈Zd

ckT(AT )−1kf)
∥∥∥2

=
∥∥ ∑
k∈Zd

ckE−(AT )−1kf̂
∥∥2

=

∫
Rd

∣∣∣ ∑
k∈Zd

cke
−2πi(AT )−1k·γ f̂(γ)

∣∣∣2dγ
=

∫
R̂d

|ψ(γ)|2|f̂(γ)|2dγ

=
1

| detA|

∫
[0,1]d

|ψ(γ)|2
∑
k∈Zd

|f̂(AT )−1(γ + k)|2dγ

=

∫
[0,1]d

|ψ(γ)|2ΦA
f (γ)dγ.

Conversely, if ΦA
f (γ) ⩽ B for a.e. γ ∈ Rd, then

∥T{ck}k∈Zd∥2 ⩽ B

∫
[0,1]d

|ψ(γ)|2dγ = B
∑
k∈Zd

|ck|2.

□

Proposition 2.3. Let f ∈ L2(Rd), then τA(f) is an orthonormal se-

quence if and only if ΦA
f (γ) = 1 for a.e. γ ∈ QA.
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Proof. We have to show that ⟨TAk1f, TAk2f⟩ = δAk1,Ak2 (for k1, k2 ∈ Λ)
if and only if ΦA

f (γ) = 1 for a.e. γ ∈ Rd. Using the Plancharel theorem
and Weil's formula, we have

⟨TAk1f, TAk2f⟩ = ⟨f, TA(k1−k2)f⟩

= ⟨f̂ , ̂TA(k1−k2)f⟩

=

∫
Rd

|f̂(γ)|2 · e−2πiA(k1−k2)·γdγ

=
1

| detA|

∫
QA

∑
λ∈Zd

∣∣f̂((AT )−1(γ + λ)
)
|2e−2πi(AT )−1(k1−k2)·γdγ

=

∫
QA

ΦA
f (γ) · e−2πi(AT )−1k·γdγ. (2)

The Pontryagin duality theorem and [11, Proposition 4.3] imply that Λ
is an orthonormal basis for L2(QA) and (2) completes the proof. □

Lemma 2.4. Let ψ ∈ L2(QA) be bounded. Then

spanεA(ψ) = {f ∈ L2(QA) : f = 0 a.e. on NA
ψ }.

Proof. It is easy to see that {f ∈ L2(QA) : f = 0 a.e. on NA
ψ } is a

closed subspace and span(εA(ψ)) ⊆ {f ∈ L2(QA) : f = 0 a.e. on NA
ψ }.

To show that spanεA(ψ) = {f ∈ L2(QA) : f = 0 a.e. on NA
ψ }, suppose

that f ∈ {f ∈ L2(QA) : f = 0 a.e. on NA
ψ } satis�es ⟨f, ψek⟩ = 0

for every k ∈ Zd. Since ψ is bounded, fψ ∈ L2(QA) and Q(AT )−1 is an

orthonormal basis for L2(QA) (see [11]). We have ⟨fψ, ek⟩ = ⟨f, ψek⟩ = 0
for k ∈ Zd. Therefore fψ = 0 a.e. and since f ∈ {f ∈ L2(QA) :
f = 0 a.e. on NA

ψ }, f = 0 a.e. Hence εA(ψ) is complete in the set

{f ∈ L2(QA) : f = 0 a.e. on NA
ψ }. □

Theorem 2.5. Suppose that ψ ∈ L2(QA), then εA(ψ) is a frame se-

quence in L2(QA) if and only if there exist A,B > 0 such that A ≤
|ψ(γ)|2 ≤ B for a.e. γ ̸∈ NA

ψ . In this case, the closed span of εA(ψ) is

HA
ψ = {f ∈ L2(QA) : f = 0 a.e. on NA

ψ },

and A and B are frame bounds for εA(ψ) as a frame for HA
ψ .
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Proof. Let A and B be frame bounds for spanεA(ψ). Since εA(ψ) is a
Bessel sequence, |ψ|2 ≤ B a.e. Fix any f ∈ HA

ψ . Then fψ ∈ L2(QA).

