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Abstract. It is widely known that the fundamental group of a Lie
group, and in general a symmetric space, is abelian. In the current
paper it is demonstrated that any finitely generated abelian group is the
fundamental group of a compact Lie group. In addition, it is proved that
for any arbitrary group there is a differentiable manifold of dimension
greater than 3 whose fundamental group is that arbitrary group.
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1 Introduction

Let M be a Riemannian manifold. The relation between the curvature
of M and its topology is of fundamental importance. This is particularly
more evident in theorems and results by Hadamard, Bonnet-Myers and
Preissman [2, 8], that show the relationship between curvature and the
fundamental group. For instance, the universal covering of a complete
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Riemannian manifold with negative sectional curvature is diffeomorphic
to Euclidean space. Moreover, if this manifold is compact, its fundamen-
tal group cannot be abelian. A special but still important case of this
problem is the relation between a compact Lie group and its fundamen-
tal group. This relation has been extensively studied by many authors at
different times, (see for example [2] and its references for observing some
of these studies). Along this line, we study some relations between Lie
groups and their fundamental groups. The reader is referred to [2, 5, 6],
for undefined terms and concepts.

In the second section, it is shown that the fundamental group π1(G)
is a finitely generated abelian group when G is a compact Lie group.
Samelson [9] uses differential forms as well as differential geometry to
show that the fundamental group of a compact semi-simple Lie group is
finite. Taking another approach to the above problem, the authors prove,
by Bonnet-Myers’ theorem, that if the Lie group G has a bi-invariant
metric and its Lie algebra G has trivial center, then its fundamental
group is finite.

In the third section for each finitely generated abelian group G, the
authors find a Lie group whose fundamental group is G. This is carried
out on the basis of the decomposition of finitely generated abelian groups
and the fact that the functor π1 (between the category of topological
spaces and the category of groups) commutes with products and maps.

Hatcher [5] shows that for any group G, there exists a CW-Complex,
whose fundamental group is G. In the current paper, this problem
for differentiable manifolds with dimensions greater than 3 is solved by
drawing on his construction method.

By generalizing the fundamental group or the first homotopy group
of the manifold M to the n-th homotopy group, including homotopy
classes of maps of n-dimensional sphere into M , Samelson [10] has shown
that the second homotopy group π2(G) of a Lie group G is trivial. Also,
Hadamard’s theorem, which deals with the relationship between the
topology of a manifold and its geometry, states that for the manifold
M with negative sectional curvature K < 0, all higher order homotopy
groups are trivial and at the level of homotopy, the information about
the topology of M is contained in its fundamental group. In the fourth
section, by drawing on the Preissman and Synge theorems the authors
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present the results on the curvature of a metric of a compact Lie group
as well as m-torus. The reader can find the counterpart of the above
concepts and theorems in Finsler geometry in [3, 8].

2 Fundamental Group of a Lie Group

Though if is well-known that the fundamental group of a Lie group is
abelian, here we give a proof for the sake of completeness. We will use
this fact in the sequel.

Lemma 2.1. The fundamental group of a Lie group is abelian.

Proof. Let G be a Lie group with operation � and identity element e.
Let Ω(G, e) denote the set of all loops in G based at e. If f, g ∈ Ω(G, e) ,
let us define a loop f �g by the rule (f �g)(s) = f(s) �g(s). This operation
makes Ω(G, e) into a group and induces a group operation � on π1(G, e).
Since

f ∗ g = (f � ce) ∗ (ce � g) = (f ∗ ce) � (ce ∗ g) ≃ f � g,

where ce is the constant loop at e, the two group operations ∗ and � on
π1(G, e) are the same. Besides

g ∗ f = (ce � g) ∗ (f � ce) = (ce ∗ f) � (g ∗ ce) ≃ f � g.

Therefore f ∗ g ≃ f � g ≃ g ∗ f. This shows π1(G, e) is abelian. □

Corollary 2.2. Let G be a Lie group, then H1(G) = π1(G, e), where
H1(G) is the first homology group of G.

