
Journal of Mathematical Extension
Vol. 8, No. 3, (2014), 17-26

On Elliptic Curves Via Heron Triangles
and Diophantine Triples
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Abstract. In this article, we construct families of elliptic curves arising
from the Heron triangles and Diophantine triples with the Mordell-Weil
torsion subgroup of Z/2Z × Z/2Z. These families have ranks at least
2 and 3, respectively, and contain particular examples with rank equal
to 7.
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1. Introduction

Triangles with integral sides and area have been considered by Indian
mathematician Brahmagupta (598-668 A.D.). In general, the sides and
area are related by a formula first proved by Greek mathematician Heron
of Alexandria (c. 10 A.D-c. 75 A.D.) as

S =
√
P (P − a)(P − b)(P − c),

where P = (a+ b+ c)/2 is the semi perimeter.
Triangles with rational sides and area are known as the Heron triangles
(for more information and fundamental results on Heron triangles, see [7,
8, 11]).
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Goins and Maddox have studied Heron triangles by considering the el-
liptic curve

E(n)
τ : y2 = x(x− nτ)(x+ nτ−1)

as a generalization of the congruent number problem (see [8]). In the
same paper, they also have found 4 curves of rank 3 with torsion sub-
group Z/2Z×Z/2Z. Campbell and Goins ([2]) by analyzing the elliptic
curve

Et : y2 = x3 + (t2 + 2)x2 + x

defined over the rational function field Q(t) described connections be-
tween the problem of finding Heron triangles with a given area possessing
at least one side of a particular length and rational Diophantine quadru-
ples and quintuples. They also have studied the relation between these
problems and elliptic curves with torsion subgroup Z/2Z × Z/8Z, and
found a new elliptic curve with this torsion having rank 3 and an infinite
family of elliptic curves with torsion subgroup Z/2Z×Z/8Z and rank at
least 1. Having constructed a family of Diophantine triples such that the
correspondent elliptic curve over Q has torsion subgroup Z/2Z × Z/2Z

and rank 5, Aguirre et al. [1] have obtained two examples of elliptic
curves over Q with torsion subgroup Z/2Z×Z/2Z and rank equal to 11.
Dujella and Peral in a joint work [6] have created subfamilies of elliptic
curves coming from the Heron triangles of ranks at least 3,4, and 5. They
also have given examples of elliptic curves over Q with rank equal to 9
and 10.
This paper is organized as follows. In Section 2, a family of elliptic
curves arising from Heron triangles introduced by Fine [7] is considered
and shown that the family has torsion subgroup Z/2Z×Z/2Z, and rank
at least 2, and a subfamily of rank � 3. In Theorem 2.6, a subfamily
of Y 2 = (aX + 1)(bX + 1)(cX + 1) of rank � 2 is given. This is a
generalization of Dujella’s work done in [4]. Therein, Dujella extended
the Diophantine triple (a, b, c) = (k − 1, k + 1, 4k) to a quadruple by
studying Y 2 = (aX + 1)(bX + 1)(cX + 1), and proved that this elliptic
curve has generic rank 1 over Q. In Section 3, some examples of elliptic
curves with rank 7 are given.
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2. Main Results

Let S be area of the triangle (a, b, c), i.e., S =
√
P (P − a)(P − b)(P − c),

where P = (a + b + c)/2. This formula, due to Heron, ensures us to
have an elliptic curve v2 = u(u − a)(u − b)(u − c) with non torsion
point (u, v) = (P, S). The curve therefore is birationally equivalent to
y2 = (x + ab)(x + bc)(x + ac), with corresponding (non torsion) point
(x, y) =

(−abcP−1, abcSP−2
)
, and is equivalent to Y 2 = (aX+1)(bX+

1)(cX + 1), with corresponding point (X,Y ) =
(−P−1, SP−2

)
. In the

sequel, we are going to treat with special families coming from these two
kinds of elliptic curves.
Consider the elliptic curve Ek : y2 = (x + a(k)b(k))(x + b(k)c(k))(x +
a(k)c(k)) associated to the Fine triple:⎧⎪⎨

