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Abstract. Let E be a sublattice of a vector lattice F . A net {xα}α∈A ⊆
E is said to be F -order convergent to a vector x ∈ E (in symbols

xα
Fo−−→ x in E), whenever there exists a net {yβ}β∈B in F satisfying

yβ ↓ 0 in F and for each β, there exists α0 such that |xα − x| ≤ yβ
whenever α ≥ α0. In this manuscript, first we study some properties
of F -order convergence nets and we extend some results to the gen-
eral cases. Let E and G be sublattices of vector lattices F and H,
respectively. We introduce FH-order continuous operators, that is, an
operator T between two vector lattices E and G is said to be FH-order

continuous, if xα
Fo−−→ 0 in E implies Txα

Ho−−→ 0 in G. We will study
some properties of this new classification of operators and its relation-
ships with order continuous operators.
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1 Introduction

To state our result, we need to fix some notations and recall some defi-
nitions. A vector lattice E is an ordered vector space in which sup(x, y)
exists for every x, y ∈ E. A subspace E of a vector lattice F is said to
be a sublattice if for every pair of elements a, b of E the supremum of a
and b taken in F belongs to E. A vector lattice is said to be Dedekind
complete (resp. σ-complete) if every nonempty subset (resp. countable
subset) that is bounded from above has a supremum.

A sublattice E of a vector lattice F is said to be:

1. order dense if for every 0 < x ∈ F there exists 0 < y ∈ E such
that y ≤ x.

2. majorizing if for every x ∈ F there exists y ∈ E such that x ≤ y.

3. regular if for every subset A of E, inf A is the same in F and in E
whenever inf A exists in E.

A Dedekind complete space F is said to be a Dedekind completion of the
vector lattice E whenever E is lattice isomorphic to a majorizing order
dense sublattice of F . Recall that a non-zero element a ∈ E+ is an atom
iff the ideal Ia consists only of the scalar multiples of a. Let E be a vector
lattice. A net {xα}α∈A ⊆ E is said to be order convergent (in short o-
convergent) to a vector x ∈ E (in symbols xα

o−→ x ), whenever there
exists a net {yβ}β∈B in E satisfying yβ ↓ 0 and for each β there exists
α0 such that |xα − x| ≤ yβ whenever α ≥ α0. Let {xn} be a sequence
in a vector lattice E. Consider the sequence {an} of Cesáro means of
{xn}, defined by an = 1

n

∑n
k=1 xk. Let E, G be vector lattices. An

operator T : E → G is said to be order bounded if it maps each order
bounded subset of E into order bounded subset of G. The collection
of all order bounded operators from a vector lattice E into a vector
lattice G will be denoted by Lb(E,G). The vector space E∼ of all order
bounded linear functionals on vector lattice E is called the order dual
of E, i.e., E∼ = Lb(E,R). Let A be a subset of vector lattice E and QE

be the natural mapping from E into E∼∼. If QE(A) is order bounded
in E∼∼, then A is said to b-order bounded in E. The concept of b-order
bounded was first time itroduced by Alpay, Altin and Tonyali, see [5].
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It is clear that every order bounded subset of E is b-order bounded.
However, the converse is not true in general. For example, the standard
basis of c0, A = {en | n ∈ N} is b-order bounded in c0 but A is not
order bounded in c0. A linear operator between two vector lattices is
order continuous (resp. σ-order continuous) if it maps order null nets
(resp. sequences) to order null nets (resp. sequences). The collection
of all order continuous (resp. σ-order continuous) linear operators from
vector lattice E into vector lattice G will be denoted by Ln(E,G) (resp.
Lc(E,G)). For unexplained terminology and facts on Banach lattices
and positive operators, we refer the reader to [2, 3].

2 F -order Convergent and Its Properties

In this section, E is a sublattice of a vector lattice F . A net {xα}α∈A ⊆ E
is said to be F -order convergent (in short Fo-convergent) to a vector

x ∈ E (in symbols xα
Fo−−→ x ), whenever there exists a net {yβ}β∈B in F

satisfying yβ ↓ 0 and for each β there exists α0 such that |xα − x| ≤ yβ
whenever α ≥ α0. If A ⊆ E is order bounded in F , we say that A is
F -order bounded, in case F = E∼∼, we say that A is b-order bounded.
It is clear that if E is regular in F , then every order convergence net (or
order bounded set) in vector lattice E is F -order convergent (or F -order
bounded), but as following example the converse in general not holds.
On the other hand, there is a sequence in E that is order convergent in
E and F , but is not F -order convergent in E.