Proof. The first homology group, H1(G), by the very definition is
π1(G)/[π1(G), π1(G)] , i.e., the abelianized fundamental group. Since
π1(G) is abelian, we have H1(G) = π1(G). □

R. Bott and L. W. Tu [1], have proved that the first homology group
of a compact Lie group is finitely generated. A direct consequence of
their result and Corollary 2.2 is the following proposition.

Proposition 2.3. Let G be a compact Lie group, then π1(G) is finitely
generated.
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Proof. By [1, Theorem 5.1 and Proposition 5.3.1], H1(G) is finitely
generated. By Corollary 2.2, π1(G) = H1(G) is also finitely generated.
□

Studying fundamental groups of real connected compact semi-simple
Lie groups, H. Samelson [9], discovered that these fundamental groups
are in fact finite. The next result is at the same time, a counterpart and
a generalization of the Samelson’s theorem.

Theorem 2.4. Let G be a connected Lie group whose Lie algebra G has
trivial center. If G has a bi-invariant metric, then G and its universal
cover G̃ are compact. In particular, the fundamental group π1(G) is
finite.

Proof. For X,Y ∈ G, then < X,X > , < X,Y >, < Y, Y > are
constant on G, so

2 < Y,∇XX > =< X, [Y,X] > + < X, [Y,X] > − < Y, [X,X] >

= 2 < X, [Y,X] > .

By bi-invariance < X, [Y,X] >= − < [X,X], Y >= 0.
For fixed X, < Y,∇XX >= 0, ∀Y . So ∇XX = 0, ∀X ∈ G. It follows

that for X,Y ∈ G,
0 = ∇X+Y (X + Y ) = ∇Y X +∇XY, ∇XY = −∇Y X = 1

2 [X,Y ],
and so

R(X,Y )X = ∇Y ∇XX −∇X∇Y X +∇[X,Y ]X

=
1

4
[X, [X,Y ]] +

1

2
[[X,Y ], X]

=
1

4
[[X,Y ], X].

Therefore

R(X,Y,X, Y ) =
1

4
< [[X,Y ], X], Y >=

1

4
|[X,Y ]|2.

If e1, . . . , en is an orthonormal basis of G = TeG, then
Rice(X) = 1

4(n−1)

∑
i
|[X, ei]|2 > 0, for any X ∈ G with X ̸= 0, since

G has trivial center.
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Since Sn−1 is compact, there exists c > 0 such that Rice(X) ≥ c > 0,
for all X ∈ G with |X| = 1. Now apply Bonnet-Myers’ theorem to
conclude that G and its universal cover G̃ are compact. Hence the
number of sheets of the covering and hence the number of elements in
the fundamental group π1(G) are finite. □

Remark 2.5. Any compact connected Lie group has a bi-invariant met-
ric and semisimple Lie group implies that G has trivial center.

3 Finitely Generated Abelian Groups and Lie
Groups

In this section, we study the reverse implications, which have already
been proved in the second section. We begin with the first result, which
deals with “the realization problem” of abelian groups, that is: “for
every abelian group A, find a Lie group G, such that π1(G) = A”. We
begin with our first result, which gives a partial answer to this question.

Theorem 3.1. Every finitely generated abelian group is the fundamental
group of a Lie group.

Proof. A finitely generated abelian group is a finite product of cyclic
groups, so it suffices to realize cyclic groups and then take the product
of the Lie groups that realize them. For an infinite cyclic group one can
just take the circle group U(1). For a finite cyclic group Cn of order
n, this embeds in SU(n) as the subgroup consisting of scalar multiples
of the identity matrix where the scalar is an n-th root of unity. These
diagonal matrices are contained in the center of SU(n), so Cn is a normal
subgroup of SU(n) and one can form the quotient group SU (n) /Cn .
Since SU(n) is simply connected, it is the universal cover of SU (n) /Cn,
therefore Cn is the fundamental group of SU (n) /Cn . □

Remark 3.2. In this paper “Lie group” we mean “finite dimensional
Lie group”. We have already seen that for compact Lie groups, the
fundamental group is a finitely generated abelian group. Every non-
compact Lie group is homeomorphic to the product of a compact Lie
group and some Euclidean space by a theorem of Malcev and Iwasawa,
so the fundamental group would be finitely generated in this case too.
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No countable abelian group, such as, Q, ZP∞ and Q/Z are funda-
mental groups of finite dimensional Lie groups: because by the above
remark, such fundamental groups are isomorphic to the fundamental
groups of compact Lie groups. But by a result due to S. Shelah [12], no
compact metric space which is path connected, has a countable, non-
finitely generated fundamental group. So it is almost impossible to find,
a finite-dimensional Lie group with Q, ZP∞ and Q/Z as its fundamental
group.