⎪⎩
a(k) = 10k2 − 8k + 8,

b(k) = k(k2 − 4k + 20),

c(k) = (k + 2)(k2 − 4),

(1)

arising from a Heron triangle which has rational area 4k(k2 − 4)2 (see
[7]). (Note that multiplication of sides in (1) by (2(k2 − 4))−1 implies
that the resulting triangle to have area k.) One can easily check that
Ek has three rational points of order two:⎧⎪⎪⎨

⎪⎪⎩

T1 = (−k(10k2 − 8k + 8)(k2 − 4k + 20), 0),

T2 = (−k(k + 2)(k2 − 4k + 20)(k2 − 4), 0),

T3 = (−(k + 2)(10k2 − 8k + 8)(k2 − 4), 0).

As the change of coordinates (x, y) → (x − a(k)b(k), y) does not affect
the group structure of Ek(Q), we may consider Ek in the form y2 =
x3 +Ax2 +Bx, in which

A = k6 − 12k5 + 116k4 − 480k3 + 304k2 − 448k − 64,

B = 4k(5k2 − 4k + 4)(k2 − 4k + 20)(3k2 − 12k − 4)
×(k3 − 8k2 + 4k − 16).

(2)

Theorem 2.1. Let a(k), b(k) and c(k) be defined as (1), where k is an
arbitrary rational number different from 0, -2, and 2. Then the elliptic
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curve

E : y2 = (x+ a(k)b(k)) (x+ b(k)c(k)) (x+ a(k)c(k))

defined over Q(k) has torsion subgroup Z/2Z × Z/2Z.

Proof. The points O (the point at infinity), T1 = (−a(k)b(k), 0), T2 =
(−b(k)c(k), 0), and T3 = (−a(k)c(k), 0) form a subgroup of the torsion
group E(Q(k))tors isomorphic to Z/2Z × Z/2Z. By Mazur’s theorem
and a theorem of Silverman (see [13], Theorem 11.4, p.271), it suffices
to check that there exists no point E(Q(k)) of order four, six or eight. If
there exists a point T on E(Q(k)) such that 2T ∈ {T1, T2, T3}, then 2-
descent Proposition (see [9], 4.1, p.37), implies that all of the expressions

−a(k)b(k) + a(k)b(k) = 0,

−a(k)b(k) + b(k)c(k) = k(k2 − 4k + 20)(k3 − 8k2 + 4k − 16),

−a(k)b(k) + a(k)c(k) = 4(5k2 − 4k + 4)(3k2 − 12k − 4),

must be perfect squares. But, it is easily seen that for k = 1 none of
the above expressions are perfect squares. Similarly, if 2T = T2 and
2T = T3, then all of the expressions

−b(k)c(k) + a(k)b(k) = −k(k2 − 4k + 20)(k3 − 8k2 + 4k − 16),

−b(k)c(k) + b(k)c(k) = 0,

−b(k)c(k) + a(k)c(k) = −(k2 − 12k + 4)(k − 2)2(k + 2)2,

as well as

−a(k)c(k) + a(k)b(k) = −4(5k2 − 4k + 4)(3k2 − 12k − 4),

−a(k)c(k) + b(k)c(k) = (k2 − 12k + 4)(k − 2)2(k + 2)2,

−a(k)c(k) + a(k)c(k) = 0,

must be perfect squares. But, it is easily seen that for k = 1 none of
the above expressions are perfect squares. This contradiction shows that
T /∈ {T1, T2, T3}. Thus, by [10] it is to prove that there exists no point T



ON ELLIPTIC CURVES VIA HERON TRIANGLES ... 21

such that 3T ∈ {T1, T2, T3}. If there exists a point T = (x, y) on E(Q(k))
such that 3T = T1, T �= T1, then from 2T = −T + T1, the equation

x4 − 6h1(k)x2 − 4h1(k)h2(k)x− 3h2(k)2 = 0, (3)

is obtained in which

h1(k) = −12k5 − 480k3 + 116k4 + 304k2 − 448k − 64 + k6,

h2(k) = 4k(5k2 − 4k + 4)(k2 − 4k + 20)(3k2 − 12k − 4)

× (k3 − 8k2 + 4k − 16).