Since ψ is bounded, εA(ψ) is a frame forHA
ψ . Using the fact that ek(γ) :=

e−2πi(AT )−1k·γ is an orthonormal basis for L2(QA), we have

A

∫
QA

|f(γ)|2dγ = A∥f∥2L2

≤
∑
k∈Zd

|⟨f, ψek⟩|2

=
∑
k∈Zd

|⟨fψ, ek⟩|2

= ∥fψ∥2L2

=

∫
QA

|f(γ)|2|ψ(γ)|2dγ.

Since f and ψ both vanish on NA
ψ ,∫

QA\NA
ψ

|f(γ)|2(|ψ(γ)|2 −A)dγ ≥ 0. (3)

If |ψ(γ)|2 < A on any set D ⊆ QA \ NA
ψ of positive measure, then

taking f = χD in inequality (3) leads to a contradiction. Hence we have
|ψ(γ)|2 ≥ A for a.e. γ ̸∈ NA

ψ . □
The next Theorem shows the condition under which, τA(f) is a frame

sequence.

Theorem 2.6. Let f ∈ L2(Rd) and A,B > 0. Then τA(f) is a frame

sequence with bounds A and B if and only if A ⩽ ΦA
f (γ) ⩽ B for a.e.

γ /∈ NΦA
f
, where NΦA

f
= {f ∈ QA : ΦA

f (γ) = 0}.

Proof. Suppose that f ∈ L2(Rd) and de�ne V (f) := span{τA(f)}. We
have to show that τA(f) is a frame for V (f) if and only if, for γ ∈ Rd,
{(E−Ak|f̂ |)(γ)}k∈Zd is a frame for the set {F ∈ L2(QA) : F = 0 a.e.

on NΦA
f
}. This happens if and only if {(E−Ak|f̂ |)(γ)}k∈Zd is a frame

sequence in L2(QA). Now the result follows from Theorem 2.5. □
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Remark 2.7. With the assumption in Theorem 2.6, we call the frame

generated by τA(f), the frame determined by ΦA
f .

The following corollary characterize the members of the subspace
generated by a frame sequence of translates.

Corollary 2.8. Suppose that f ∈ L2(Rd) and τA(f) is a frame se-

quence then a function ψ ∈ L2(Rd) belongs to span{τA(f)} if and only

if there exists a Λ-periodic function F whose restriction to QA, belongs
to L2(QA) such that ψ̂ = F f̂ .

Proof. Let ψ ∈ span{τA(f)}. Then there exists {ck}k∈Zd ⊆ l2(QA) such

that ψ =
∑

k∈Zd ckTAkf . Hence ψ̂ =
∑

k∈Zd ckE−Akf̂ . Thus ψ̂ = F · f̂
for F =

∑
k∈Zd ckE−Ak.

Conversely, suppose ψ̂ = F ·f̂ . Then ψ = F̂ ·f and ψ
∣∣
QA

is Λ-periodic.

Hence F ∈ L2(QA) and F =
∑

k∈Zd ckE−Ak. □
At this point, we recall the facts that a sequence {fk}∞k=1 in a Hilbert

space H is a Riesz basis for H if and only if {fk}∞k=1 is a bounded un-

conditional basis for H, and that the functions ek(γ) := e−2πi(AT )−1k·γ

are an orthonormal basis for L2(QA). These facts are applied in the fol-
lowing lemma to characterize when εA(ψ) is a Riesz basis for the Hilbert
space L2(QA).

Lemma 2.9. Given ψ ∈ L2(QA), it holds that εA(ψ) is an unconditional

basis for L2(QA) if and only if there exist A,B > 0 such that A ≤
|ψ(γ)| ≤ B for a.e. γ. In this case εA(ψ) is a Riesz basis for L2(QA).

Proof. Suppose that εA(ψ) is a bounded unconditional basis for L
2(QA).

Since ∥ψek∥L2 = ∥ψ∥L2 for every k, it is a bounded unconditional basis
and so is a Riesz basis. Since every Riesz basis is an exact frame, by
Theorem 2.5, we have A ≤ |ψ(γ)|2 ≤ B a.e. □

Using Lemma 2.9, we are able to show that τA(f) is a Riesz sequence
if and only if A ⩽ ΦA

f ⩽ B a.e. for some 0 < A ≤ B <∞.