Example 2.1. 1. Suppose that E = c0 and F = ℓ∞. The standard
basis of c0, {en}∞n=1 is not order convergence to zero, but {en}∞n=1

is ℓ∞-order convergent to zero. On the other hand {en}∞n=1 is not
order bounded in c0, but is ℓ

∞-order bounded in c0.

2. Assume that F is a set of real valued functions on [0, 1] of form
f = g + h where g is continuous and h vanishes except at finitely
many point. Let E = C([0, 1]) and fn(t) = tn where t ∈ [0, 1]. It
is obvious that fn ↓ 0 in E and fn ↓ χ{1} in F , but {fn} is not
F -order convergent.

It can easily be seen that a net in vector lattice E have at most one
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F -order limit. The basic properties of Fo-convergent are summarized in
the next theorem.

Theorem 2.2. Assume that the nets {xα} and {zγ} of a vector lattice

E satisfy xα
Fo−−→ x and zγ

Fo−−→ z. Then we have

1. |xα|
Fo−−→ |x|; x+α

Fo−−→ x+ and x−α
Fo−−→ x−.

2. λxα + µzγ
Fo−−→ λx+ µz for all λ, µ ∈ R.

3. xα ∨ zγ
Fo−−→ x ∨ z and xα ∧ zγ

Fo−−→ x ∧ z.

4. For each y ∈ F , if xα ≤ y for all α ≥ α0, then x ≤ y.

5. If 0 ≤ xα ≤ zα for all α, then 0 ≤ x ≤ z.

6. If P is order projection, then Pxα
Fo−−→ Px.

Proof. These follow immediately by definition. □

Theorem 2.3. Let G be a sublattice of E and E be an ideal of F . Then
the following statements hold:

1. If {xα}α∈A ⊂ G and xα
Eo−−→ 0 in G, then xα

Fo−−→ 0 in G.

2. If {xα}α∈A ⊂ G is order bounded net in E and xα
Fo−−→ 0 in G,

then xα
Eo−−→ 0 in G.

3. If {xα}α∈A ⊂ G, xα
o−→ 0 in G and xα

Fo−−→ 0 in G, then xα
Eo−−→ 0

in G.

Proof. (1) Suppose {xα}α∈A ⊂ G and xα
Eo−−→ 0 in G, there exists

{yβ}β∈B ⊂ E with yβ ↓ 0 in E such that

∀β,∃α0 s.t. ∀α ≥ α0 : |xα| ≤ yβ.

We show that yβ ↓ 0 in F . Let u ∈ F and 0 ⩽ u ⩽ yβ for all β. Since
{yβ} ⊂ E and E is an ideal in F , it follows that u ∈ E and hence u = 0.

Thus yβ ↓ 0 in F . This means that xα
Fo−−→ 0 in G.

(2) By the assumption, there exists {yβ} ⊂ F satisfying, yβ ↓ 0 and for
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each β there exists α0 such that |xα| ≤ yβ whenever α ≥ α0. Let u ∈ E+

such that |xα| ≤ u. Then {u ∧ yβ} ⊂ E and u ∧ yβ ≤ yβ. Thus for each
β there exists α0 that |xα| ≤ u ∧ yβ whenever α ≥ α0. It follows that

xα
Eo−−→ 0 in G.

(3) Suppose {xα}α∈A ⊂ G and xα
o−→ 0 in G, there exists {yβ}β∈B ⊂ G

with yβ ↓ 0 in G such that

∀β,∃α0 s.t ∀α ≥ α0 : |xα| ≤ yβ.

By assumption, since xα
Fo−−→ 0 in G, there exists {zγ}γ∈C ⊂ F with

zγ ↓ 0 in F such that

∀γ,∃α′
0 s.t ∀α ≥ α′

0 : |xα| ≤ zγ .

