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Abstract. In the present paper Shannon and λ-norm mean code word
length is defined in Product MV-algebra. Two new measures Lf (P ) and
Lf

λ(P ) called average code word lengths with respect to entropies of fi-
nite partitions in product MV-algebras are given and its relationship
with the Shannon type information measure and λ-norm type infor-
mation measures of finite partitions in product MV-algebras has been
examined. Some coding theorems using Kraft inequality has been east-
ablished in this structure.
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1 Introduction

The concept of MV-algebras were given by Chang [4]. Various reseachers
have investigated the notion MV-algebras. In this structure there are
several results regarding information measure; as an example, reader can
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consult the references ([8], [21] and [12]). With this notion probability
theory was studied on by authors [22]. Riečan [20] independently stud-
ied the concept of Product MV-algebra in concern with probability and
and Montagna [15] studied ths concept with mathematical logic. For
this concept reader can also see references [7] and [9]. Some families of
fuzzy sets have also been generalized by this notion [25].

Further, Petrovičová [16] (see also [17]), developed the concept of
Shannon measure for a finite partition in product MV-algebra and de-
rived a number of basic results for this measure. Recently, Markechová
et.al [12] studied the logical entropy, the logical divergence and the log-
ical mutual information of partitions in this structure. Dagmar Marke-
chova and Abolfazl Ebrahimzadeh [14] have generalized the results re-
lated to the Shannon measure and Kullback-Leiber divergence in this
notion. Markechová and Reičan [11], Zarenezhad and Jamaljadeh [26]
have generalized Tsallis entropy, R-norm measure and R-norm diver-
gence using this notion and derived its basic properties.

Shannon’s entropy [23] for the discrete probability distribution E =
{e1, e2, . . . , ek}, ej ≥ 0,

∑k
j=1 ej = 1, is given by

χ(E) = −
k∑
j=1

(ej) log(ej),

where the base of the logarithm is in general arbitrary. There is an
important link between entropy and noiseless coding. If Y = (y1, y2, . . . ,
yk) represents an information source with k messages and input probabil-
ities e1, e2, . . . , ek, as given above, that is encoded into words of lengths
M = (m1,m2, . . . ,mk) forming an instantaneous code, then

k∑
j=1

S−mj ≤ 1.

where S is the size of the alphabet to be coded. Also, if

L =
∑k

j=1 ejmj is the mean codeword length, then
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k∑
j=1

ejmj ≥ −
k∑
j=1

ej logS ej , (1)

in (1) equality holds if and only if

mj = − logS(ej).

Taking appropriate encoded words of large sequences, we can make the
mean length approximate close to χ(E), (see [5]). This result is known
as Shannon’s noiseless coding theorem.

Campbell [3] proved certain results similar to (1) in coding theory
corresponding to Renyi’s measure (see [18]), and established the bounds
for mean code word length in terms of Renyi’s measure.

A class rule was developed by Kieffer [10] to encode two source of
sequence of length M, for M → ∞ with expected cost and eastablished
that Renyi’s entropy is the best alternative out of these, for which it is
supposed that the encoding cost of a message depends upon size only.
Also Jelinek [6] eastablished that to minimize the problem of buffer over-
flow, Campbell’s mean length [3] is more appropriate.

The issue of storage and transmission is investigated by several re-
searchers in terms of coding theorem by taking various information mea-
sure with the condition of unique decipherability concerning discrete
memoryless sources possessing an additional parameters, reader can see
([5], [24]).

In this article, we introduced an appropriate measure called the
Shannon and λ-norm average length of code words for partitions in
product MV-algebras and proved some noiseless coding theorems in fi-
nite partitions scheme. It is proven that the proposed average code word
length is bounded below by the entropy defined for this scheme. This is
illustrated with a numerical example.

2 Preliminaries

Here some primary terms and definitions are given which will be used
in this paper.

Definition 2.1. ([21]) An algebraic system (V,⊕, ∗, 0, w) which elate
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(i) there exists a commutative lattice ordered group (D,+,≤) such that
V = [0, w] = {η ∈ D : 0 ≤ η ≤ w}, where 0 is the neutral element
of (D,+) and w ∈ D such that w > 0 and to each η ∈ D there
exist a positive integer k such that η ≤ kw;

(ii) ⊕, ∗ are binary operation on V such that η⊕ξ = (η+ξ)∧w, η∗ξ =
(η + ξ − w) ∨ 0.

is known as MV-Algebra.

