Journal of Mathematical Extension

Vol. 17, No. 6, (2023) (6)1-13

URL: https://doi.org/10.30495/JME.2023.2319
ISSN: 1735-8299

Original Research Paper

Coding Theorem Based on A\-Norm Entropy for
Partitions in Product MV-Algebras

G. Ram*
Maharish Markandeshwar Deemed to be University

S. Kumar
Maharish Markandeshwar Deemed to be University

Abstract. In the present paper Shannon and A-norm mean code word
length is defined in Product MV-algebra. Two new measures L’ (P) and
Lfi (P) called average code word lengths with respect to entropies of fi-
nite partitions in product MV-algebras are given and its relationship
with the Shannon type information measure and A-norm type infor-
mation measures of finite partitions in product MV-algebras has been
examined. Some coding theorems using Kraft inequality has been east-
ablished in this structure.
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1 Introduction

The concept of MV-algebras were given by Chang [1]. Various reseachers
have investigated the notion MV-algebras. In this structure there are
several results regarding information measure; as an example, reader can

Received: March 2022; Accepted: June 2023
*Corresponding Author



G. RAM AND S. KUMAR

consult the references ([3], [21] and [12]). With this notion probability
theory was studied on by authors [22]. Riecan [20] independently stud-
ied the concept of Product MV-algebra in concern with probability and
and Montagna [15] studied ths concept with mathematical logic. For
this concept reader can also see references [7] and [9]. Some families of
fuzzy sets have also been generalized by this notion [25].

Further, Petrovicova [10] (see also [17]), developed the concept of
Shannon measure for a finite partition in product MV-algebra and de-
rived a number of basic results for this measure. Recently, Markechova
et.al [12] studied the logical entropy, the logical divergence and the log-
ical mutual information of partitions in this structure. Dagmar Marke-

chova and Abolfazl Ebrahimzadeh [11] have generalized the results re-
lated to the Shannon measure and Kullback-Leiber divergence in this
notion. Markechovd and Reic¢an [11], Zarenezhad and Jamaljadeh [20]

have generalized Tsallis entropy, R-norm measure and R-norm diver-
gence using this notion and derived its basic properties.

Shannon’s entropy [23] for the discrete probability distribution E =
{e1,e2,... e}, ej >0, Z?Zl e; = 1, is given by

k
X(E) = = (ej) log(e),
j=1
where the base of the logarithm is in general arbitrary. There is an
important link between entropy and noiseless coding. If Y = (y1, v, . . .,
yi) represents an information source with k£ messages and input probabil-

ities eq, e, ..., €k, as given above, that is encoded into words of lengths
M = (mqy,ma, ..., my) forming an instantaneous code, then

k
dosTmi<1.
j=1

where S is the size of the alphabet to be coded. Also, if

L= Z§:1 ejm; is the mean codeword length, then
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k k
Zejmj > —Zej logg e;, (1)
j=1 7=1

in (1) equality holds if and only if

mj = —logg(e;).

Taking appropriate encoded words of large sequences, we can make the
mean length approximate close to x(F), (see [5]). This result is known
as Shannon’s noiseless coding theorem.

Campbell [3] proved certain results similar to (1) in coding theory
corresponding to Renyi’s measure (see [18]), and established the bounds
for mean code word length in terms of Renyi’s measure.

A class rule was developed by Kieffer [10] to encode two source of
sequence of length M, for M — oo with expected cost and eastablished
that Renyi’s entropy is the best alternative out of these, for which it is
supposed that the encoding cost of a message depends upon size only.
Also Jelinek [0] eastablished that to minimize the problem of buffer over-
flow, Campbell’s mean length [3] is more appropriate.

The issue of storage and transmission is investigated by several re-
searchers in terms of coding theorem by taking various information mea-
sure with the condition of unique decipherability concerning discrete
memoryless sources possessing an additional parameters, reader can see
(), 21)).

In this article, we introduced an appropriate measure called the
Shannon and A-norm average length of code words for partitions in
product MV-algebras and proved some noiseless coding theorems in fi-
nite partitions scheme. It is proven that the proposed average code word
length is bounded below by the entropy defined for this scheme. This is
illustrated with a numerical example.

2 Preliminaries

Here some primary terms and definitions are given which will be used
in this paper.

Definition 2.1. ([21]) An algebraic system (V,®,*,0,w) which elate

3
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(i) there exists a commutative lattice ordered group (D, +, <) such that
V =[0,w] ={neD:0<n<w}, where 0 is the neutral element
of (D,+) and w € D such that w > 0 and to each n € D there
exist a positive integer k such that n < kw;

(i1) @, * are binary operation on V such that n®& = (n+&) Aw, nx& =
n+&—w)Vvo.
is known as MV-Algebra.
Definition 2.2. ([22]) A maping f :V — [0, 1] which satifies
(i) f(w) =1;
(i) if vi,va € V such that vi+ve < w, then f(vi+wv2) = f(v1)+ f(v2).
is known as a state on an MV-algebra (V,®,*,0,w).
Definition 2.3. ([19]) An MV-algebra (V,®,*,0,w) which satisfies
(i) For everyv €V, w-v =wv;
(ii) If vi,v9,v3 € V such that v + vo < w, then vy - vy + vy -v2 < w
and vs - (v] + V) = v3 - V] + V3 - U,

where . is a binary operation whcch is commutative on V is known as a
product MV-algebra.

