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Abstract. The aim of the paper is to establish the global well-posedness
of the Newell-Whitehead-Segel Equation driven by the biharmonic oper-
ator with Dirichlet boundary conditions through the semigroup method
based on the Hille-Yosida Theorem. In particular, using the blow-up
criterion we first demonstrate that there exists a unique local maximal
classical solution. Next, by showing that the semiflow generated is uni-
formly bounded in H4-norm, it has been that the solution is indeed
global in time.
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1 Introduction

In this paper, we aim to study the following version of the initial-
boundary value problem consisting of the Newell-Whitehead-Segel Equa-
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tion (NWSE) driven by the biharmonic operator with Dirichlet bound-
ary conditions,

ut = −k∆2u+ au− buq, (t, x) ∈ R+ ×O
u = ∆u = 0 on Γ = ∂O,

u(0, x) = u0(x) for x ∈ O. (1)

where a, b, and k be positive real numbers with b > a and q be a positive
odd integers, O ⊂ Rn, n ≤ 3, bounded domain with smooth boundary
Γ = ∂O, u0 ∈ H2

0(O).
In nature, there are plenty of physical phenomena where stripe pat-
terns emerge, [17], such as the skin of zebra, human fingerprints, visual
cortex, ripples in the sand, and stripes of seashells. The existence and
dynamics of stripe patterns are better explained by a family of evolution
equations, known as Amplitude Equation (AE). Most fundamental equa-
tions in this family of amplitude equations are Newell-Whitehead-Segel
equation (NSWE) cf. [20], [22] and Swift-Hohenberg equation (SHE)
cf. [13]. The problem (1) of our interest also belongs to the family of
Amplitude equation and is closely related to NWSE. The NWSE has
been studied in a variety of contexts, in [1] it has been used to describe
the process related to Bernard-Rayleigh convection of a mixture of fluid
around a bifurcation point. Moreover, variants of NSWE type ampli-
tude equations appear in variety of areas of physical sciences, such as,
relativity [5], plasma physics [26], astrophysics [23], biological systems
[18]. There is plenty of literature available for the numerical and an-
alytical solution for this equation, but nothing is available on abstract
existence, this is what the work makes the novel. We aim to employ the
semigroup method to study the well-posedness of NWSE driven by a Bi-
harmonic operator. For a detailed description of the semigroup method
and Hille-Yosida Theorem, we refer to Chapter 2 of the [25].
Now we give the outline of this paper. Section 1 is a running introduc-
tion. In Section 2, we present some notation, necessary assumptions,
and essential abstract results that would be needed in the later sections.
Moreover, we have stated the key results (Theorem 2.4 and 2.5) in sec-
tion 2. In Section 3, we prove Theorem 2.4 which is about the existence
and uniqueness of the maximal local solution of Problem 2, whose par-
ticular case is our main Problem 1. We argue through Theorem 2.3
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based on the semigroup method. Section 4 has been devoted to proving
Theorem 2.5, concerning the global existence and uniqueness of solution
for Problem 1.

2 Main Results, Assumptions, Framework and
Abstract Theory

2.1 Notation and assumptions

Let us assume that (E , |·|E), (V, ∥·∥) and (H, |·|H , ⟨·, ·⟩) constitutes a
Gelfand triple i.e. nested abstract Hilbert spaces such that E contin-
uously embedded into V, and V is continuously embedded into H. In
particular, we will consider the following maximal regularity spaces

XT := L2
(
(0, T ); E

)
∩ C

([
0, T

]
;V
)
,

with following norm,

∣∣∣∣u∣∣∣∣2
XT

= sup
t∈[0,T ]

∥u(t)∥2 +
∫ T

0

∣∣∣∣u(t)∣∣∣∣2E dt.
It is not difficult to verity that

(
XT ,

∣∣∣∣·∣∣∣∣
XT

)
is Banach space.

Assumption 2.1. Let (E , |·|E), (V, ∥·∥) and (H, |·|H , ⟨·, ·⟩) be as de-
scribed above. Let {T (t) : t ≥ 0} be an analytic C0 semigroup of
bounded operators on H.

i) There exists a constant C1 > 0 such that for each T > 0 and f ∈
L2(0, T ;H), then for any t ∈ [0, T ] we have∣∣∣∣∣∣∣∣∫ t

0
T (t− s)f(s) ds

∣∣∣∣∣∣∣∣
XT

≤ C1 ||f ||L2(0,T ;H) .

ii) There exists a constant C2 > 0 such that for each T > 0 and every
u0 ∈ V, then for any t ∈ [0, T ], we have following estimate

||T (t)u0||XT
≤ C2 ∥u0∥V .
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Remark 2.2. In order to deal with Problem 1, we will consider following
concrete spaces:

H := L2(O), V := D
(
A

1
2

)
= H2,2

0 (O), E := D(A).

