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Abstract. Although spectral methods such as Galerkin and Tau meth-
ods do not work well for solving ordinary differential equations in which,
at least, one of the coefficient functions or solution function is not ana-
lytic [1], but it is shown that the Legendre wavelet Galerkin method is
suitable for solving some kind of these problems [4]. In this study we use
the extended Legendre wavelet basis and Tau method for solving a wide
range of singular boundary value problems. The convergence properties
and error analysis of the proposed method are investigated. A compar-
ison between the standard Legendre wavelets and extended Legendre
wavelets methods shows the capability of the proposed method.
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1. Introduction

In recent years, different basis functions such as orthogonal functions and
wavelets have been used to approximate solutions of functional equations. De-
pending on the structure, the orthogonal functions may be widely classified
in three families. The first family includes of sets of piecewise constant basis
functions (such as the Walsh functions, block pulse functions, etc.). The second
consists of sets of orthogonal polynomials (such as Legendre polynomials and
Chebyshev polynomials, etc.). The third is the widely used sets of sine-cosine
functions in Fourier series. It is worth noting that approximating a continu-
ous function with piecewise constant basis functions results in an approximant
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that is not continuous. On the other hand if a discontinuous function is approx-
imated with continuous basis functions, the resulting approximant is continu-
ous and can not properly model the discontinuities. Moreover, there are some
functional equations in which the solution vary continuously in some regions
and discontinuously in others. Neither continuous basis functions nor piecewise
constant basis functions taken alone can efficiently or accurately model these
spatially varying properties. So, in order to properly approximate these spa-
tially varying properties it is absolutely necessary to use approximating basis
functions that can accurately model both continuous and discontinuous phe-
nomena. For these situations, wavelet functions will be more effective. Wavelets
possess several useful properties, such as orthogonality, compact support, exact
representation of polynomials to a certain degree, and the ability to represent
functions at different levels of resolutions. It is also worth noting that the
wavelets method allows the creation of very fast algorithms when compared to
the algorithms ordinarily used. This is due to specific attributes when they are
used as basis functions.
In this paper, we consider the boundary value problem (BVP) [1, 4]:

⎧⎨
⎩

y′′(t) + f(t)y′(t) + g(t)y(t) = h(t), a < t < b

y(a) = A, y(b) = B,
(1)

where the solution y(t) or coefficients f(t), g(t) and h(t) have some finite singu-
larities in the interval [0, 1]. It can be shown that for a given ordinary differential
equation defined on the interval [a, b], if solution and coefficients are analytic,
spectral methods using orthonormal polynomials will be suitable and also they
lead to spectral accuracy [1-3]. But when at least, one of the coefficient or so-
lution is not analytic on [a, b], these basis functions will not be appropriate, so
that the Gibbs phenomenon will happen around the singular points [2, 3].
Wavelets method are very interesting to obtain approximate solutions for dif-
ferential equations. It has been shown that in case that the solution of problem
has some singular points of the form 2−k, for some positive integer k, the stan-
dard Legendre wavelets method will be a very suitable and efficient way for
solving such problems with initial or boundary conditions. In [4] authors have
used the Legendre wavelets Galerkin method for solving singular boundary or-
dinary differential equations and spectral accuracy was obtained in the cases
that singular points were of the form 2−k for some positive integer k. However,
in cases that at least one of the coefficient functions or solution function of the
equation under consideration has a singular point which is not in the form 2−k,
the Legendre wavelets Galerkin method is not an efficient method for solution
and also the approximate solution has not the spectral accuracy.
In this paper, extended Legendre wavelets basis functions are introduced and
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their properties are described. Then, the operational matrix of derivatives for
these basis functions is obtained and a general procedure for deriving this op-
erational matrix is described. By using the extended Legendre wavelets, asso-
ciated operational matrix of derivatives and Galerkin method a computational
method for solving ordinary differential equations with boundary conditions
is proposed. A comparison between the typical Legendre Galerkin wavelets
method and the extended Legendre wavelets method for solving some numer-
ical examples is performed. Also the convergence of the proposed method is
investigated.
This paper is organized as follows: In Section 2, the extended Legendre wavelets
and their properties are presented. In Section 3, the operational matrix of
derivative for the extended Legendre wavelets is obtained. In Section 4, the
proposed method is described. In Section 5, some numerical examples are pre-
sented. Finally a conclusion is drawn in Section 6.