It can be easily seen that for k = 1, the equation (3), namely

x4 + 3498x2 + 195841360x− 21157921200 = 0

has no rational solution. Similarly it can be checked that there does not
exist any point T on E(Q(k)) such that 3T = T2, T �= T2, and 3T = T3,
T �= T3. Therefore, E(Q(k))tors = Z/2Z × Z/2Z. �

Theorem 2.2. With the terminology in Theorem 2.1, rank E(Q(k)) � 2.

Proof. Evidently the non torsion points

P1 = (−a(k)b(k)c(k)P−1(k), a(k)b(k)c(k)S(k)P (k)−2),

P2 = (0, a(k)b(k)c(k)),

lie on E(Q(k)), where P (k) and S(k) are respectively the associated
semi perimeter and area to (a(k), b(k), c(k)).
For k = 1, the elliptic curve E(Q(k)) turns into

E1 : y2 = x3 − 73
36
x2 − 85

4
x+

7225
144

,

with

P1 =
(

85
18
,
85
27

)
, P2 =

(
0,

85
12

)
.

The Néron-Tate height matrix [14, p. 230] associated to these points
is of non vanishing determinant ≈ 2.30842249514247 (carried out with
SAGE [12]) showing that the points are linearly independent.Therefore
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Thus Ek turns into Em : y2 = x3 +Ax2 +Bx with

A =
213(m12 + 14m10 − 5m8 + 4m6 + 11m4 + 6m2 + 1)

(m2 − 1)6
,

B = −224(m6 − 5m4 − 3m2 − 1)M1M3

(−1 +m2)10
,

and three non torsion points

P1 =
(

212M1

(m2 − 1)4
,
219M1(1 +m2)3

(m2 − 1)7

)
,

P2 =
(

212(m4 + 1)M2

(−1 +m2)5
,
220(m4 + 1)m4(m2 + 1)M2

(m2 − 1)8

)
,

P3 =
(

212(m4 + 1)M3

(m2 − 1)5
,
221(m4 + 1)m5M3

(m2 − 1)8

)
,

where
M1 = (m4 + 1)(5m4 + 4m2 + 1),

M2 = (3m2 + 1)(5m4 + 4m2 + 1),

M3 = (3m2 + 1)(m4 + 4m2 + 1).

Regarding the specialization theorem, since form = 1/2, the Néron-Tate
height matrix associated to these points has non vanishing determinant
≈ 11.9727247292862, then Em as a subfamily of Ek is of rank � 3 over
Q(m). �
We say that ([5]) the Diophantine triple (a, b, c) has the property D(n),
for any non zero integer n, whenever there exist rational r, s, and t such
that

ab+ n = r2, ac+ n = s2, bc+ n = t2.

Theorem 2.5. Let (a, b, c) = (k−1, k+1, 4k) with property D(1). Then
there exists a subfamily of C : Y 2 = (aX + 1)(bX + 1)(cX + 1) over Q

with rank � 2.

Proof. Consider the triple (a, b, c) = (k−1, k+1, 4k) with propertyD(1).
The curve Ck : Y 2 = ((k−1)X+1)((k+1)X+1)(4kX+1), k ∈ Q, has non
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of this idea. For a prime p we put ap = ap(E) = p+ 1− |E(Fp)| and

SN(E,N) =
∑

p6N,p prime

(1− p− 1
|E(Fp)|

) log(p) =
∑

p6N,p prime

(
−ap + 2
p+ 1− ap

) log(p).

This summation is defined as Mestre-Nagao sum. In order to give ex-
amples of high rank for Ek : y2 = x3 + Ax2 + Bx with A and B in the
equation (2.2), we observe k = p/q, with gcd(p, q) = 1, |p|, |q| < 1000,
and Mestre-Nagao sums SN(1000, Ek) > 20, SN(10000, Ek) > 30, and
SN(100000, Ek) > 40. Among these sieved k’s, it is considered the ones
with high Selmer-rank. Then, rank computations are carried out with
MWrank. This process shows that for k = 30

259 , 67
93 , 88

31 , 98
337 , 263

666 , 280
919 , 593

150 ,
596
19 , 609

76 , 845
33 , rank Ek(Q) = 7.
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