We assume that O ⊂ Rd is a bounded domain and n ∈ N is such that

H2,2(O) ⊂ Lq+1(O).

where q is any odd number. Further, we take A as the biharmonic
operator with the Dirichlet boundary conditions, i.e.

D(A) = H2,2
0 (O) ∩H2,4(O)

Au = −∆2u, u ∈ D(A).

Indeed, A ≥ 0 is a self-adjoint in H and V = D
(
A

1
2

)
with following

energy norm,

∥u∥2 =
∣∣∣A 1

2u
∣∣∣2
H
=

∫
O
|∆u(x)|2 dx.

Further, the following embeddings are continuous,

E ↪→ V ↪→ H.

2.2 Some useful abstract results

Following results gives the existence of local maximal solution and pro-
vides standard alternatives between the global existence and The proof
of the following result can be found in the chapter 2 of [25].

Theorem 2.3. [25] Let A : X → X be an abstract m-accretive op-
erator with dense domain, where X is a Banach Space. Assume that
F : D(A) → D(A) be nonlinear locally Lipchitz operator. For each u0 ∈
D(A), there exists a unique local maximal solution u ∈ C1 ([0, T ∗), X) ∩
C ([0, T ∗),D(A))

du

dt
+Au = F (u)

u(0, x) = u0(x), for all x ∈ O,
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such that exactly one of following is true:
(i) unique global solution exists i.e. T ∗ = +∞.
(ii) solution blows up in finite time i.e. T ∗ < +∞, and

lim
t→T ∗−0

||u(t)||D(A) = +∞.

2.3 Main result

In this subsection, we present the main results of the paper. Throught
the paper, we suppose that we are in Assumptions 2.1, and follow the
notation and framework introduced in Remark 2.2. Following abstract
result is going to be pivotal for studying the blow-up criterion and the
existence of the local maximal solution of the main problem 1.

Theorem 2.4. Consider following problem{
du
dt + k∆2u = F (u)

u(0, x) = u0(x), for all x ∈ O.
(2)

Assume that F nonlinear map of Cq-class satisfying F (0) = 0. Then for
n = 1, 2, 3 and each u0 ∈ E, there exists a unique local maximal solution
to problem (2) with regularity

u ∈ C1 ([0, T ∗),H)) ∩ C ([0, T ∗), E) .

Moreover, only one of the following is holds:
i) Unique global solution exists i.e. T ∗ = +∞.
ii) Solution blows up in finite time T ∗ < +∞ and limt→T ∗−0 ||u(t)||H4 =
+∞.

The following theorem of that paper about the global well-posedness
of Problem main problem 1.

Theorem 2.5. Let O be bounded domain in Rn with n ≤ 3 and µ(O) <
∞ , q be odd positive integer with b

q+1 ≥ a and a, b ∈ R+, then the
following problem admits a unique global classical solution to problem
(1). Furthermore

u ∈ C1 ([0,∞),H)) ∩ C ([0,∞), E) .
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3 Existence of Local Maximal Classical Solu-
tion

This section has a twofold purpose. Firstly, to prove the abstract result
Theorem 2.4. Secondly, by invoking Theorem 2.4 establish the existence
of local maximal classical solution of our main problem (1).
Let us begin by proving the Theorem 2.4.
Proof. We will adopt the following setting: X = L2(O) = H, A = k∆2

with Dirichlet boundary conditions E = D(A) = H4 ∩H2
0. First we will

show that F is a mapping from E to E .
Let us take u ∈ E . Moreover, it follows that (cf. [12, 25]) ||∇u||H, ||∆u||H
and ||∆2u||H < +∞.
Also since F ∈ Cq(R). So, supt∈R |F k(u(t))| < +∞, for k = 1, 2, 3, ..., q.
Indeed,

∇F (u) = F ′(u)∇u.

Therefore

||∇F (u)||H = ||F ′(u)∇u||H = |F ′(u)| ||∇u||H
≤ sup

t∈R
|F ′(u(t))| ||∇u||H < +∞.