We need the following proposition of Hatcher, to tackle the “realiza-
tion problem of finitely presented group” for smooth manifolds.

Proposition 3.3. For every group G, there is a 2-dimensional cell com-
plex XG with π1(XG) = G.

Proof. See Hatcher [5, Corollary 1.28]. □
By using “handles” instead of “cells” in the construction of K(G, 1)

, we obtain the following theorem.

Theorem 3.4. Every finitely presented group is the fundamental group
of a closed orientable smooth manifold of dimension n, where n is any
given number greater than 3.

Proof. Let G be a group which has a presentation consisting of k
generators and l relations. In dimension n > 3 one starts with an n-
dimensional ball Dn, thought of as a thickening of a 0-cell. Then attach
1-handles D1 ×Dn−1 to the boundary sphere Sn−1 so as to produce an
orientable n-manifold with boundary, homotopy equivalent to a wedge of
k circles. The 1-handles can be viewed as thickenings of 1-cells. Next, at-
tach 2-handles D2×Dn−2 to the boundary of the previously constructed
manifold, attaching the 2-handles along S1 × Dn−2 via embeddings of
S1 ×Dn−1 into the boundary representing relations defining the group
G, as in the CW-Complex construction. This is where the assumption
n > 3 comes in to guarantee that the desired embeddings exist. After
these steps one obtains a compact manifold N with boundary and with
fundamental group G because the inclusion ∨S1 → N leads to an iso-
morphism π1(N) = π1(∨S1)/K, where the subgroup K generated by
the loops is the same as subgroup generated by the words. The last step
is to double this manifold, taking two copies of N and identifying their
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boundaries to get a closed manifold M . M is therefore obtained from
N by attaching (n − 2)-handles, (n − 1)-handles, and one n-handle. If
n > 3 these attached handles do not affect the fundamental group. □

Remark 3.5. When n = 3 it is known that not all finitely presented
groups occur as the fundamental groups of 3-manifolds. (See [7].)

4 Curvature and Homotopy Groups

One of the most important topological invariants, called the homotopy
group, which generalizes the fundamental group.

Definition 4.1. [4, 5, 7]. The n-th homotopy group πn(M) of the
manifold M can be defined as homotopy classes of maps, f : Sn → M ,
of spheres Sn of dimension n into M .

In [10], Samelson studied the second homotopy group of a Lie group
and got the following result.

Proposition 4.2. The second homotopy group π2(G) of a Lie group G
is zero.

Proof. See Samelson [10, page 29]. □
In the following, we see that a complete Riemannian manifold with

negative sectional curvature has trivial higher order homotopy groups.

Proposition 4.3. Let M be a complete Riemannian manifold with sec-
tional curvature K < 0, then the homotopy groups of higher order are
trivial.

Proof. By Hadamard’s theorem the universal covering of M is diffeo-
morphic to Rn, then every f : Sm → M is homotopic to a constant map
if m ≥ 2, see Greenberg [4, page 32]. □

Remark 4.4. By Preissman’s theorem [2, Theorem 3.8], the compact
Lie group G does not admit a metric of negative curvature, since its
fundamental group is abelian.
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Example 4.5. Using Preissman theorem [2, Theorem 3.8], it is shown
that m-torus Tm = S1 × · · · × S1 does not admit metrics of negative
curvature. In addition, the Synge theorem [2, Corollary 3.10], shows that
for even m’s this m-torus does not carry a metric of positive sectional
curvature, since its fundamental group is Z ⊕ · · · ⊕ Z (m times).
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