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Abstract

Although spectral methods such as Galerkin, Tau and pseudospectral methods do
not work well for solving ordinary differential equations in which, at least, one of
the coefficient functions or solution function is not analytic [1], but it is shown that
the Legendre wavelet Galerkin method is suitable for solving this kind of problems
provided that the singular points have the form 2−k for some positive integer k [4].
However, for the other type of singular point the Legendre wavelet basis are not
an efficient method. To overcome this difficulty, in this study we use the extended
Legendre wavelet basis and Tau method for solving a wide range of singular boundary
value problems. The convergence properties and error analysis of the proposed method
is investigated. A comparison between the standard Legendre wavelets and extended
Legendre wavelets methods shows the capability of the proposed method.

Keywords: Extended Legendre wavelets, Operational matrix, Tau method, Bundary
value problems, Convergency, Error analysis.

1 Introduction

In recent years, different basis functions such as orthogonal functions and wavelets have
been used to approximate solutions of functional equations. Depending on the structure,
the orthogonal functions may be widely classed in three families. The first includes of sets
of piecewise constant basis functions (such as the Walsh functions, block pulse functions,
etc.). The second consists of sets of orthogonal polynomials (such as Legendre polyno-
mials and Chebyshev polynomials, etc.). The third is the widely used sets of sine-cosine
functions in Fourier series. It is worth noting that approximating a continuous function
with piecewise constant basis functions results in an approximation that is not contin-
uous. On the other hand if a discontinuous function is approximated with continuous
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basis functions, the resulting approximation is continuous and can not properly model
the discontinuities. Moreover, there are some functional equations that the solution vary
continuously in some regions and discontinuously in others. Neither continuous basis func-
tions nor piecewise constant basis functions taken alone can efficiently or accurately model
these spatially varying properties. So, in order to properly approximate these spatially
varying properties it is absolutely necessary to use approximating basis functions that
can accurately model both continuous and discontinuous phenomena. For these situa-
tions, wavelet functions will be more effective. Wavelets possess several useful properties,
such as orthogonality, compact support, exact representation of polynomials to a certain
degree, and the ability to represent functions at different levels of resolution. It is also
worth noting that the wavelets method allows the creation of very fast algorithms when
compared to the algorithms ordinary used. This is due to specific attributes when they
are used as basis functions.

In this paper, we consider the boundary value problem (BVP) [1, 4]:

y′′(t) + f(t)y′(t) + g(t)y(t) = h(t), (1)

with the boundary conditions:

y(a) = A, y(b) = B, (2)

where the solution y(t) or coefficients f(t), g(t) and h(t) have some finite singular points in
the interval [0, 1]. It can be shown that for a given ordinary boundary differential equation
defined on the interval [a, b], if solution and coefficients are analytic, spectral methods using
orthonormal polynomials will be suitable for solving such problems and also it leads to
spectral accuracy [1–3]. But when at least, one of the coefficient or solution is not analytic
on [a, b], these basis functions will not appropriate, so that the Gibbs phenomenon will
happen around the singularity points [2, 3].

Wavelets method are very interesting to obtain approximate solutions of differential
equations. It has been shown that in case that solution of problem has some singular points
of the form 2−k, for some positive integer k, the standard Legendre wavelets method will
be a very suitable and efficient way for solving such problems with initial or boundary
conditions. In [4] authors have used the Legendre wavelets Galerkin method for solving
singular boundary ordinary differential equations and spectral accuracy was obtained in
the cases that singular points were of the form 2−k for some positive integer k. However,
in cases that at least one of the coefficient functions or solution function of under consid-
eration problem has a singular point which is not in the form 2−k, the Legendre wavelets
Galerkin method is not an efficient method for solution of it and also the approximate
solution has not the spectral accuracy.

In this paper, an extended Legendre wavelets basis functions are introduced and their
properties are described. Then, the operational matrix of derivatives for these basis func-
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tions is obtained and a general procedure for deriving this operational matrix is described.
By using the extended Legendre wavelets, associated operational matrix of derivatives and
Galerkin method a computational method for solving ordinary differential equations with
boundary conditions is proposed. A comparison between the typical Legendre Galerkin
wavelets method and the extended Legendre wavelets method for solving some numerical
examples is performed. Convergence of the proposed method is investigated.