Similarly

∆F (u) = F ′′(u)∇u∇u+ F ′(u)∆u

||∆F (u)||H = ||F ′′(u)∇u∇u+ F ′(u)∆u||H
≤ ||F ′′(u)∇u∇u||H + ||F ′(u)∆u||H
= sup

t∈R
|F ′′(u(t))| sup

t∈R
|∇u(t)| ||∇u||H

+sup
t∈R

|F ′(u(t))| ||∇u||H.

From Sobolev embedding H2 ↪→ C(O) ([25, 12]), so
supt∈R |∇u(t)| < C||∇u||H2 < ∞. It follows that,

||∆F (u)||H < ∞.
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On same lines we will have ||∆2F (u)||H < ∞. This concludes

||∇F (u)||H < +∞
||∆F (u)||H < +∞
||∆2F (u)||H < +∞.

This pushes F (u) to be in E = H4(O)∩H2
0(O). In this way F is a non-

linear map from E to E . Since F ∈ Cq(R) so does F ∈ C3(R). Therefore,
F is locally Lipschitz [25, 10]. Hence, we are in assumptions of Theorem
2.3 and thus we have the required result. □
As a consequence, we have the following immediate corollary.

Corollary 3.1. For each u0 ∈ H4 (O) ∩ H2
0 (O), Problem 1 admits a

unique local maximal classical solution u such that

u ∈ C1 ([0, T ∗) ,H) ∩ C ([0, T ∗) , E) .

Proof. Let us begin by setting

F (u) = au (t)− buq (t) .

Then F is a q-th degree polynomial so F ∈ Cq (R) and hence we can
apply Theorem 2.4 to conclude that we have unique maximal classical
solution u to Problem (1) such that

u ∈ C1 ([0, T ∗) ,H) ∩ C ([0, T ∗) , E) .

□

4 Global well-Posedness of the Solution

In this section, we aim to provide a detailed proof of the main result
Theorem 2.5.
Proof. We already know from Corollary 3.1 that there exists a unique
maximal classical solution u to problem (1) such that

u ∈ C1 ([0, T ∗) ,H) ∩ C ([0, T ∗) , E) .
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Therefore, for the global existence it is enough to prove that ∥u (t)∥H4

is uniformly bounded. This leads us to the conclusion that H4 -norm of
the solution does not blow up in finite time i.e.

lim
t→T ∗−0

∥u (t)∥H4 < +∞.

As in this way condition ii) in Theorem (2.4) will fail to hold and con-
dition i) would be true, and therefore the solution will be the unique
global classical solution.
Let us beging by showing the uniform boundedness of ∥u (t)∥H4 .
For t ∈ [0, T ∗] cosider following

ut(t) + k∆2u(t)− au(t) + buq(t) = 0. (3)

Taking inner product of (3) with ut(t), we get

⟨ut(t) + k∆2u(t)− au(t) + buq(t), ut(t)⟩ = 0.

i.e.

⟨ut(t), ut(t)⟩+ k⟨∆2u(t), ut(t)⟩ − ⟨au(t), ut(t)⟩+ b⟨uq(t), ut(t)⟩ = 0. (4)

Let us simplify the each of the term in above equation (4).

1

2

d

dt
||∆u(t)||2 = ⟨∆u(t),∆ut(t)⟩ = ⟨∆2u(t), ut(t)⟩. (5)

Similarly, the second term in equation (4) can be simplified as following

b⟨uq(t), ut(t)⟩ = b

∫
O

d

dt
uq+1(t)dx = b(q + 1)

∫
O
uq(t)ut(t)dx

=
b

q + 1

d

dt

∫
O
uq+1(t)dx =

b

q + 1

d

dt
||u(t)||q+1

Lq+1 . (6)

Further third term in equation (4) can be rewritten as

a⟨u, ut(t)⟩ =
a

2

d

dt
||u(t)||2H. (7)

Using equations (5), (6) and (7) in equation (4) it follows that

||ut(t)||2H +
k

2

d

dt
||∆u(t)||2H − a

2

d

dt
||u(t)||2H +

b

q + 1

d

dt
||u(t)||q+1

Lq+1 = 0.
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On integrating from zero to t we get∫ t

0
||us(s)||2Hds+

k

2
||∆u(t)||2H − a

2
||u(t)||2H +

b

q + 1
||u(t)||q+1

Lq+1

=
k

2
||∆u(0)||2H − a

2
||u(0)||2H +

b

q + 1
||u(0)||q+1

Lq+1∫ t

0
||us(s)||2Hds+

k

2
||∆u(t)||2H − a

2
||u(t)||2H +

b

q + 1
||u(t)||q+1

Lq+1

≤ +
k

2
||∆u0||2H +

a

2
||u0||2H +

b

q + 1
||u0||q+1

Lq+1 . (8)

As we know that u0 ∈ E = H4(O)∩H2
0(O) therefore ||∆u0||2H < +∞.