For fixed β0 ∈ B, there exists α0 ∈ A such that |xα| ≤ yβ0 whenever
α ≥ α0. Let wγ = zγ ∧ yβ0 for every γ ∈ C. since E is an ideal of F ,
{wγ} ⊂ E and wγ ↓ 0 in E. On the other hand, for every γ ∈ C, there
exists α′

0 ∈ A such that |xα| ≤ zγ whenever α ≥ α′
0. For α0, α

′
0 ∈ A

there exists α′′
0 ∈ A such that |xα| ≤ zγ ∧ yβ0 for all α ≥ α′′

0. It follows

that xα
Eo−−→ 0 in G. □

Corollary 2.4. Suppose that E is an ideal of vector lattice F . If
{xα}α∈A is order bounded in E, then

xα
Fo−−→ x in E iff xα

o−→ x in E .

As Example 2.1, the condition of boundedness for nets in above corol-
lary is necessary. Now the following example and part (2) of Example
2.1 show that the ideal condition is also necessary.

Example 2.5. Assume that E is a set of real valued continuous func-
tions on [0, 1] except at finitely many point and F is Lebesgue integrable
real valued functions on [0, 1]. Obviously, E is a sublattice in F , but
is not ideal in F . Let I1 = (13 ,

2
3), I2 = (19 ,

2
9) ∪ (39 ,

6
9) ∪ (79 ,

8
9), ..., the

segments that we remove them for constructing of the Contor set P . It
is obvious that χIn ∈ E and χIn ↑ χP c in F , but {χIn} is not F -order
convergent in E.
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Definition 2.6. 1. E is said to be F -Dedekind complete (or F -order
complete), if every nonempty A ⊆ E that is bounded from above
in F has supermum in E. In case F = E∼∼, we say that E is
b-Dedekind complete.

2. If each F -order bounded subset of E is order bounded in E, then
E is said to have the property (F ). In case F = E∼∼, we say that
E has property (b).

Obviosly, if E is F -Dedekind complete, then E has property (F ).

Remark 2.7. Let F be a Dedekind complete AM -space with order
unit e. If E is a Dedekind complete closed in F contain e, then E
has property (F ), see [[11], p.110]. We obvious that every majorizing
sublattice E of F has the property (F ). Since E∼ has property (b),
E∼ is b-Dedekind complete. If E is F -Dedekind complete, then E is
Dedekind complete. The converse of last assertion in general not holds,
of course c0 is Dedekind complete, but is not ℓ∞-Dedekind complete. It
is easy to show that a vector lattice E has property (F ) if and only if
for each net {xα} in E with xα ↑ y for some y ∈ F , follows that {xα} is
bounded above in E.

Theorem 2.8. Let E and F both be Banach lattices. For each sequence
{xn}n∈N in E the following statements hold:

1. If F has an order continuous norm and xn
Fo−−→ 0 in E, then there

exists a subsequence {xnk
} such that xnk

o−→ 0 holds in E.

2. If F is a Banach lattice and {xn} is norm convergent to x ∈ E,

then there exists a subsequence {xnk
} such that xnk

Fo−−→ x holds in
E.

3. If E has property (F ) and xn
Fo−−→ 0 in E, then {xn}n∈N is order

bounded in E.

4. If E is an ideal of F and xn
Fo−−→ 0 in E, then {xn}n∈N is order

bounded in E.

Proof.
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1. There exists {ym}m∈N in F satisfying, ym ↓ 0 and for everym there
exists n0 such that |xn| ≤ ym whenever n ≥ n0. By the assumption
||ym|| −→ 0, it follows that ||xn|| −→ 0. Pick subsequence {xnk

}
of {xn} such that ||xnk

|| < 1
2k

for all k. Set zk =
∑∞

i=k |xni |. Since
E is a Banach lattice, zk ∈ E. For some k0, we have |xnk

| ≤ zk ↓ 0

whenever nk ≥ k0 . This implies that xnk

o−→ 0 holds in E.

2. By our hypothesis, there exists a subsequence {xnk
} such that

||xnk
− x|| ≤ 1

k2k
for all k. Since

∑∞
k=1 k|xnk

− x| is norm conver-

gence to some u ∈ F , then k|xnk
− x| ≤ u for all k. Clearly, { 1

ku}
is a sequence in F such that 1

ku ↓ 0 and |xnk
− x| ≤ 1

ku and the
proof is complete.

3. There exists a sequence {ym}m∈N in F satisfying, ym ↓ 0 and
for every m there exists n0 such that |xn| ≤ ym whenever n ≥
n0. Fix m ∈ N such that |xn| ≤ ym for all n ≥ n0. Put z =
sup{|x1|, |x2|, . . . , |xn0−1|, ym}. Thus |xn| ≤ z for all n ∈ N, and
so z is an upper bound of {xn} in F . Since E has property (F ),
it follows that {xn} is bounded in E.