For the sake of simplicity, we will write (V) instead of (V, @, *,0, w).
Riecan [20] studied this concept with probability theory. Authors [16],
[17] and [21] defined Shannon measure for the notion product MV-
algebras. Here we mention the basic idea and some results of these
concepts that which will be used in this manuscript.

Any k-tuple P = (&1,&2,...,&k), & € V which sayisfies & +&a+.. .+
& = w is known as partition in a product MV-algebra (V).

Definition 2.4. [10] Let P = (&1,&2,...,&k) be a partition in the struc-
ture (V,-) and let f : V. — [0,1] be state on (V,-). Corresponding to
Shannon measure for the partition P in relation to f is defined as

k
HI(P) = =" f(&)log £(&)- (2)

Jj=1
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This function satisfies all properties analogous to properties of Shan-
non’s measure of measurable partitions, for more details reader can see
Petrovicova [16].

Remark 2.5. Here logarithmic base can be any positive integer with the
convention OlogB(%) =04 &> 0.

3 Measure of Code Length in Product of MV-
algebras

In this section we will prove some coding results analogous to the Shan-
non and A-norm entropies of partitions in product MV-algebras. For it
consider P = (x&1,&2,...,&) be a partion in the structure (V,-) and
f:V —[0,1] be a state. Let f(&1), f(&2),- .., f(&) be the state values
of k input symbols &1,&a, ..., &, which we wish to encode. We assume
that f(&;) > 0 for j = 1,2,...,k such that Z?:l f(&) =1. Let the
input symbols are encoded in an alphabet with S symbols. . Let ¢,
be represented by a string of m; morphemes from the alphabet. For
a unique decipherable code with lengths my, ..., my, Feinstein [5] gives
the following relation

k
» osTmi<1. (3)
j=1

Next we define mean code word length L/(P) of P with respect to
state f corresponding to the definition of Shannon (see [1]).

Definition 3.1. The mean code word length for partition P = (&1, &2, . . .,
&) in a product MV-algebra (V,-) with respect to state f : V — [0,1] on
(V,-). is defined as:

LI(P) =" f(&)m;,

J=1

where mj,j = 1,2,...,k are the lengths of the code words §;.

5
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Theorem 3.2. Let P = (&1,&2,...,&) be a partition in the structure
(V,-) and f be state on (V,-). If mj,j =1,2,...,k are the lengths of the
codewords &; satisfying ()’) then

H(P) HY(P)
<L/(P 1.
logS — (P) < log S +
In this result equality will holds iff
f(&)=5"" j=1,2,3,...,k,
where S > 1 is a positive integer.
Proof. Proof are simple and omitted. ([l

Definition 3.3. The mean code word length L{(P) for a partition P =
(&1,&2, ..., &) in the structure (V,-) with respect to state f on (V,-) cor-
responding to the A-norm entropy of partitions in this structure is given
by

k
Lf(P Zf —(mj(A— 1))/)\]

j=1
Ae(0,1)U(1,00).
Clearly L{(P) will increase for increasing word lengths. For A — 1,
L{(P) is analogous to the mean code word length by Shannon type, up
to a constant.

In the following theorem we eastalished this relationship.

Theorem 3.4. Let P = (&1,&2,. .. ,fk) be a partition in the structure
(V,-) and f be state on (V,-). If mj,j =1,2,...,k are the lengths of the
codewords &; then

A—1

k
lim Lf Zf &;)m;log(S).
j=1

Proof. By L’Hospital’s rule, we have

lim @ = lim A
A—1 Ib()\) A—1 w’()\)
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7

if p(1) = ¢»(1) = 0, and ¢(A\) and ¥ () are differentiable and lim)_,; A0

P'(N)

exist. If we set ¢(A) = A {1 - 2521 f(éj)S(M7()‘_1))/)‘J and p(\) = A—1
these functions satisfies the conditions of (4).
We find

A—1

k k
lim | ) £(£)S™M A X og(S)mAt | = £(&)m;log(S).
i=1 =1

[ Before proceeding to the coding theorem we need following defi-
nition of A-norm entropy of partitions in product of MV-algebras given
by Dagmar and Abolfazl [11].

Definition 3.5. Let P = (§1,&2,...,&k) be any partition in the given
structure (V,-). Then \-norm entropy of P with respect to a state f :
V —[0,1] is given by

A

k
wp) =2 - [ Srer] | )
j=1

A€ (0,1) U (L, 00).
Concerning (5) the reader can consult [13].

The following theorem gives a relationship beween LJ; (P) and H { (P)
as a coding theorem.