Further, using the continuity of embedding H2
0(O) ↪→ Lq+1(O) it follows

that

b

q + 1
||u0||q+1

Lq+1 < +∞. (9)

From continuity of embedding H2(O) ↪→ L2(O) (see [12, 25]) we have,

a

2
||u0||2H < +∞. (10)

Set

C :=
k

2
||∆u0||2H +

a

2
||u0||2H +

b

q + 1
||u0||q+1

Lq+1 . (11)

Using inferences (9), (10) and (11) in estimate (8) it follows that∫ t

0
||us(s)||2Hds+

k

2
||∆u(t)||2H − a

2
||u(t)||2H +

b

q + 1
||u(t)||q+1

Lq+1 ≤ C

∫ t

0
||us(s)||2Hds+

k

2
||∆u(t)||2H+

b

q + 1
||u(t)||q+1

Lq+1 ≤ a

2
||u(t)||2H+C. (12)

Next, using the Young’s inequality with a = u2, b = 1, p = q+1
2 ,

and q := q+1
q−1 , we have

a

2
||u(t)||2 =

a

2

∫
O
u2dx ≤ a

2

∫
O

[
2uq+1

q + 1
+

q − 1

q + 1

]
dx

=
a

q + 1

∫
O
uq+1dx+ C1. (13)
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where C1 = a q−1
q+1µ(O). As q + 1 ≤ 1 so a

q+1 ≥ a. Using this into (13)
we infer that

a

2
||u(t)||2 ≤ a||u(t)||q+1

Lq+1 + C1.

Set C2 := C + C1. This way (12) yields∫ t

0
||us(s)||2Hds+

k

2
||∆u(t)||2H +

(
b

q + 1
− a

)
||u(t)||q+1

Lq+1 ≤ C2.

Since the third term in the last inequality is non-negative so we can drop
it i.e. ∫ t

0
||us(s)||2Hds+

k

2
||∆u(t)||2H ≤ C2.

This leads to following two estimates∫ t

0
||us(s)||2Hds ≤ C2

k

2
||u(t)||2H2 =

k

2
||∆u(t)||2H ≤ C2.

for all t ∈ [0, T ∗).
Next set

v(t) := u(t+ h)

As u ∈ C1 ([0, T ∗),H) ∩ C ([0, T ∗), E) so we can deduce that

v ∈ C1 ([0, T ∗ − h),H) ∩ C ([0, T ∗ − h), E) .

And v also satisfies

vt + k∆2v = −bvq + av(t)

v|Γ = 0

v|t=0 = u(x, h). (14)

Suppose w := v(t) − u(t) = u(t + h) − u(t). Taking difference of (14)
and (1), we infer that

(vt − ut) + k∆2(v − u) + b(vq − uq)− a(v − u) = 0

v|Γ − u|Γ = 0

v(0)− u(0) = u(x, h)− u0(x).
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That is

wt + k∆2w + bw

(
q∑

i=1

uq−1−ivi

)
− aw = 0

w|Γ = 0

w|t=0 = u(x, h)− u0(x). (15)

Taking inner product of w and (15)

⟨wt, w⟩+ ⟨k∆2w,w⟩+ b

〈
w

(
q∑

i=1

uq−1−ivi

)
, w

〉
− a⟨w,w⟩ = 0

1

2

d

dt
||w||2H + k||∆w||2H + b

∫
O
w2

(
q∑

i=1

uq−1−ivi

)
dx = a||w||2H.

(16)

As q is odd natural so we can deduce inductively following(
q∑

i=1

uq−1−ivi

)
≥ 0.

From the last equation it follows that

b

∫
O
w2

(
q∑

i=1

uq−1−ivi

)
dx ≥ 0. (17)

Further,

k||∆w||2H ≥ 0. (18)

From the non-negativity in (17) and (18), we can infer that we can drop
the second and third term in (16). Hence

1

2

d

dt
||w(t)||2H ≤ a||w(t)||2H.