Proposition 2.10. Let f ∈ L2(Rd) and A,B > 0. Then τA(f) is a

Riesz sequence with bounds A and B if and only if A ⩽ ΦA
f (γ) ⩽ B for

a.e. γ ∈ QA.
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Proof. Suppose that τA(f) is a bounded unconditional basis for L2(Rd)
and that ∥ΦA

f ek∥L2 = ∥ΦA
f ∥L2 for every k. By Lemma 2.9, it is a bounded

unconditional basis and so is a Riesz basis with A ≤ ΦA
f (γ) ≤ B a.e. □

In the next proposition, we determine the Fourier coe�cients of the
periodic function ΦA

f .

Proposition 2.11. For f ∈ L2(Rd), the Fourier coe�cients of ΦA
f are

ck =

∫
Rd
f(λ)f(λ+ k)dλ, k ∈ Zd.

Proof. Let f ∈ L2(Rd). Then using the Zd-periodicity of ΦA
f , the

Fourier coe�cients cn are

cn =

∫
[0,1]d

ΦA
f (γ) · e−2πiγ·ndγ

=
1

|detA|

∫
[0,1]d

∑
k∈Zd

|f̂
(
(AT )−1(γ + k)

)
|2 · e−2πiγ·ndγ

=
1

|detA|

∫
Rd

|f̂
(
(AT )−1(γ)

)
|2 · e−2πiγ·ndγ

=

∫
Rd

|f̂(γ)|2 · e−2πi(AT )−1γ·ndγ

=

∫
Rd
f̂(γ) · (EAkf̂)(γ)dγ

= ⟨f̂ , T−Akf̂⟩

=

∫
Rd
f(λ)T−Akf(λ)dλ

=

∫
Rd
f(λ)f(λ+ k)dλ.

□

Remark 2.12. If f has compact support, then Proposition 2.11, implies

that only �nitely many of the Fourier coe�cients of ΦA
f are nonzero and

therefore ΦA
f is continuous.
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In the following theorem, we determine conditions under which for
f ∈ L2(Rd) with compact support, τA(f) is a Bessel sequence that can-
not be an overcomplete frame sequence. This determines under which
conditions for such f , τA(f) is a Riesz sequence.

Theorem 2.13. Assume that f ∈ L2(Rd) has compact support. Then

the following assertions hold:

i) τA(f) is a Bessel sequence.

ii) τA(f) cannot be an overcomplete frame sequence.

Proof. i) By Remark 2.12, ΦA
f is continuous. Since (AT )−1[0, 1]d

is compact, ΦA
f is bounded. Therefore there exists B > 0 such that

|ΦA
f (γ)| ⩽ B a.e.. Consequently, by Proposition 2.2, τA(f) is a Bessel

sequence.
For proving (ii), by Theorem 2.6, τA(f) is a frame sequence. Also ΦA

f is
continuous. Hence Proposition 2.10 implies that it is a Riesz sequence;
that is, it is a Riesz basis for span{τA(f)}. Thus their members are
linearly independent and therefore it is not overcomplete. □

Corollary 2.14. Assume that f ∈ L2(Rd) is compactly supported. Then
τA(f) is a Riesz sequence if and only if for every γ ∈ Rd, there exists a

k ∈ Zd such that f̂
(
(AT )−1(γ + k)

)
̸= 0.

Proof. By Proposition 2.10, ΦA
f is continuous. Suppose that there exists

γ ∈ Rd such that for every k ∈ Zd, f̂
(
(AT )−1(γ+k)

)
= 0. Then ΦA

f = 0,

which contradicts Proposition 2.10. Thus f̂
(
(AT )−1(γ + k)

)
̸= 0.

For the converse, assume that for any γ ∈ Rd, f̂
(
(AT )−1(γ + k)

)
̸= 0.