Definition 2.2. ([22]) A maping f : V → [0, 1] which satifies

(i) f(w) = 1;

(ii) if v1, v2 ∈ V such that v1+v2 ≤ w, then f(v1+v2) = f(v1)+f(v2).

is known as a state on an MV-algebra (V,⊕, ∗, 0, w).

Definition 2.3. ([19]) An MV-algebra (V,⊕, ∗, 0, w) which satisfies

(i) For every v ∈ V , w · v = v;

(ii) If v1, v2, v3 ∈ V such that v1 + v2 ≤ w, then v3 · v1 + v3 · v2 ≤ w
and v3 · (v1 + v2) = v3 · v1 + v3 · v2,

where . is a binary operation whcch is commutative on V is known as a
product MV-algebra.

For the sake of simplicity, we will write (V, ·) instead of (V,⊕, ∗, 0, w).
Riečan [20] studied this concept with probability theory. Authors [16],
[17] and [21] defined Shannon measure for the notion product MV-
algebras. Here we mention the basic idea and some results of these
concepts that which will be used in this manuscript.

Any k-tuple P = (ξ1, ξ2, . . . , ξk), ξi ∈ V which sayisfies ξ1+ξ2+ . . .+
ξk = w is known as partition in a product MV-algebra (V, ·).

Definition 2.4. [16] Let P = (ξ1, ξ2, . . . , ξk) be a partition in the struc-
ture (V, ·) and let f : V → [0, 1] be state on (V, ·). Corresponding to
Shannon measure for the partition P in relation to f is defined as

Hf (P ) = −
k∑
j=1

f(ξj) log f(ξj). (2)
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This function satisfies all properties analogous to properties of Shan-
non’s measure of measurable partitions, for more details reader can see
Petrovicova [16].

Remark 2.5. Here logarithmic base can be any positive integer with the
convention 0 logB(

0
ξ ) = 0 if ξ ≥ 0.

3 Measure of Code Length in Product of MV-
algebras

In this section we will prove some coding results analogous to the Shan-
non and λ-norm entropies of partitions in product MV-algebras. For it
consider P = (xξ1, ξ2, . . . , ξk) be a partion in the structure (V, ·) and
f : V → [0, 1] be a state. Let f(ξ1), f(ξ2), . . . , f(ξk) be the state values
of k input symbols ξ1, ξ2, . . . , ξk which we wish to encode. We assume

that f(ξj) > 0 for j = 1, 2, . . . , k such that
∑k

j=1 f(ξj) = 1. Let the
input symbols are encoded in an alphabet with S symbols. . Let ξj ,
be represented by a string of mj morphemes from the alphabet. For
a unique decipherable code with lengths m1, . . . ,mk, Feinstein [5] gives
the following relation

k∑
j=1

S−mj ≤ 1. (3)

Next we define mean code word length Lf (P ) of P with respect to
state f corresponding to the definition of Shannon (see [1]).

Definition 3.1. The mean code word length for partition P = (ξ1, ξ2, . . . ,
ξk) in a product MV-algebra (V, ·) with respect to state f : V → [0, 1] on
(V, ·). is defined as:

Lf (P ) =
k∑
j=1

f(ξj)mj ,

where mj , j = 1, 2, . . . , k are the lengths of the code words ξj.
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Theorem 3.2. Let P = (ξ1, ξ2, . . . , ξk) be a partition in the structure
(V, ·) and f be state on (V, ·). If mj , j = 1, 2, . . . , k are the lengths of the
codewords ξj satisfying (3), then

Hf (P )

logS
≤ Lf (P ) <

Hf (P )

logS
+ 1.

In this result equality will holds iff

f(ξj) = S−mj j = 1, 2, 3, . . . , k,

where S > 1 is a positive integer.