On integrating from zero to t we infer that

||w(t)||2H ≤ ||w(0)||2H + 2a

∫ t

0
||w(s)||2Hds.
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Application of Gronwall’s inequality gives

||w(t)||2H ≤ ||w(0)||2H exp(2at) ≤ ||w(0)||2H exp(2aT ).

Set CT := exp(2aT ). So

||w(t)||2H ≤ CT ||w(0)||2H = CT ||u(x, h)− u(x)||2H. (19)

Dividing both sides of (19) by H2 we obtain

||w(t)||2H
H2

≤ CT

∥∥∥∥u(x, h)− u(x)

h

∥∥∥∥2
H

∥u(t+ h)− u(t)∥2H
H2

≤ CT

∥∥∥∥u(x, h)− u(x)

h

∥∥∥∥
h2∥∥∥∥u(t+ h)− u(t)

h

∥∥∥∥2
H
≤ CT

∥∥∥∥u(x, h)− u(x)

h

∥∥∥∥2
H
.

Applying t → 0 we get

||ut(t)||2H ≤ CT ||u′(0)||2H. (20)

Recall from Problem 1

ut(t) = −k∆2u(t) + au(t)− buq(t).

Therefore

ut(0) = −k∆2u(0) + au(0)− buq(0) = −k∆2u0 + au0 − buq0.

In this way (20) yields

||ut(t)||2H ≤ CT || − k∆2u0 + au0 − buq0||
2
H

||ut(t)||2H ≤ CT

(
k||∆2u0||2H + a2||u0||2H + b2||uq0||

2
H
)
. (21)

Taking a := u2q0 , b = 1, p := 1
q , q := 1−q and applying Young’s inequality,

it follows that

||uq0||
2
H =

∫
O
u2q0 dx ≤

∫
O

(
(u2q0 )

1
q

1
q

+
1

1− q

)
dx ≤ ||u0||2H +

µ(O)

1− q
. (22)
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Inequalities (21) and (22) together imply

||ut(t)||2H ≤ CT

(
k||∆2u0||2H + a2||u0||2H + b2q||u0||2H +

µ(O)

1− q

)
. (23)

Using fact that u0 ∈ E and the continuity of embedding E ↪→ H
(cf. [12, 6]), it follows that

||u0||2H ≤ Ck||∆2u0||2H < +∞. (24)

From inequalities (23) and (24) we may conclude existence of constant
C(T, u0, k, a, b) such that

||ut(t)||H ≤ C(T, u0, k, a, b) < +∞. (25)

This may be also interpreted as that ut is uniformly bounded in
L∞(0, T,H). Recall (14), along with (25) concludes∫ t

0
||us(s)||2Hds ≤ C2

k

2
||u(t)||2H2 =

k

2
||∆u(t)||2H ≤ C2.

Therefore

||ut(t)|| < +∞.

Using Sobolev embedding theorem[25], there exists constant C3 such
that

||u(t)||H4 ≤ C3||∆2u||H. (26)

From equation (1)

−ut(t) + au(t)− buq(t)

k
= ∆2u(t). (27)

Inequality (26) in the view of (27) produces

∥u(t)∥H4 ≤ C3

∥∥∥∥−ut(t) + au(t)− buq(t)

k

∥∥∥∥
H

≤ C3

k
(||ut(t)||H + |a|||u(t)||H + |b|||uq(t)||H) . (28)
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We now going to show that each term in right hand side of inequality
(28) is finite and bounded. We already know from the (25) that first
term is bounded. Let us deal with other terms.
For t ∈ [0, T ∗], as local maximal solution u ∈ C1 ([0, T ∗),H)∩C ([0, T ∗), E) .
Therefore there exists a constant C4 depending on T ∗ such that

||u(t)||H ≤ C4 < +∞. (29)

Taking a := u(t)2q, b = 1, p := 1
q , q := 1 − q and applying Young’s

inequality, consider following,

||u(t)q||2H =

∫
O
u(t)2qdx ≤

∫
O

(
(u(t)2q)

1
q

1
q

+
1

1− q

)
dx

≤ ||u(t)||2H +
µ(O)

1− q
. (30)

In the view of (30), (25), and (29). We conclude that each term on right
hand side of (28) is finite so we can conclude that

||u(t)||H4 < +∞.

This way condition (ii) in Theorem 2.4 fails so condition (i) holds and
we have T ∗ = +∞. Thus, the unique local maximal classical solution u
to Problem 1 (from Theorem 2.4) is also global, such that

u ∈ C1 ([0,∞),H) ∩ C ([0,∞), E) .