This paper is organized as follows: In section 2, the extended Legendre wavelets and
their properties are presented. In section 3, shifted Legendre polynomials are introduced.
In section 4, the operational matrix of derivative for the extended Legendre wavelets is
obtained. In section 5, the proposed method is described. In section 6, some numerical
examples are presented. Finally a conclusion is drawn in section 7.

2 Extended Legendre wavelets

In this section, the extended Legendre wavelets are presented and some their useful pr-
poperties are discussed.

2.1 A brief review of constructing the extended Legendre wavelets

The extended Legendre wavelets in the framework of the recursive wavelets construction
given in [6] for piecewise polynomial spaces on [0, 1]. For this purpose, we first introduce
some notations. Throughout this work, N denotes the set of all natural numbers, N0 =
N ∪ {0} and Zµ = {0, 1, . . . , µ− 1}, for a positive integer µ.
For an integer µ > 1, we consider the following contractive mappings on the interval
I = [0, 1]:

ψϵ(t) =
t+ ϵ

µ
, t ∈ [0, 1], ϵ ∈ Zµ. (3)

It is obvious that the mappings {ψϵ} satisfy the following properties:

ψϵ(I) ⊂ I, ∀ϵ ∈ Zµ,∪
ϵ∈Zµ

ψϵ(I) = I.
(4)

It is well known that Legendre polynomials Pm(x) are orthogonal with respect to the
weight function w(x) = 1 on the interval [-1, 1] and satisfy the following formulae [2]:

P0(x) = 1,
P1(x) = x,
Pm+1(x) =

2m+1
m+1 xPm(x)−mPm−1(x), m ∈ N

(5)
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Now, let F0 denotes the finite dimensional linear space on [0, 1] that is spanned by the
Legendre polynomials P0(2x− 1), P1(2x− 1), . . . , PM−1(2x− 1), where M ∈ N and Um is
the Legendre polynomial of degree m, namely,

F0 = span{Pm(2x− 1)|x ∈ [0, 1],m ∈ Zµ}. (6)

In order to construct an orthonormal basis for L2[0, 1], for each ϵ ∈ Zµ we define an
isometry Tϵ on L

2[0, 1]:

(Tϵf) (x) =

{ √
µf(ψ−1

ϵ (x)), x ∈ ψϵ(I),
0, x /∈ ψϵ(I).

(7)

Starting from the space F0, we define a sequence of spaces {Fk|k ∈ N0} using the recurrence
formula:

Fk+1 =
⊕
ϵ∈Zµ

TϵFk, k ∈ N0, (8)

where ⊕ denotes the direct sum, e.g., if A and B are two subspaces of L2[0, 1] with
A ∩B = {0}, then:

A⊕B = {f + g : f ∈ A, g ∈ B}.

The sequence of spaces {Fk|k ∈ N0} is nested, i.e. [9]

F0 ⊂ F1 ⊂ . . . ⊂ Fk ⊂ Fk+1 ⊂ . . . , (9)

and

dimFk =Mµk, k ∈ N0. (10)

Moreover, similar to theorem 2.4 in [10], it can be proved that

∞∪
k=0

Fk = L2[0, 1]. (11)

Next we construct an orthonormal basis for each of the spaces Fk. We first notice that

G0 =
{√

2m+ 1Pm(2x− 1)|x ∈ [0, 1], m ∈ Zµ
}
,

is an orthonormal basis for F0 and moreover for f(x) ∈ L2[0, 1], with compact support
and we have

supp{Tϵf} ∩ supp{Tϵ′f} = ∅, ϵ ̸= ϵ′,
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where supp(f) denotes the support of the function f . It can be simplify seen that [7]:

Gk =
{
Tϵ0 o . . . o Tϵk−1

(√
2m+ 1Pm(2x− 1)

)
|m ∈ ZM , ϵℓ ∈ Zµ, ℓ ∈ Zk

}
,

is an orthonormal basis for Fk, where ”o” denotes composition of functions. In other
words, if for n = 1, 2, . . . , µk, k ∈ N, we set:

ψnm(x) = ψ(k,m, n, x) =

{ √
2m+ 1µ

k
2Pm(2µ

kx− 2n+ 1), x ∈
[
n−1
µk
, n
µk

)
,

0, otherwise,
(12)

then {ψnm(x)|n = 1, 2, . . . , µk,m ∈ ZM} forms an orthonormal basis for Fk with respect
to the weight function w(x) = 1. Moreover, for any integer number M > 1 the functions
{ψnm(x)|n = 1, 2, . . . , µk,m ∈ ZM} are called Legendre wavelets.