This implies that τA(f) is a Riesz sequence. Now, ΦA
f (γ) ̸= 0 implies

that ΦA
f is continuous and bounded. Thus ΦA

f (γ) > 0; that is, it takes
its minimum, which is strictly positive. Therefore, it is a Riesz sequence
bounded from below. □

In what follows, using Lemma 2.15 and Proposition 2.16, we de-
termine conditions under which {TAkf + TAk+nf}k∈Zd is a frame for
span{τA(f)}.

Lemma 2.15. Let {ψk}k∈Zd be a Bessel sequence and complete in a

Hilbert space H and let n0 ∈ Zd be given. Then {ψk + ψk+n0}k∈Zd is

complete.
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Proof. We prove the lemma for the case d = 1 and n0 = 1. The
general case is almost the same. Suppose that ψ ∈ H is arbitrary such
that for every k, ⟨ψ,ψk + ψk+1⟩ = 0. We show that ψ = 0. Indeed
⟨ψ,ψk+ψk+1⟩ = 0 implies that ⟨ψ,ψk⟩ = −⟨ψ,ψk+1⟩. Then for every k,
|⟨ψ,ψk⟩| = |⟨ψ,ψk+1⟩|. Hence |⟨ψ,ψk⟩| is constant. On the other hand,
by our assumption, {ψk}k∈Z is a Bessel sequence. Therefore,∑

k∈Z
|⟨ψ,ψk⟩|2 ⩽ B∥ψ∥2,

for some B > 0. Hence ⟨ψ,ψk⟩ = 0, for all k. Thus ψ = 0 (because
{ψk}k∈Z is complete). □

Proposition 2.16. For f ∈ L2(Rd), let f̃ = f + TAnf . Then ΦA
f̃
(γ) =

|1 + e−2πi(AT )−1n·γ |2ΦA
f (γ) and ΦA

f̃
(γ) determines a frame for V (f) :=

span{τA(f)} if and only if ΦA
f (γ) determines a frame for V (f) and

e−2πi(AT )−1n·γ ̸= −1.

Proof. By the de�nition of ΦA
f̃
, we have

ΦA
f̃
(γ) =

1

|detA|
∑
k∈Zd

|F f̃
(
(AT )−1(γ + k)

)
|2

=
1

|detA|
∑
k∈Zd

|(Ff + FTAnf)
(
(AT )−1(γ + k)

)
|2

=
1

|detA|
∑
k∈Zd

|f̂
(
(AT )−1(γ + k)

)
+ E−Anf̂

(
(AT )−1(γ + k)

)
|2

=
1

|detA|
∑
k∈Zd

|f̂
(
(AT )−1(γ + k)

)
+ e−2πi(AT )−1n·(γ+k)f̂

(
(AT )−1(γ + k)

)
|2

=
1

|detA|
∑
k∈Zd

|1 + e−2πi(AT )−1n·(γ+k)|2 · |f̂
(
(AT )−1(γ + k)

)
|2

= |1 + e−2πin·(AT )−1γ |2ΦA
f (γ).

Therefore using Theorem 2.5, there exist A,B > 0 such that A ⩽
ΦA
f̃
(γ) ⩽ B for a.e. γ ∈ QA \ N , where N = {γ ∈ QA : ΦA

f̃
(γ) = 0}.

□
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Corollary 2.17. Let f ∈ L2(Rd), τA(f) be a frame for V := span{τA(f)}
and n ∈ Zd. Then {TAkf + TAk+nf}k∈Zd is a frame for V if and only if

2(AT )−1γ · n is not an odd number, for γ ∈ [0, 1]d.

Proof. It is an immediate consequence of Lemmas 2.15 and 2.16. □
In the following we give an example in which τA(f) is a Parseval

frame, but it is not a Riesz sequence.

Example 2.18. Let f ∈ L2(Rd) and let f̂(γ) = χ(AT )−1

[
− 1

3 ,
1
3

]d
(γ) for

γ ∈ Rd. Then

ΦA
f (γ) =

1

| detA|
∑
k∈Zd

∣∣χ(AT )−1[− 1
3
, 1
3
]d
(
(AT )−1(γ + k)

)∣∣2,
2 = χ(AT )−1

[
− 1

3
,
1

3

]d
.

By Theorem 2.6, τA(f) is a frame sequence with frame bounds A = B =
1 but does not form a Riesz sequence.
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