2. Extended Legendre Wavelets

In this section, the extended Legendre wavelets are presented and some of their
useful prpoperties are discussed.

2.1 A brief review of constructing the extended Legendre
wavelets

The extended Legendre wavelets is the framework of the recursive wavelets
construction given in [7, 9] for piecewise polynomial spaces on [0, 1]. For this
purpose, we first introduce some notations. Throughout this work, N denotes
the set of all natural numbers, N0 = N ∪ {0} and Zµ = {0, 1, . . . , µ− 1}, for a
positive integer µ.
For an integer µ > 1, we consider the following contractive mappings on the
interval I = [0, 1]:

ψε(t) =
t+ ε

µ
, t ∈ [0, 1], ε ∈ Zµ. (2)

It is obvious that the mappings {ψε} satisfy the following properties:

ψε(I) ⊂ I, ∀ε ∈ Zµ,

⋃
ε∈Zµ

ψε(I) = I.
(3)

It is well known that Legendre polynomials Pm(x) are orthogonal with respect
to the weight function w(x) = 1 on the interval [-1, 1] and satisfy the following
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formulae [2]:

P0(x) = 1,
P1(x) = x,
Pm+1(x) = 2m+1

m+1 xPm(x) −mPm−1(x), m ∈ N.
(4)

Now, let F0 denotes the finite dimensional linear space on [0, 1] that is spanned
by the Legendre polynomials P0(2x− 1), P1(2x− 1), . . . , PM−1(2x− 1), where
M ∈ N and Pm is the Legendre polynomial of degree m, namely,

F0 = span{Pm(2x− 1)|x ∈ [0, 1],m ∈ ZM}. (5)

In order to construct an orthonormal basis for L2[0, 1], for each ε ∈ Zµ we
define an isometry Tε on L2[0, 1]:

(Tεf) (x) =
{ √

µf(ψ−1
ε (x)) x ∈ ψε(I),

0 x /∈ ψε(I).
(6)

Starting from the space F0, we define a sequence of spaces {Fk|k ∈ N0} using
the recurrence formula:

Fk+1 =
⊕
ε∈Zµ

TεFk, k ∈ N0, (7)

where ⊕ denotes the direct sum, e.g., if A and B are two subspaces of L2[0, 1]
with A ∩B = {0}, then:

A⊕B = {f + g : f ∈ A, g ∈ B}.
It is worth noting that the sequence of spaces {Fk|k ∈ N0} is nested, i.e. [14]

F0 ⊂ F1 ⊂ . . . ⊂ Fk ⊂ Fk+1 ⊂ . . . , (8)

and
dimFk = Mµk, k ∈ N0. (9)

Moreover, similar to Theorem 2.4 in [6], it can be proved that

∞⋃
k=0

Fk = L2[0, 1]. (10)

Next we construct an orthonormal basis for each of the spaces Fk. We first
notice that

G0 =
{√

2m+ 1Pm(2x− 1)|x ∈ [0, 1], m ∈ ZM

}
,
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where
C = [c1, c2, ..., cm̂] , Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)] , (16)

and
ci = cnm, ψi(x) = ψnm(x), i = (n− 1)M +m+ 1. (17)

2.3 Error analysis and convergence

In the next theorems the convergence properties and error bound for the ex-
tended Legendre wavelets series are investigated.

Theorem 2.3.1. Any function f(x) defined on [0, 1) with bounded first and
second derivatives |f ′(x)| � M1 and |f ′′(x)| � M2, can be expanded as an infi-
nite sum of the extended Legendre wavelets, and the series converges uniformly
to f(x), that is:

f(x) =
∞∑

n=1

∞∑
m=0

cnmψnm(x), (18)

Proof. Let f(x) be a function defined on [0, 1) with bounded first and second
derivatives M1 and M2, respectively, and:

cnm =
∫ 1

0

f(x)ψnm(x)dx =
∫ n

µk

n−1
µk

f(x)
√

2m+ 1µ
k
2 Pm(2µkx− 2n+ 1)dx. (19)

Let n̂ = 2n−1, then by the change of variable t = 2µkx− n̂, we have dx = dt
2µk ,

and so:

cnm =
(2m+ 1)