2.2 Function approximation

A function f(x) defined over [0, 1) can be expanded in the terms of the extended Legendre
wavelets as

f(x) ≃
∞∑
n=1

∞∑
m=0

cnmψnm(x) = CTΨ(x), (13)

where cnm = (f(t), ψnm(t)) and (., .) denotes the inner product on L2[0, 1]. If the infinite
series in (13) is truncated, then it can be written as:

f(x) ≃
µk∑
n=1

M−1∑
m=0

cnmψnm(x) = CTΨ(x), (14)

where C and Ψ(x) are m̂ = µkM column vectors as

C =
[
c10, . . . , c1(M−1)|c20, . . . , c2(M−1)|, . . . , |cµk0, . . . , cµk(M−1)

]T
, (15)

Ψ(x) =
[
ψ10(x), . . . , ψ1(M−1)(x)|ψ20(x), . . . , ψ2(M−1)(x)|, . . . , |ψµk0(x), . . . , ψµk(M−1)(x)

]T
.

By changing indices in the vectors Ψ(x) and C the series (14) can be defined as

f(x) ≃
m̂∑
i=1

ciψi(x) = CTΨ(x), (16)

where

C = [c1, c2, ..., cm̂] , Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)] , (17)

and

ci = cnm, ψi(x) = ψnm(x), i = (n− 1)M +m+ 1. (18)
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2.3 Error analysis and convergence

In the next theorems the convergence properties and error bound for the of the extended
Legendre wavelets series are investigated.

Theorem 2.1. Any function f(x) defined on [0, 1) with bounded first and second deriva-
tives |f ′(x)| ≤ M1 and |f ′′(x)| ≤ M2, can be expanded as an infinite sum of the extended
Legendre wavelets, and the series converges uniformly to f(x), that is:

f(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x), (19)

Proof. Let f(x) be a function defined on [0, 1) first and second derivatives M1 and M2,
respectively, and:

cnm =

∫ 1

0
f(x)ψnm(x)dx =

∫ n

µk

n−1

µk

f(x)
√
2m+ 1µ

k
2Pm(2µ

kx− 2n+ 1)dx. (20)

Let n̂ = 2n− 1, then by the change of variable t = 2µkx− n̂, we have dx = dt
2µk

, and so:

cnm =
(2m+ 1)

1
2

2µ
k
2

∫ 1

−1
f

(
n̂+ t

2µk

)
Pm(t)dt

=
1

2µ
k
2 (2m+ 1)

1
2

∫ 1

−1
f

(
n̂+ t

2µk

)
d (Pm+1(t)− Pm−1(t)) , (21)

where the following property of the legendre polynomials is used:

(2m+ 1)Pm(t) = P ′
m+1(t)− P ′

m−1(t). (22)

Integrating by parts in (21) yields:

cnm =
1

2µ
k
2 (2m+ 1)

1
2

{
1

2µk
f ′

(
n̂+ t

2µk

)
(Pm+1(t)− Pm−1(t)) |1−1

− 1

2µk

∫ 1

−1
f ′

(
n̂+ t

2µk

)
(Pm+1(t)− Pm−1(t)) dt

}
. (23)

From equation (23), we have:

cnm =
1

4µ
3k
2 (2m+ 1)

1
2

∫ 1

−1
f ′

(
n̂+ t

2µk

)
(Pm+1(t)− Pm−1(t)) dt. (24)
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Now, by considering (22), we have:

cnm =
1

4µ
3k
2 (2m+ 1)

1
2

∫ 1

−1
f ′

(
n̂+ t

2µk

)
d

(
Pm+2(t)− Pm(t)

2m+ 3
− Pm(t)− Pm−2(t)

2m− 1

)
. (25)

Solving this equation similar to the previous step, yields:

cnm =
1

8µ
5k
2 (2m+ 1)

1
2

∫ 1

−1
f ′′

(
n̂+ t

2µk

)(
Pm+2(t)− Pm(t)