4. Obviously.

□

Example 2.1 shows that F -Dedekind condintion for E in part (iii) of
Theorem 2.8 is necessary. Also ℓ∞ (with sup norm) does not have order
continuous norm and {en} is ℓ∞-order convegent to zero but there is no
subsequence of {en} that is convegent to zero, therefore, having order
continuous norms in part (1) is necessary.

Remark 2.9. It is easy to see that for an order bounded net {xα} in a
Dedekind complete vector lattice E,

xα
o−→ x in E iff x = inf

α
sup
β≥α

xβ = sup
α

inf
β≥α

xβ in E

iff 0 = inf
α

sup
β≥α

|xβ − x| in E.

The following fact is straightforward.
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Lemma 2.10. Let E be a sublattice of a Dedekind complete vector lattice
F . Then

xα
Fo−−→ x in E iff x = inf

α
sup
β≥α

xβ = sup
α

inf
β≥α

xβ in F,

for every order bounded net {xα} in E.

A net {xα} in E is a F -order Cauchy, if the double net {(xα −
xβ)}(α,β) is a F -order convergent to zero in E. The following proposi-
tion follows from the double equality of Lemma 2.10 and the proof is
straightforward.

Proposition 2.11. Every F -order Cauchy net in an Dedekind complete
vector sublattice E is order convergent.

For a vector lattice E, we write Eδ for its order ( or Dedekind)
completion. Recall from Theorem 1.41 of [2] that Eδ is the unique ( up
to a lattice isomorphism) order complete vector lattice that contains E
as a majorizing and order dense sublattice. In particular, E is regular
sublattice of Eδ.

Theorem 2.12. [10] Let E be a regular sublattice of a vector lattice F .
Then

1. Eδ is a regular sublattice of F δ.

2. xα
o−→ 0 in E iff xα

o−→ 0 in F for every order bounded net {xα} in
E.

Corollary 2.13. Let E be a regular sublattice of a vector lattice F .

Then xα
Fo−−→ 0 in E for every order bounded net {xα} in E, when one

of the following conditions hold:

1. xα
o−→ 0 in E.

2. xα
o−→ 0 in F .

The proof of the following Theorem is similar to Theorem 2.8 of [10].

Theorem 2.14. Suppose that E is an order dense and majorizing sub-
lattice of F . Then the order convergence and F -order convergence are
equivalent.
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Corollary 2.15. For every net {xα} in E, xα
o−→ 0 in E iff xα

Eδo−−→ 0
in E.

Corollary 2.16. If E is regular sublattice of F , then xα
Eδo−−→ 0 in E iff

xα
F δo−−→ 0 in E for every order bounded net {xα} in E.

Proof. From Corollary 2.15 and Theorem 2.12, it should be obvious.
□

Theorem 2.17. Suppose that E is a regular sublattice of a vector lattice

F . Then xα
o−→ 0 iff xα

Fo−−→ 0 for every order bounded net {xα} in E.

Proof. Since, for a bounded net, F -order convergence is equivalent to
order convergence in F , thus by Theorem 2.12 the result holds. □

Theorem 2.18. Let F be Dedekind σ-complete. If {xn}n∈N is a disjoint

sequence in E, then xn
Fo−−→ 0.

Proof. Suppose {xn} is a disjoint sequence in E. We claim that yn =
supk≥n |xk| ↓ 0 in F . Indeed, assume that y ∈ F and yn ≥ y ≥ 0 for all
n ≥ 1. Then

0 ≤ y ∧ |xn| ≤ (|xn| ∧ sup
k≥n+1

|xk|) = sup
k≥n+1

(|xk| ∧ |xn|) = 0,

holds in F . Thus y ∧ |xn| = 0 holds in F for all n ≥ 1. It follows that

y = y ∧ (sup
n≥1

|xn|) = sup
n≥1

(y ∧ |xn|) = 0 for all n ≥ 1.

It follows that |xn| ⩽ yn and yn ↓ 0 holds in F . □

Theorem 2.19. Suppose that E is a sublattice of a vector lattice F .
Assume also F is atomic and has order continuous norm, and {xn} is

an order bounded sequence in F . If xn
o−→ 0 then xn

Fo−−→ 0.