1
2

2µ
k
2

∫ 1

−1

f

(
n̂+ t

2µk

)
Pm(t)dt

=
1

2µ
k
2 (2m+ 1)

1
2

∫ 1

−1

f

(
n̂+ t

2µk

)
d (Pm+1(t) − Pm−1(t)) , (20)

where the following property of the Legendre polynomials is used:

(2m+ 1)Pm(t) = P ′
m+1(t) − P ′

m−1(t). (21)

Integrating by parts in (20) yields:

cnm =
1

2µ
k
2 (2m+ 1)

1
2

{
1

2µk
f ′

(
n̂+ t

2µk

)
(Pm+1(t) − Pm−1(t)) |1−1

− 1
2µk

∫ 1

−1

f ′
(
n̂+ t

2µk

)
(Pm+1(t) − Pm−1(t)) dt

}
. (22)
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then equation (35) holds and this leads to desired result. �
The following property of the product of two Legendre wavelets vector functions
Ψ(t) will be used,

ETψψT = ψT Ẽ, (44)

where E is a given vector and Ẽ is a µkM matrix which dependeds on vector
E, and is called the product operation matrix of Legendre wavelets vector
functions.

4. Description of the Proposed Method

In this section, the extended Legendre Galerkin method is applied for solving
boundary problem for ordinary differential equations with finite singular points
in the interval [0, 1]. For this purpose consider the boundary value problem

y′′(t) + f(t)y′(t) + g(t)y(t) = h(t), (45)

with the boundary conditions:

y(0) = A, y(1) = B, (46)

in which the solution function y(t) or some of the coefficient functions f(t), g(t)
and h(t) has finite singular point in the interval [0, 1] as

t1 =
k1

n1
, t2 =

k2

n2
, . . . , tm =

km

nm
, ki, ni ∈ N and (ki, ni) = 1. (47)

For solving the singular BVP (45) and deriving an spectral accuracy, first we
choose a suitable µ according to these singular points ti. For this purpose let
ni has the prime factorization

ni = p
αi2
2 . . . p

αir
r , pj � 2, αij

� 0. (48)

Now we choose a µ in the form

µ = pβ1
1 pβ2

2 . . . pβr
r , (49)

in which βj = max {αjr
| 1 � r � m}. By using the extended Legendre wavelet

basis for this µ, we can get an approximate solution for the BVP (45) with the
spectral accuracy. For this purpose, we approximate the functions f(t), g(t), h(t)
and y(t) in the form

y(t) = CT Ψ(t), f(t) = FT Ψ(t), g(t) = GT Ψ(t), h(t) = HT Ψ(t), (50)
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where Ψ(t) is the extended Legendre wavelets basis vector defined in (13) and
C, F , G and H are the cofficient vectors of the extended Legendre wavelet
basis for the functions y(t), f(t), g(t) and h(t) respectively. Moreover, by using
the operational matrix of derivatives for the extended Legendre wavelet Ψ(t),
we have:

y′(t) = CTDΨ(t), y′′(t) = CTD2Ψ(t). (51)

Employing Eqs. (50) and (51), the residual for Eq. (45) can be written as

R(t) = Ψ(t)T
(
DT

)2
C+FT Ψ(t)ΨT (t)DTC+GT Ψ(t)ΨT (t)C−Ψ(t)TH, (52)

By using the operational matrix of product defined in (44) we have

R(t) = Ψ(t)T
(
DT

)2
C + Ψ(t)T F̃DTC + Ψ(t)T G̃C − Ψ(t)TH, (53)

As in a typical Tau method [2], we generate m̂−2 linear equations by applying
∫ 1

0

Ψj(t)R(t)dt = 0, j = 1, ..., m̂− 2. (54)

Also, by substituting initial conditions in Eq. (46) we have

y(0) = CT Ψ(0) −A = 0,

y(1) = CT Ψ(1) −B = 0.
(55)

Eqs. (54) and (55) generate a set of m̂ linear equations. These linear equations
can be solved for unknown coefficients of the vector C. The solution function
y(t) can be approximate by substituting vector C in (50).