2m+ 3
− Pm(t)− Pm−2(t)

2m− 1

)
dt. (26)

Now, let τm(t) = (2m− 1)Pm+2 − 2(2m+ 1)Pm(t) + (2m+ 3)Pm−2(t), then we have:

cnm =
1

8µ
5k
2 (2m+ 1)

1
2

1

(2m− 1)(2m+ 3)

∫ 1

−1
f ′′

(
n̂+ t

2µk

)
τm(t)dt. (27)

Then we have:

|cnm| =≤ Ω(µ, k,m)

∫ 1

−1

∣∣∣∣f ′′( n̂+ t

2µk

)∣∣∣∣ |τm(t)|dt, (28)

where

≤ Ω(µ, k,m) =
1

8µ
5k
2 (2m+ 1)

1
2

1

(2m− 1)(2m+ 3)
.

Moreover, it is shown [11] that:∫ 1

−1
|τm(t)|dt ≤

√
24

2m+ 3√
2m− 3

, (29)

Therefor, since n ≤ µk, for m > 1 we get:

|cnm| ≤
√
6M2

2n
5
2 (2m− 3)2

. (30)

Also, for m = 1, from (24), we have:

|cn1| ≤
M1√
3n

3
2

. (31)

Hence, the series

∞∑
n=1

∞∑
m=0

cnm is absolutely convergent. Moreover, it is obvious that, for

m = 0, the sequence {ψn0(x)}∞n=1 forms an orthogonal system constructed by Haar scal-

ing function and thus
∞∑
n=1

cn0ψn0(x) is convergent (for more details see appendix). Con-

sequently, it follows that the series
∞∑
n=1

∞∑
m=0

cnmψnm(x) converges to the function f(x)

uniformly.
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Theorem 2.2. Suppose f(x) be a continuous function defined on [0, 1), with bounded first

and second derivativesM1 andM2 respectively, and

µk∑
n=1

M−1∑
m=0

cnmψnm(x) be the approximate

solution using the extended Legendre wavelets. Then for the error bound we have:

σm̂ <

M2
1

µ2k
+

3M2
2

2

∞∑
n=1

∞∑
m=M

anm +
3M2

2

2

∞∑
n=µk+1

M−1∑
m=2

anm +
M2

1

3

∞∑
n=µk+1

bn

 1
2

, (32)

where

anm =
1

n5(2m− 3)4
, bn =

1

n3
,

and

σm̂ =

∫ 1

0

f(x)− µk∑
n=1

M−1∑
m=0

cnmψnm(x)

2

dx


1
2

.

Proof. We have:

σ2m̂ =

∫ 1

0

f(x)− µk∑
n=1

M−1∑
m=0

cnmψnm(x)

2

dx

=

∫ 1

0

 ∞∑
n=1

∞∑
m=0

cnmψnm(x)−
µk∑
n=1

M−1∑
m=0

cnmψnm(x)

2

dx

=

∞∑
n=1

∞∑
m=M

c2nm

∫ 1

0
ψ2
nm(x)dx+

∞∑
n=µk+1

M−1∑
m=0

c2nm

∫ 1

0
ψ2
nm(x)dx

=

∞∑
n=1

∞∑
m=M

c2nm +

∞∑
n=µk+1

M−1∑
m=0

c2nm

=

∞∑
n=1

∞∑
m=M

c2nm +

∞∑
n=µk+1

M−1∑
m=2

c2nm +

∞∑
n=µk+1

(
c2n0 + c2n1

)
. (33)

Now by considering (30), (31), (33) and remark 1 in appendix, the desired result is
achieved.
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3 Operational matrix of derivative for extended Legendre
wavelets

In this section, we derive a new operational matrix of derivative for the extended Legendre
wavelets. At first some properties of shifted Legendre polynomials are discused. For
practical use of Legendre polynomials on the interval of interest [0, 1] the shifted Legendre
polynomials P̃n(x) on [0,1] are obtained as:

P̃n(x) = Pn(2x−1).

The orthogonality condition for these shifted polynomials is:∫ 1

0
P̃m(x)P̃n(x)dx =

1

2m+ 1
δmn.