Theorem 3.6. If m;,j =1,2,...,k are the lengths of the codewords &;
which satisfies equation (3) and P = (&1,&2,...,&k) be a partion in the
structure (V) and f be state on (V,-). , then

H{(P) < L{(P) < SO VAH{(P) + Z—[1 - SUVAL (6)

A—1
Equal sign holds iff

k

STM = FEN Y FE) =123,k

Jj=1
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Proof. With the help of reverse Holder’s inequality, we can eastablished
the lower bound of (6) as

i NO-1F 1/(1-))
Y FE I D) <1, AeR
=1 =1
(7)
If A > 1 then from (7) we have
k /A k
> FE) Z )AL, (8)
=1 =1
Since ﬁ > 0 for A > 1, from (8), using definition of H/J\c(P) and
putting f(y;) =S7"9, j=1,2,...k, we have
HI(P) < L{(P), (9)
in this equation equal sign holds iff
k
ST = fG1 D FE =12k (10)
j=1

For 0 < A < 1 we can prove inequality (9) in a same manner by
reversing the inequality sign of (7), and ﬁ <0Ofor0< A<

To prove upper bound for H{(P), we use (10). Equation (10) is
equivalent to

k

—logs f(§)" +logs[y  f(6)Y], G=12.... k.
j=1
By selecting all m; such that

k
—logg f(&)* + logg Zf(fj))\ < m;

J=1

k
< —logg f(&)* +1logs | D f(&)

J=1
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it implies that

k
§7M = (&) Y FENS. (11)
j=1
For A > 1, from (11), we have
& & 1/A
S FEHmOTIIA S AN F NS
j=1 j=1
which further implies
1/
A é A 1-XA)/A
L§<ﬁ 1= | Y F(&) SU=X/
j=1

which proves the result for A > 1.

For 0 < A < 1, upper bound of L{(P) can be proved in similar way.

Since S > 2 we have ﬁ[l — S(=Y/A] > 1 it implies that the upper
bound of Lf\I(P) in (6) is > 1.

For A — 1 then by using (2) and (5), (6) can be written as

HI(P)
log(S)

HI(P)

<LJ(P) < og(5)

+1,

which is relatable to acclaimed result developed by Shannon(see [1]).
O
Huffman established a measure for obtaining a changeable length source
code which gives results similar to results eastablishe by Shannon. The
average length L = Z§:1 ejm; of Huffman code for single codeword
lengths m;, satisfies the relation x(F) < L < x(F) + 1 with Shannon’s
measure .This can also be eastablished with partition in a product MV-
algebra (V,-), for this structure we have

L{(P) > H{(P).

Following example will illustrate this fact.

9
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Example 3.7. Suppose the family V' of measurable functions ¢ : [0, 1] —
[0,1], and binary oeration . is defined as the natural product of fuzzy
sets in V. Then the algebraic system (V,.) is a product MV-algebra.
Also let f : V. — [0,1] be a state defined by f(§) = fol &(y)dy, for
every £ € V, and consider the partition P = (&1, &2,£3,84,&5,&6), where
&(y) = 3y°, &(y) = v% &) = v, &ly) =°, &) = v, &(y) =¥,
for every y € [0, 1]. With basic computations we have state values 0.3,
0.25, 0.2, 0.1, 0.1, 0.05 of the corresponding elements, respectively. The
partition P = (&1,&2,&3,£4,&5,&6) has the state values ( 0.3 , 0.25 ,0.2 |
0.1,0.1,0.05) of the corresponding elements. A relationship between
the entropy H /’\c (P) and average codeword length L{(P) is obtained in
Tabel 1 for Huffman codes scheme. It is clear from Table 1 that the
mean codeword length L3 (P) exceeds the entropy H f\c (P).

Table 1: Relation BetweenH)]:(P) and L{(P)

m; | Huffman code words | f(&) | A H{(P) L{(P) p o
2 00 0.3 | 2| 1.0726 | 1.1042 | 0.97 | 0.03
2 10 0.25
2 11 0.25
3 011 0.1
4 0100 0.1
4 0101 0.05

In Table 1 m; is the lengths of Huffman code words, p = H { (P) +

LJ; (P) is the code adequacy, and o = 1 — p is the overabundance of the
code.

4 Conclusion

As a conclusion we remarked that the optimal code length is that code
for which the value of mean codeword length that is L{(P) in product
MV-algebra is equal to its lower bound. From Theorem 3.2 we conclude
that optimal code lengths in product MV-algebra are depends on para-
metric value A in opposition to the optimal codelengths of Shannon in
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MYV product algebras. It is also achievable to prove coding results cor-
respinding to A-norm entropy in product MV-algebras such that optimal
codelengths are similar to those of Shannon in product MV-algebras.The
Shannon mean codelength in product MV-algebra is included in mean
codelength with respect to A-norm entropy in this structure for the lim-
iting case that A — 1. This new mean codelength is generalization of
classical case in product MV-algebras its further applications can be
seen in fuzzy theory.
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