This concludes the proof of Theorem 2.5. □

4.1 Numerical example:

Now we present a simple numerical example of the one dimensional
problem on O = (0, 1). By making a choice of k = 1, a = 1, b = 2 and
q = 1, the evolution equation in Problem 1 reduces to following

ut = −∆2u− u.

Making a choice of initial condition u(x, 0) = u0(x) = x3 ∈ E = H4∩H2
0.

Corresponding to this initial condition there exists a unique solution
u(x, t) = x3e−t. Its not difficult to see that this solution indeed belongs
to C1 ([0,∞),H) ∩ C ([0,∞), E) .
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5 Conclusion

In this paper we have done the analysis of an initial value problem,
comprising of a biharmonic amplitude equation of NWS type subject to
Dirichlet boundary conditions. Such evolution equations are a key tool
to understand the stripe patterns appearing in nature. In particular, we
have investigated global well-posedness. Using a standard result from
the semigroup theory of Hille-Yosida operators, we demonstrated there
exists a unique local maximal classical solution to the problem that is
locally maximal and classical in suitable function spaces. Finally, it
was shown that H4-norm is uniformly bounded and a solution does not
blow up in finite, which leads to the conclusion that the solution of the
problem under consideration is global.
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nique for Solving New Computational Solutions of the Modified
Zakharov-Kuznetsov Equation Arising in Electrical Engineering, J.
of Applied and Comp. Mech., 7 (2021), 715-726.



SEMIGROUPS FOR BIHARMONIC NWS EQUATION 17

[17] P. K. Jakobsen, J. Lega, Q. Feng, M. Staley, J. V. Moloney and A.
C. Newell, Nonlinear transvers modes of large-aspect-ratio homo-
geneously broadened lasers: I, Analysis and Numerical Simulation,
Phys. Rev. A 49 (1994), 4189–4200.

[18] A. Korkmaz, Complex Wave Solutions to Mathematical Biol-
ogy Models I: Newell-Whitehead-Segel and Zeldovich Equations.
Preprints 2018, 2018010018.

[19] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmis-
sion line simulating nerve axon. Proc, IRE, 50 (1962), 2061-2070.

[20] A.C. Newell and J.A. Whitehead, Stability of stationary periodic
structures for weakly supercritical convection and related problems,
J. Fluid Mech. 38 (1969), 279–303.

[21] P. Rybka, Convergence of a heat flow on a Hilbert manifold., Proc.
of the R. Soc. of Edin., 136 (2006), 851-862.

[22] L.A. Segel, Distant side-walls cause slow amplitude modulation of
cellular convection, J. Fluid Mech., 38 (1969), 203–224.

[23] A. Sen, S. Tiwari, S. Mishra and P. Kaw, Nonlinear wave excita-
tions by orbiting chargedspace debris objects, Adv. in Space Res.,
56(2015), 429-435.

[24] A. Strachan, A. C. T. V. Duin, D. Chakraborty, S. Dasgupta, W.
A. Goddard, ShockWaves in High-Energy Materials: The Initial
Chemical Events in Nitramine RDX, Phys. Rev. Letter, 91 (2003),
98301.

[25] Z. Songu, Non-Linear Evolution Equations, Champan &
Hall/CRC., 2004.

[26] J. Tamang, K. Sarkar, A. Saha, Solitary wave solution and dynamic
transition of dust ion acoustic waves in a collisional non extensive
dusty plasma with ionization effect, Phys. A: Stat. Mech. & its App.
505 (2014), 18-34.

[27] I. I. Vrabie, C0-Semigroups And Application, North-Holland Math.
Studies 191, 2003.



18 J. HUSSAIN AND A. FATAH

Javed Hussain
Department of Mathematics
Associate Professor of Mathematics
Sukkur IBA University
Sukkur, Pakistan.

E-mail: javed.brohi@iba-suk.edu.pk

Abdul Fatah
Department of Mathematics
Master’s Student
Sukkur IBA University
Sukkur, Pakistan.

E-mail: afatah.msmaths21@iba-suk.edu.pk


	1 Introduction
	2 Main Results, Assumptions, Framework and Abstract Theory
	2.1 Notation and assumptions
	2.2 Some useful abstract results
	2.3 Main result

	3 Existence of Local Maximal Classical Solution
	4 Global well-Posedness of the Solution
	4.1 Numerical example:

	5 Conclusion
	Bibliography
	References