In the next theorem, we derive a relation between the shifted Legendre polynomials and
their derivatives that is very important for deriving the operational matrix of derivatives
for the extended Legendre wavelets.

Theorem 3.1. [5] Let Pm(x) be the shifted Legendre polynomials into [0, 1], then we have

P
′
m(x) = 2

m−1∑
k=0
k+m odd

(2k + 1)Pk(x). (34)

Lemma 3.2. [2] The function f(x), square integrable in [0, 1], may be expressed in terms
of shifted Legendre polynomials as:

f(x) =
∞∑
k=0

ckP̃k(x), (35)

where

ck = (2k + 1)

∫ 1

0
f(x)P̃k(x)dx.

Lemma 3.3. [5] By using the shifted Legendre polynomials, any extended Legendre wavelets
function Ψr(x) of (12) can be written as:

Ψr(x) =
√
2m+ 1µ

k
2 P̃m(µ

kx− n),

where r = nM + m + 1, m = 0, . . . , (M − 1), n = 0, . . . , µk − 1 and χ[ n

µk ,
n+1

µk
] is the

characteristic function defined as:

χ[ n

µk ,
n+1

µk
](x) =

{
1, x ∈ [ n

µk
, n+1
µk

],

0, therwise.
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Theorem 3.4. Let Ψ(x) be the extended Legendre wavelets vector defined in (14). The
derivative of the vector Ψ(x) can be defined as

dΨ(x)

dx
= DΨ(x), (36)

where D is the operational matrix of derivative defined as:

D =


F 0 · · · 0
0 F · · · 0
...

...
. . .

...
0 0 0 F

 , (37)

in which F is M matrix and its (r,s)-th element is defined as:

Fr, s =

 2µk
√

(2r − 1)(2s− 1) r = 2, ...,M, s = 1, ..., r − 1, and (r + s)odd,

0, othewise.

(38)

Proof. By using the shifted Legendre polynomials into [0, 1], the r-th element of vector
Ψ(x) can written as:

Ψr(x) = ψnm(x) = µ
k
2

√
2m+ 1 P̃m(µ

kx− n) χ[ n

µk ,
n+1

µk
] , r = 1, 2, ..., m̂ , (39)

where r = nM +m+ 1, m = 0, 1, ...,M − 1 and n = 0, 1, ..., µk − 1.
By differentiation with respect to x of vector Ψ(x) we have:

dΨr(x)

dx
= µ

k
2

√
2m+ 1µkP̃ ′

m(µ
kx− n) χ[ n

µk
,n+1

µk
] (40)

This function is zero outside the interval
[
n
µk
, n+1
µk

]
, hence its Legendre wavelets expansion

only have those elements of basis extended Legendre wavelets in Ψ(x) that are nonzero in

the interval
[
n
µk
, n+1
µk

]
i.e. Ψi(x) , i = nM + 1 , nM + 2 , ..., nM +M .

So its extended Legendre wavelets expansion has the following form:

dΨr(x)

dx
=

(n+1)M∑
i=nM+1

aiΨi(x) (41)

This results that operational matrix D is a block matrix as defined in (37). Moreover we
have:

d

dx
P0(x) = 0 , (42)
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this implies that dΨr(x)
dx = 0 for r = 1 , M + 1 , 2M + 1 , 3M + 1 , ..., (µk − 1)M +

1. Consequently, the first row of matrix defined in (38) is zero. Now by substituting
P ′
m(µ

kx− n) from Eq. (34) into (40) we have:

dΨr(t)

dt
= µ

k
2

√
2m+ 1 µk

m−1∑
j=0
j+m odd

2(2j + 1)P̃j(µ
kt− n) χ[ n

µk ,
n+1

µk
] (43)

Expanding this equation in the extended Legendre wavelets basis we have:

dΨr(t)

dt
= µ

k
2

√
2m+ 1µk

m−1∑
j=0

j+modd

2
√

2j + 1
√

2j + 1Pj(µ
kt− n)χ[

n

µk
,n+1

µk

]

= 2µk
r−1∑
s=1
s+r odd

√
(2r − 1) (2s− 1)ΨnM+s(t) . (44)

So if we choose as

Fr, s =

 2µk
√

(2r − 1)(2s− 1) r = 2, ...,M, s = 1, ..., r − 1, and (r + s)odd,

0, othewise.

then equation (36) is hold and this leads to desired result.