Proof. It can be proven in the same manner of Lemma 5.1 of [9]. □
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3 FH-order Continuous Operators

In this section, the basic properties of FH-order continuous operators
will be studied. In the following, E and G are vector sublattices of
vector lattices F and H, respectively. Let {xn} ⊆ E and x ∈ E. The
notation xα ↓F x means that xα ↓ and inf{xα} = x holds in F . Assume
that F is a set of real valued functions on [0, 1] of form f = g + h
where g is continuous and h vanishes except at finitely many points. Let
E = C([0, 1]), {fn} be a decreasing sequence in E+ such that fn(

1
2) = 1

for all n ∈ N and fn(t) → 0 for every t ̸= 1
2 . It is clear that fn ↓ 0 in E,

but fn ↓F 0 not holds.

Definition 3.1. An operator T : E −→ G between two vector lattices
is said to be:
(a) FH-order continuous, if xα

Fo−−→ 0 in E implies Txα
Ho−−→ 0 in G.

(b) FH-σ-order continuous, if xn
Fo−−→ 0 in E implies Txn

Ho−−→ 0 in G.

The collection of all FH-order continuous operators will be denoted
by LFHn(E,G), that is,

LFHn(E,G) = {T ∈ L(E,G) : T is FH-order continuous}.

Similarly, the collection of all FH-σ-order continuous operators from E
to G will denoted by LFHc(E,G), that is,

LFHc(E,G) = {T ∈ L(E,G) : T is FH-σ-order continuous}.

Lemma 3.2. Let E and G are F -Dedekind complete and H-Dedekind
complete, respectively. Then we have the following assertions.

1. 0 ≤ T ∈ LFHn(E,G) if and only if for each net {xα} in E, xα ↓F 0
implies Txα ↓H 0.

2. If E and G are ideals in F and H, respectively, then LFHc(E,G) =
Lc(E,G). Moreover, the FH-order continuous operator 0 ≤ T is
an order bounded.

Proof.
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1. Assume that 0 ≤ T and {xα} is a net in E such that xα
Fo−−→ 0. It

follows that there exists a net {yβ}β∈B in F satisfying, yβ ↓ 0 and
for each β there exists α0 such that |xα| ≤ yβ whenever α ≥ α0. Set
zα =

∨
λ≥α |xλ|. Then we have |xα| ≤ zα for all α and zα ↓F 0, and

so by our assumption we have |Txα| ≤ T |xα| ≤ Tzα ↓ whenever

α ≥ α0. Since Tzα ↓H 0, it follows that Txα
Ho−−→ 0 and therefore

T ∈ LFHn(E,G).
Conversely, suppose that 0 ≤ T ∈ LFHn(E,G) and xα ↓F 0. It

follows that xα
Fo−−→ 0 and so Txα

Ho−−→ 0. Then there exists a net
{zβ} in H satisfying, zβ ↓ 0 and for each β there exists α0 such
that |Txα| ≤ zβ whenever α ≥ α0, which shows that Txα ↓H 0
and the proof is follows.

2. Suppose that T ∈ LFHc(E,G) and xn
o−→ 0. By using Corollary

2.4, we have xn
Fo−−→ 0 and by our assumption, we have Txn

Ho−−→ 0.
Using Corollary 2.4 again, we have Txn

o−→ 0 and so T ∈ Lc(E,G).
The converse is proved in the same manner. For the last part,
let 0 ≤ T ∈ LFHn(E,G) and x0 ∈ E+. If we consider the order
interval [0, x0] as a net {xα} where xα = α for each α ∈ [0, x0],

then xα ↑ x0 holds in F . It follows that xα
Fo−−→ x0 and therefore

Txα ↑ Tx0 holds in H. Thus T is order bounded.

□

Theorem 3.3. Suppose that E and G are sublattices of F and H, re-
spectively. Assume also H is Dedekind complete and T ∈ L(E,G). If
T ∈ Ln(F,H), then T ∈ LFHn(E,G).