5. Numerical Examples

In this section, we demonstrate the efficiency of the proposed method with
some illustrative examples. For neither of these examples, spectral methods
by using Legendre polynomials and typical Legendre wavelet method do not
work well and can not give spectral accuracy [1, 4]. It will be shown that the
extended Legendre wavelet method is very efficient for solving these singular
problems and spectral accuracy will be obtained. The algorithms are performed
by Maple 13 with 30 digits precision.

Example 5.1. Consider the boundary value problem

⎧⎨
⎩

y′′ +
∣∣t− 1

3

∣∣ y′ +
∣∣t− 1

2

∣∣ y = h(x), t ∈ [0, 1] ,

y(0) =
(

1
3

)3
, y(1) =

(
2
3

)3
,

(56)
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for n = 1, 2, . . . , µk.
By expanding any square integrable function f(x) in terms of these basis func-
tions on [0, 1) we have:

f(x) =
∞∑

n=1

cn0ψn0(x), (61)

where

cn0 = µ
k
2

∫ n

µk

n−1
µk

f(x)dx. (62)

If the infinite series in (61) is truncated, then it can be written as:

fµk(x) �
µk∑

n=1

cn0ψn0(x). (63)

Theorem 6.1. Suppose fµk(x) be the truncated expansion of f(x) in the above
basis functions and eµk(x) = fµk(x)−f(x) be the corresponding error, then the
expansion will converge in the sense that eµk(x) approaches zero as µk tends
to infinity. Moreover the convergence order is one, that is:

‖eµk(x)‖ = O
(

1
µk

)
. (64)

Proof. By defining the error between f(x) and its expansion over any subin-
terval as:

en(x) = cn0ψn0(x) − f(x), x ∈
[
n− 1
µk

,
n

µk

)
, n = 1, 2, . . . , µk, (65)

we obtain

‖en(x)‖2 =
∫ n

µk

n−1
µk

en(x)2dx =
∫ n

µk

n−1
µk

(cn0ψn0(x) − f(x))2 dx

=
(
cn0µ

k
2 − f(ηn)

)2 1
µk
, ηn ∈

[
n− 1
µk

,
n

µk

)
, (66)

where we have used the weighted mean value theorem for integrals.
From (62) and the weighted mean value theorem, we also have:

cn0 = µ
k
2

∫ n

µk

n−1
µk

f(x)dx = µ
k
2

1
µk
f(ζn) =

1

µ
k
2
f(ζn), ζn ∈

[
n− 1
µk

,
n

µk

)
. (67)
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By substituting (67) into (66), we obtain:

‖en(x)‖2 = (f(ζn) − f(ηn))2
1
µk
. (68)

Now, since |f ′(x)| < M1, then f(x) satisfies a Lipschitz condition on each
subinterval, i.e.:

|f(ζn) − f(ηn)| � M1|ζn − ηn|, ∀ζn, ηn ∈
[
n− 1
µk

,
n

µk

)
(69)

Then, from (68) and (69), we have:

‖en(x)‖2 � M2
1

µ3k
, (70)

which leads to:

‖eµk(x)‖2 =
∫ 1

0

eµk(x)2dx =
∫ 1

0

⎛
⎝ µk∑

n=1

en(x)

⎞
⎠

2

dx

=
∫ 1

0

⎛
⎝ µk∑

n=1

en(x)2

⎞
⎠ dx+ 2

∑
n�n′

∫ 1

0

en(x)en′(x)dx. (71)

Now, due to disjointness of the supports of these basis functions we have:

‖eµk(x)‖2 =
∫ 1

0

⎛
⎝ µk∑

n=1

en(x)2

⎞
⎠ dx =

µk∑
n=1

‖en(x)‖2. (72)

Substituting (70) into (72), we obtain:

‖eµk(x)‖2 � M2
1

µ2k
, (73)

or, in other words, ‖eµk(x)‖ = O
(

1
µk

)
.

This completes the proof. �

Corollary 6.2. Let fµk(x) be the expansion of f(x) by the above basis functions
and eµk(x) be the corresponding error, then we have:

‖eµk(x)‖ � M1

µk
. (74)
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Proof. This is an immediate consequence of the Theorem 6.1. �

Remark 6.3. We notice that according to the above information we have:

∞∑
n=µk+1

c2n0 = ‖fµk(x) −
∞∑

n=1

cn0ψn0(x)‖2 = ‖eµk(x)‖2 � M2
1

µ2k
. (75)
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