The following property of the product of two Legendre wavelets vector functions Ψ(t)
will be used,

ETψψT = ψT Ẽ, (45)

where E is a given vector and Ẽ is a µkM matrix depended on vector E, which is called
the product operation matrix of Legendre wavelets vector functions.

4 Description of the proposed method

In this section, the extended Legendre Galerkin method is applied for solving boundary
ordinary differential equations with finite singular points in the interval [0, 1]. For this
purpose consider the boundary value problem:

y′′(t) + f(t)y′(t) + g(t)y(t) = h(t), (46)

11



with the boundary conditions:

y(0) = A, y(1) = B, (47)

in which the solution function y(t) or coeficient functions f(t), g(t) and h(t) has finite
singular point in the interval [0, 1] as

t1 =
k1
n1
, t2 =

k2
n2
, . . . , tm =

km
nm

, ki, ni ∈ N and (ki, ni) = 1 (48)

For solving the singular BVP (46) and deriving an spectral accuracy, first we choose
a suitable µ according these singular points ti. For this purpose let ni has the prime
factorization

ni = p
αi2
2 . . . p

αir
r , pj ≥ 2, αij ≥ 0. (49)

Now we define the µ as follow

µ = pβ11 p
β2
2 . . . pβrr (50)

in which βj = min {αjr | 1 ≤ r ≤ m}. By using the extended Legendre wavelet basis for
this µ, we can get an approximate solution for the BVP (46) with the spectral accuracy.
For this purpose, we approximate the functions f(t), g(t), h(t) and y(t) as:

y(t) = CTΨ(t), f(t) = F TΨ(t), g(t) = GTΨ(t), h(t) = HTΨ(t) (51)

where Ψ(t) is the extended Legendre wavelets basis vector defined in (14) and C, F , G and
H are the cofficient vectors of the extended Legendre wavelet basis for the function y(t),
f(t), g(t) and h(t) respectively. Moreover, by using the operational matrix of derivatives
for the extended Legendre wavelet Ψ(t), we have:

y′(t) = CTDΨ(t), y′′(t) = CTD2Ψ(t). (52)

Employing Eqs. (51) and (52), the residual for Eq. (46) can be written as

R(t) = Ψ(t)T
(
DT

)2
C + F TΨ(t)ΨT (t)DTC +GTΨ(t)ΨT (t)C −Ψ(t)TH, (53)

By using the operational matrix of product defined in (45) we have

R(t) = Ψ(t)T
(
DT

)2
C +Ψ(t)T F̃DTC +Ψ(t)T G̃C −Ψ(t)TH, (54)

As in a typical Tau method [2], we generate m̂− 2 linear equations by applying∫ 1

0
Ψj(t)R(t)dt = 0, j = 1, ..., m̂− 2. (55)
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Also, by substituting initial conditions in Eq. (47) we have

y(0) = CTΨ(0)−A = 0,

y(1) = CTΨ(1)−B = 0.
(56)

Eqs. (55) and (56) generate a set of m̂ linear equations. These linear equations can
be solved for unknown coefficients of the vector C. The solution function y(t) can be
approximate by substituting vector C in (51).

5 Numerical examples

In this section, we demonstrate the efficiency of the proposed method with some illustrative
examples. For all examples, spectral methods by using Legendre polynomials and typical
Legendre wavelet method do not work well and can not present spectral accuracy [1,4]. It
will be shown that the extended Legendre wavelet method is very efficient for solving these
singular problems and spectral accuracy will be obtained. The algorithms are performed
by Maple 13 with 30 digits precision.

Example 1. Consider the boundary value problem
y′′ +

∣∣t− 1
3

∣∣ y′ + ∣∣t− 1
2

∣∣ y = h(x), t ∈ [0, 1]

y(0) =
(
1
3

)3
, y(1) =

(
2
3

)3
,

(57)

where h(t) is compatible with the exact solution
∣∣t− 1

3

∣∣3. In this problem the exact
solution and coefficient functions have singular points at t1 = 1

2 and t2 = 1
3 . According

the prposed method in the section 4 by choosing µ = 2× 3 = 6 we solve the problem for
M = 4 and k = 1 and the exact solution is derived. Figure 1 shows the absolute error
produced the extended Legendre wavelets method for µ = 6, M = 4 and k = 1 in the
interval [0, 1]. Howover by using the typical legendre wavelets method (µ = 2) we can not
derive the exact solution and only an approximate solution can be obtaind. The absolute
errors produced from the extended Legendre wavelets (with µ = 6) and standard Legendre
wavelets (µ = 2) method are shown in table 1 for different values of M = 4 and k = 1. As
the table shows the extended Legendre wavelets are more efficient in solving this boundary
value problem.