Proof. Since T is order bounded, follows that T = T+−T−, thus with-
out loss of generality, we assume that T is a positive operator. Suppose
that {xα}α∈A is a net in E which is F -order convergent to zero, then
there exists a net {yβ}β∈B in F satisfying, yβ ↓ 0 and for each β there
exists α0 such that |xα| ≤ yβ holds whenever α ≥ α0. Since T is a
positive operator, we have |Txα| ≤ T |xα| ≤ T (yβ) ↓ 0 whenever α ≥ α0.
Now by using Lemma 3.2, the proof follows. □

An other application of the preceding lemma yields the following
theorem, in which the techniques of this theorem are similar argument
like as Theorem 1.56 [3], so we omit its proof.
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Theorem 3.4. Let E and G are F -Dedekind complete and H-Dedekind
complete, respectively. Then the following assertions are equivalent.

1. T ∈ LFHn(E,G).

2. xα ↓F 0 implies Txα ↓H 0.

3. xα ↓F 0 implies infH |Txα| = 0.

4. T+, T− and |T | belong to LFHn(E,G).

The next result presents a useful sufficient condition for a set to be
order bounded in two vector lattices.

Theorem 3.5. Let I be a sublattice of E and E be F -Dedekind com-
plete. Then subset A of I is E-order bounded if and only if it is F -order
bounded.

An operator T : E → G is said to be FH-order bounded if it maps
each F -order bounded subset of E into H-order bounded a subset of G.
The collection of all FH-order bounded operators from a vector lattice
E into a vector lattice G will be denoted by LFHb(E,G).

The following example shows that, there are operators T : E → G
between Riesz spaces that are FH-order bounded, but are not an order
bounded operators.

Example 3.6. Let T : L1[0, 1] −→ c0 be defined by

T (f) = (

∫ 1

0
f(x) sin(x)dx,

∫ 1

0
f(x) sin(2x)dx, . . .).

Then T is a L∞[0, 1]ℓ∞-order bounded but is not an order bounded
operator.

Theorem 3.7. For two vector lattices E and F , we have the following:

1. LFHc(E,G) ⊆ LFHb(E,G).

2. If E has property (F ), then Lb(E,G) ⊆ LFHb(E,G).

3. If G has property (H), then LFHb(E,G) ⊆ Lb(E,G).
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4. If E and G have property (F ) and (H), respectively, then

Lb(E,G) = LFHb(E,G).

Proof.

1. The proof is clear.

2. Suppose that T ∈ Lb(E,G) and A ⊂ E is an F -order bounded
subset of E. From our hypothesis, A is an order bounded subset
of E and T (A) is an order bounded subset of G. Therefore T (A)
is an H-order bounded subset of G and hence T ∈ LFHb(E,G).

3. Assume that T ∈ LFHb(E,G) and A ⊂ E is an order bounded
subset of E. Then A is an F -order bounded subset of E and from
our hypothesis, T (A) is an H-order bounded subset of G. Since
G has property (H), T (A) is an order bounded subset of G and
therefore T ∈ Lb(E,G).

4. It is obvious by (1) and (2).

□

Corollary 3.8. Let E and G be F -Dedekind complete and H-Dedekind
complete, respectively, then Lb(E,G) = LFHb(E,G).

Corollary 3.9. Let E be an F -Dedekind complete ideal of F . Assume
also G is an H-Dedekind complete ideal of H. Then LFHn(E,G) and
LFHc(E,G) are both bands of LFHb(E,G).

Proof. Corollary 3.8 and part 2 of Lemma 3.2, show that LFHn(E,G)
and LFHc(E,G) are both subspaces of LFHb(E,G) and the rest of the
proof has a similar argument like as Theorem 1.57 [3]. □

Proposition 3.10. Let T and S be FF -order bounded operators on
Riesz space E. Then ToS is also FF -order bounded.

Proposition 3.11. Let E be a Riesz space with property (F ) and T
is an operator on E that it has order bounded left inverse. Then Tn

for each 2 ≤ n, be a FF -order bounded operator if and only if T be
FF -order bounded.
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Proof. Suppose that T is a FF -order bounded operator on E, clearly
Tn, for each n ∈ N, is FF -order bounded.
For the converse, suppose that A is a F -order bounded subset of E. By
hypothesis Tn(A), for each n ∈ N, is order bounded subset of E and so,
there exists x ∈ E+ such that Tn(A) ⊂ [−x, x]. Since the left inverse
of T is an order bounded, there exists a, b ∈ E such that Tn−1(A) =
T−1oTn(A) ⊂ T−1[−x, x] ⊂ [a, b]. By continuing this process, it is easy
to see that T (A) is order bounded set in E. Therefore, T is FF -order
bounded operator. □
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