Proof. Proof are simple and omitted. □

Definition 3.3. The mean code word length Lfλ(P ) for a partition P =
(ξ1, ξ2, . . . , ξk) in the structure (V, ·) with respect to state f on (V, ·) cor-
responding to the λ-norm entropy of partitions in this structure is given
by

Lfλ(P ) =
λ

λ− 1
[1−

k∑
j=1

f(ξj)S
−(mj(λ−1))/λ],

λ ∈ (0, 1) ∪ (1,∞).

Clearly Lfλ(P ) will increase for increasing word lengths. For λ → 1,

Lfλ(P ) is analogous to the mean code word length by Shannon type, up
to a constant.

In the following theorem we eastalished this relationship.

Theorem 3.4. Let P = (ξ1, ξ2, . . . , ξk) be a partition in the structure
(V, ·) and f be state on (V, ·). If mj , j = 1, 2, . . . , k are the lengths of the
codewords ξi then

lim
λ→1

Lfλ(P ) =
k∑
j=1

f(ξj)mj log(S).

Proof. By L’Hospital’s rule, we have

lim
λ→1

ϕ(λ)

ψ(λ)
= lim

λ→1

ϕ′(λ)

ψ′(λ)
(4)
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if ϕ(1) = ψ(1) = 0, and ϕ(λ) and ψ(λ) are differentiable and limλ→1
ϕ′(λ)
ψ′(λ)

exist. If we set ϕ(λ) = λ
⌊
1−

∑k
j=1 f(ξj)S

(M,(λ−1))/λ
⌋
and ψ(λ) = λ−1

these functions satisfies the conditions of (4).
We find

lim
λ→1

 k∑
j=1

f(ξj)S
(mj(λ−1))/λ log(S)mjλ

−1

 =
k∑
j=1

f(ξj)mj log(S).

□ Before proceeding to the coding theorem we need following defi-
nition of λ-norm entropy of partitions in product of MV-algebras given
by Dagmar and Abolfazl [14].

Definition 3.5. Let P = (ξ1, ξ2, . . . , ξk) be any partition in the given
structure (V, ·). Then λ-norm entropy of P with respect to a state f :
V → [0, 1] is given by

Hf
λ (P ) =

λ

λ− 1

1−
 k∑
j=1

f(ξj)
λ

 1
λ

 , (5)

λ ∈ (0, 1) ∪ (1,∞).
Concerning (5) the reader can consult [13].

The following theorem gives a relationship beween Lfλ(P ) andH
f
λ (P )

as a coding theorem.

Theorem 3.6. If mj , j = 1, 2, . . . , k are the lengths of the codewords ξj
which satisfies equation (3) and P = (ξ1, ξ2, . . . , ξk) be a partion in the
structure (V, ·) and f be state on (V, ·). , then

Hf
λ (P ) ≤ Lfλ(P ) < S(1−λ)/λHf

λ (P ) +
λ

λ− 1
[1− S(1−λ)/λ]. (6)

Equal sign holds iff

S−M = f(ξj)
λ/

k∑
j=1

f(ξj)
λ, j = 1, 2, 3, . . . , k.
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Proof. With the help of reverse Holder’s inequality, we can eastablished
the lower bound of (6) as k∑

j=1

f(ξj)
λf(yj)

(λ−1)/λ

λ/(λ−1)

.

 k∑
j=1

f(ξj)
λ

1/(1−λ)

≤ 1, λ ∈ ℜ.

(7)
If λ > 1 then from (7) we have k∑

j=1

f(ξj)
λ

1/λ

≥
k∑
j=1

f(ξj)
λ(yj)

(λ−1)/λ. (8)

Since λ
(λ−1) > 0 for λ > 1, from (8), using definition of Hf

λ (P ) and

putting f(yj) = S−mj , j = 1, 2, . . . k, we have

Hf
λ (P ) ≤ Lfλ(P ), (9)

in this equation equal sign holds iff

S−mj = f(ξj)
λ/

k∑
j=1

f(ξj)
λ, j = 1, 2, . . . k. (10)

For 0 < λ < 1 we can prove inequality (9) in a same manner by
reversing the inequality sign of (7), and λ

λ−1 < 0 for 0 < λ < 1.

To prove upper bound for Hf
λ (P ), we use (10). Equation (10) is

equivalent to

mj = − logS f(ξj)
λ + logS [

k∑
j=1

f(ξj)
λ], j = 1, 2, . . . k.