Example 2. Consider the boundary value problem
y′′ +

∣∣t− 1
5

∣∣ y′ + ∣∣t− 1
4

∣∣ y = h(t), t ∈ [0, 1]

y(0) =
(
1
2

)5
, y(1) =

(
1
2

)5
,

(58)
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Figure 1: The absolute error produced by the extended Legendre wavelets.

Table 1: The absolute error produced by the extended Legendre wavelets (M=4, k=1).

µ t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

µ = 6 8.18× 10−30 1.22× 10−30 2.50× 10−29 2.66× 10−29 6.40× 10−29

µ = 2 6.16× 10−4 6.78× 10−4 3.30× 10−3 2.17× 10−7 7.04× 10−8

where h(t) is compatible with the exact solution
∣∣t− 1

2

∣∣5. In this problem the exact solution
and coefficient functions have singular points at t1 =

1
5 , t2 =

1
4 and t3 =

1
2 . According the

prposed method in the section 4 by choosing µ = 2×5 = 10 the exact solution of the above
boundary value problem can be derived. Here we solve the problem with µ = 10, M = 6
and k = 2 and we get the exact solution. Howover by using the standard legendre wavelets
method (µ = 2) the exact solution can not be derived. The absolute errors produced from
the extended Legendre wavelets (with µ = 10) method and standard Legendre wavelets
(µ = 2) method are shown in table 2 for different values of M = 6 and k = 2.

Table 2: The maximum absolute error produced by the extended Legendre wavelets.

µ t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9

µ = 10 2.99× 10−30 4.91× 10−30 2.25× 10−29 4.70× 10−30 2.71× 10−29

µ = 2 1.60× 10−7 1.36× 10−8 1.90× 10−8 5.49× 10−9 1.73× 10−9
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Figure 2: The absolute error produced by the extended Legendre wavelets.

Example 3. In this example we consider a boundary value problem in which coefficient
functions are non analytical but its solution function is infinite differentiable on [0, 1]. So,
consider the boundary value problem

y′′ + g(t)y′ +
∣∣t− 1

2

∣∣ y = h(t), t ∈ [0, 1]

y(0) = y(1) = 0,
(59)

in which

g(t) =

{
−4t+ 4

3
0≤t< 1

3

t− 1
3

1
3
≤t<1

(60)

and h(t) is compatible with the exact solution y(t) = et sin(πt)
1+t2

. Here the exact solution

is infinitely differentiable but the coefficient functions have singular points at t1 = 1
3 and

t2 = 1
2 . As the Taylor series of the exact solution has infinite terms, the exact solution

can not be obtained by either standard Legendre wavelet method or extended Legendre
wavelet method. Howover a comparision between these methods shows the efficiency of the
extended Legendre wavelet method. Table 3 shows the absolute error of these methods for
different values of M and k. As this table shows the extended Legendre wavelet method
with µ = 6 is more efficient for approximate the solution of this problems and by increasing
the M and k give a good approximation of the exact solution.

15



Table 3: The maximum absolute error for the standard Legendre wavelet (µ = 2) and extended
Legendre wavelets (with µ = 6).

M,k M = 6, k = 1 M = 6, k = 2 M = 8, k = 1 M = 8, k = 2 M = 10, k = 1 M = 10, k = 2

µ = 2 5.50× 10−1 3.43× 10−2 3.12× 10−1 4.51× 10−4 1.32× 10−3 4.50× 10−5

µ = 6 1.37× 10−2 1.24× 10−4 2.50× 10−4 3.59× 10−7 4.73× 10−7 7.15× 10−10

6 Conclusion

Wavelets method have been successful for solving singular boundary value problems with
non analytic solution. However, difficulties arise in dealing with ordinary differential
equations in which singular points are not of the form 2−k for some positive integer k [4].
To overcome these difficulties, in this paper an extended Legendre wavelet method is
proposed and is applied for solving ordinary differential equations in which, at least, one
of the coefficient functions or solution function is not analytic. The comparison shows the
high efficiency of the proposed method.

