Linear Preserves of Logarithm Majorization

A. Mohammadhasani*
Sirjan University of Technology
M. Dehghanian
Sirjan University of Technology
Y. Sayyari
Sirjan University of Technology

Abstract

Let $X, Y \in \mathbb{R}^{n}, X, Y>0$, we say X logarithm majorized by Y, written $X \prec_{l o g} Y$ if $\log X \prec \log Y$. Let $M_{n m}^{+}$be the collection of matrices with positive entries. For $X, Y \in M_{n m}^{+}$, it is said that X is logarithm column (row) majorized by Y, and is denoted as $X \prec_{\text {log }}^{\text {column }}$ $Y\left(X \prec_{\text {log }}^{\text {row }} Y\right)$, if $X_{j} \prec_{\text {log }} Y_{j}\left(X_{i} \prec_{\text {log }} Y_{i}\right)$ for all $j=1,2, \cdots m(i=$ $1,2, \cdots n)$, where X_{j} and $Y_{j}\left(X_{i}\right.$ and $\left.Y_{i}\right)$ are the ith column (row) of X and Y respectively. In the present paper, the relations column (row) logarithm majorization on $M_{n m}^{+}$are studied and also all linear operators $T: M_{n m}^{+} \longrightarrow M_{n m}^{+}$preserving column (row) logarithm majorization will be characterized.

AMS Subject Classification: 15A04; 15A21; 15A51
Keywords and Phrases: Doubly Stochastic, Linear Preserver, Logarithm Majorization.

[^0]
2 A. MOHAMMADHASANI, M. DEHGHANIAN AND Y. SAYYARI

1 Introduction and Preliminaries

A square matrix D is said to be doubly stochastic matrix if its entries are all nonnegative and all column sums and row sums are one.

Throughout the paper, $M_{n m}$ is the set of all $n \times m$ real matrices, M_{n} is the set of all $n \times n$ real matrices, $M_{n m}^{+}$is the collection of matrices with positive entries, $\mathcal{D S}(n)$ is the set of all $n \times n$ doubly stochastic matrices, $\mathcal{P}(n)$ is the set of all $n \times n$ permutation matrices, $\mathbb{R}^{n}=M_{n 1}$ is the set of all $n \times 1$ (column) vectors, and \mathbb{R}_{n} is the set of all $1 \times n$ (row) vectors. The canonical basis of \mathbb{R}^{n} will be denoted by $\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$, $e=\sum_{j=1}^{n} e_{j}, J=e e^{t}$, and $\operatorname{tr}(X)=e^{t} X$ for any $X \in \mathbb{R}^{n}$. The set $\{1,2, \cdots, k\}$ denoted by \mathbb{N}_{k}.

The symbol $X=\left[X_{1}\left|X_{2}\right| \cdots \mid X_{m}\right]\left(X=\left[X_{1} / X_{2} / \cdots / X_{n}\right]\right)$ is used for the $n \times m$ matrix whose columns (rows) are $X_{1}, X_{2}, \cdots X_{m} \in \mathbb{R}^{n}$ $\left(X_{1}, X_{2}, \cdots X_{n} \in \mathbb{R}^{m}\right)$.

For $X, Y \in \mathbb{R}^{n}, X, Y>0$, it is said that X logarithm majorized by Y, written $X \prec_{\log } Y$ if $\log X \prec \log Y$. This definition $X \prec_{\log } Y$ is equivalent to

$$
\left\{\begin{array}{l}
\prod_{i=1}^{k} x_{[i]} \leq \prod_{i=1}^{k} y_{[i]}, \quad k=1,2, \cdots, n-1 \\
\prod_{i=1}^{n} x_{[i]}=\prod_{i=1}^{n} y_{[i]}
\end{array}\right.
$$

where $x_{[i]}$ denotes the ith component of the vector X^{\downarrow} whose components are a decreasing rearrangement of the components of X.

Let \mathcal{R} be a relation on \mathbb{R}^{n}. A linear operator $T: M_{n m} \longrightarrow M_{n m}$ is said to be a linear preserver of \mathcal{R} if $X \mathcal{R} Y$ implies $T(X) \mathcal{R} T(Y)$ for all $X, Y \in M_{n m}$.

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear operator. We say T is a preserver of $\prec_{\log }$ if $T(X)>0$ whenever $X>0$ and $T(X) \prec_{\log } T(Y)$ whenever $X \prec_{\text {log }} Y$.