By selecting all mj such that

− logS f(ξj)
λ + logS

 k∑
j=1

f(ξj)
λ

 ≤ mj

< − logS f(ξj)
λ + logS

 k∑
j=1

f(ξj)
λ

+ 1.
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it implies that

S−mj = f(ξj)
λ/

k∑
j=1

f(ξj)
λS. (11)

For λ > 1, from (11), we have

k∑
j=1

f(ξj)
(mj(λ−1))/λ >

 k∑
j=1

f(ξj)
λS1−λ

1/λ

,

which further implies

Lfλ <
λ

1− λ

1−
 k∑
j=1

f(ξj)
λ

1/λ

S(1−λ)/λ

 .
which proves the result for λ > 1.
For 0 < λ < 1, upper bound of Lfλ(P ) can be proved in similar way.
Since S ≥ 2 we have λ

(λ−1) [1−S
(1−λ)/λ] > 1 it implies that the upper

bound of Lfλ(P ) in (6) is > 1.
For λ→ 1 then by using (2) and (5), (6) can be written as

Hf (P )

log(S)
≤ Lf (P ) <

Hf (P )

log(S)
+ 1,

which is relatable to acclaimed result developed by Shannon(see [1]).
□
Huffman established a measure for obtaining a changeable length source
code which gives results similar to results eastablishe by Shannon. The
average length L =

∑k
j=1 ejmj of Huffman code for single codeword

lengths mj , satisfies the relation χ(E) ≤ L < χ(E) + 1 with Shannon’s
measure .This can also be eastablished with partition in a product MV-
algebra (V, ·), for this structure we have

Lfλ(P ) ≥ Hf
λ (P ).

Following example will illustrate this fact.
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Example 3.7. Suppose the family V of measurable functions ξ : [0, 1] →
[0, 1], and binary oeration . is defined as the natural product of fuzzy
sets in V . Then the algebraic system (V, .) is a product MV-algebra.
Also let f : V → [0, 1] be a state defined by f(ξ) =

∫ 1
0 ξ(y)dy, for

every ξ ∈ V , and consider the partition P = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6), where
ξ1(y) = 3y9, ξ2(y) = y3, ξ3(y) = y4, ξ4(y) = y9, ξ5(y) = y9, ξ6(y) = y19,
for every y ∈ [0, 1]. With basic computations we have state values 0.3,
0.25, 0.2, 0.1, 0.1, 0.05 of the corresponding elements, respectively. The
partition P = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) has the state values ( 0.3 , 0.25 ,0.2 ,
0.1 , 0.1 , 0.05 ) of the corresponding elements. A relationship between

the entropy Hf
λ (P ) and average codeword length Lfλ(P ) is obtained in

Tabel 1 for Huffman codes scheme. It is clear from Table 1 that the
mean codeword length Lsλ(P ) exceeds the entropy Hf

λ (P ).

Table 1: Relation BetweenHf
λ (P ) and L

f
λ(P )

mi Huffman code words f(ξi) λ Hf
λ (P ) Lfλ(P ) ρ σ

2 00 0.3 2 1.0726 1.1042 0.97 0.03
2 10 0.25
2 11 0.25
3 011 0.1
4 0100 0.1
4 0101 0.05

In Table 1 mi is the lengths of Huffman code words, ρ = Hf
λ (P ) ÷

Lfλ(P ) is the code adequacy, and σ = 1− ρ is the overabundance of the
code.

4 Conclusion

As a conclusion we remarked that the optimal code length is that code
for which the value of mean codeword length that is Lfλ(P ) in product
MV-algebra is equal to its lower bound. From Theorem 3.2 we conclude
that optimal code lengths in product MV-algebra are depends on para-
metric value λ in opposition to the optimal codelengths of Shannon in
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MV product algebras. It is also achievable to prove coding results cor-
respinding to λ-norm entropy in product MV-algebras such that optimal
codelengths are similar to those of Shannon in product MV-algebras.The
Shannon mean codelength in product MV-algebra is included in mean
codelength with respect to λ-norm entropy in this structure for the lim-
iting case that λ → 1. This new mean codelength is generalization of
classical case in product MV-algebras its further applications can be
seen in fuzzy theory.
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