Appendix

In this appendix we will obtain an upper bound for cnm in the extended Legendre wavelets
expansions in case m = 0. For m = 0, the extended Legendre wavelets form an orthonor-
mal system on [0, 1) as:

ψn0(x) =

{
µ

k
2 , x ∈ [n−1

µk
, n
µk
),

0, otherwise,
(61)

for n = 1, 2, . . . , µk.
By expanding any square integrable function f(x) in terms of these basis functions on
[0, 1) we have:

f(x) =

∞∑
n=1

cn0ψn0(x), (62)

where

cn0 = µ
k
2

∫ n

µk

n−1

µk

f(x)dx. (63)
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If the infinite series in (62) is truncated, then it can be written as:

fµk(x) ≃
µk∑
n=1

cn0ψn0(x). (64)

Theorem 6.1. Suppose fµk(x) be the truncated expansion of f(x) in the above basis
functions and eµk(x) = fµk(x) − f(x) be the corresponding error, then the expansion will

converge in the sense that eµk(x) approaches zero as µk tends to infinity. Moreover the
convergence order is one, that is:

∥eµk(x)∥ = O
(

1

µk

)
. (65)

Proof. By defining the error between f(x) and its expansion over any subinterval as:

en(x) = cn0ψn0(x)− f(x), x ∈
[
n− 1

µk
,
n

µk

)
, n = 1, 2, . . . , µk, (66)

we obtain

∥en(x)∥2 =
∫ n

µk

n−1

µk

en(x)
2dx =

∫ n

µk

n−1

µk

(cn0ψn0(x)− f(x))2 dx

=
(
cn0µ

k
2 − f(ηn)

)2 1

µk
, ηn ∈

[
n− 1

µk
,
n

µk

)
, (67)

where we have used the weighted mean value theorem for integrals.
From (63) and the weighted mean value theorem, we also have:

cn0 = µ
k
2

∫ n

µk

n−1

µk

f(x)dx = µ
k
2
1

µk
f(ζn) =

1

µ
k
2

f(ζn), ζn ∈
[
n− 1

µk
,
n

µk

)
. (68)

By substituting (68) into (67), we obtain:

∥en(x)∥2 = (f(ζn)− f(ηn))
2 1

µk
. (69)

Now, since |f ′(x)| < M1, then f(x) satisfies a Lipschitz condition on each subinterval, i.e.:

|f(ζn)− f(ηn)| ≤M1|ζn − ηn|, ∀ζn, ηn ∈
[
n− 1

µk
,
n

µk

)
(70)
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Then, from (69) and (70), we have:

∥en(x)∥2 ≤
M2

1

µ3k
, (71)

which leads to:

∥eµk(x)∥2 =
∫ 1

0
eµk(x)

2dx =

∫ 1

0

 µk∑
n=1

en(x)

2

dx

=

∫ 1

0

 µk∑
n=1

en(x)
2

 dx+ 2
∑
n≤n′

∫ 1

0
en(x)en′(x)dx. (72)

Now, due to disjointness of the supports of these basis functions we have:

∥eµk(x)∥2 =
∫ 1

0

 µk∑
n=1

en(x)
2

 dx =

µk∑
n=1

∥en(x)∥2. (73)

Substituting (71) into (73), we obtain:

∥eµk(x)∥2 ≤
M2

1

µ2k
, (74)

or, in other words, ∥eµk(x)∥ = O
(

1

µk

)
.

This completes the proof.

Corollary 6.2. Let fµk(x) be the expansion of f(x) by the above basis functions and
eµk(x) be the corresponding error, then we have:

∥eµk(x)∥ ≤ M1

µk
. (75)

Proof. This is an immediate consequence of the theorem 6.1.

Remark 1. We notice that according to the above information we have:

∞∑
n=µk+1

c2n0 = ∥fµk(x)−
∞∑
n=1

cn0ψn0(x)∥2 = ∥eµk(x)∥2 ≤
M2

1

µ2k
. (76)
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