Theorem 1.1. ([1]) Suppose that $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a linear operator. Then T preserves \prec if and only if T satisfies one of the following conditions (i) or (ii).
(i) $T(X)=\operatorname{tr}(X)$ a for some $a \in \mathbb{R}^{n}$.
(ii) $T(X)=r P X+\operatorname{str}(X) e=r P x+s J X$ for some $r, s \in \mathbb{R}$ and $P \in \mathcal{P}(n)$.

Theorem 1.2. ([3]) Suppose that $T: M_{n m} \longrightarrow M_{n m}$ is a linear operator. Then T preserves $\prec^{\text {column }}$ if and only if there exist $A_{1}, A_{2}, \cdots A_{m} \in$ $M_{n m}, b_{1}, b_{2}, \cdots b_{m} \in \cup_{i=1}^{m} \operatorname{span}\left\{e_{i}\right\}, P_{1}, P_{2}, \cdots, P_{m} \in \mathcal{P}(n)$ and $S \in M_{m}$ such that for every $i \in \mathbb{N}_{m}, b_{i}=0$ or $A_{1} e_{i}=A_{2} e_{i}=\cdots=A_{m} e_{i}=0$ and for all $X=\left[X_{1}\left|X_{2}\right| \cdots \mid X_{m}\right] \in M_{n m}$,

$$
\begin{equation*}
T(X)=\sum_{j=1}^{m}\left(\operatorname{tr} X_{j}\right) A_{j}+\left[P_{1} X b_{1}\left|P_{2} X b_{2}\right| \cdots \mid P_{m} X b_{m}\right]+J X S . \tag{1}
\end{equation*}
$$

In section 2, we show that every linear mapping which preserves logarithm majorization on \mathbb{R}^{n} has the form $X \longmapsto r P X$, for all $X \in \mathbb{R}^{n}$, where $P \in \mathcal{P}(n)$ and some positive number r.

In section 3 , we characterize linear operators $T: M_{n m}^{+} \rightarrow M_{n m}^{+}$which preserve logarithm column (row) majorization.

For more details on multivariate majorization, we suggest the reader to [2], [4], [7], [10]. Some types of majorization such as multivariate or matrix majorization were motivated by the senses of vector majorization and were (see [8], [13]).

The study of doubly stochastic matrices in relationship to majorization, see [1], [5], [6], [9], [14], [15].

In recent years, characterize the structure of majorization preserving linear operators on certain spaces of matrices has been intensively studied (see [11], [12], [16], [17]).

2 Linear Preservers of Logarithm Majorization on \mathbb{R}^{n}

In this section we characterize linear operators $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which preserve $\prec_{l o g}$.

Lemma 2.1. Let $X, Y \in \mathbb{R}^{n}$ and $X, Y>0$. Then $X \prec_{\log } Y \prec_{\log } X$ if and only if $X=P Y$ for some $P \in \mathcal{P}(n)$.

Proof. Let $X, Y \in \mathbb{R}^{n}, X, Y>0$. Thus $X \prec_{\log } Y \prec_{l o g} X$ if and only if

$$
\left\{\begin{array}{l}
0<\prod_{i=1}^{k} x_{[i]} \leq \prod_{i=1}^{k} y_{[i]} \leq \prod_{i=1}^{k} x_{[i]}, \quad k=1,2, \cdots, n-1 \\
0<\prod_{i=1}^{n} x_{[i]}=\prod_{i=1}^{n} y_{[i]} .
\end{array}\right.
$$

The above condition holds, if and only if $x_{[i]}=y_{[i]}$ for every $i=$ $1,2, \cdots, n$, i.e. if and only if $X=P Y$ for some $P \in \mathcal{P}(n)$.

Lemma 2.2. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear preserves $\prec_{\text {log }}$. Then T preserves \prec.

Proof. Suppose that T is a linear preserver of $\prec_{\text {log }}$ on \mathbb{R}^{n}. We show that

$$
X \prec Y \prec X \Longrightarrow T(X) \prec T(Y) \prec T(X)
$$

for all $X, Y \in \mathbb{R}^{n}$. First, assume that $X, Y>0$ and $X \prec Y \prec X$. It follows that $X=P Y$ for some $P \in \mathcal{P}(n)$ and hence $X \prec_{\text {log }} Y \prec_{\text {log }} X$ by Lemma 2.1. Thus by hypothesis $T(X) \prec_{\log } T(Y) \prec_{\log } T(X)$ and hence there exist $P^{\prime} \in \mathcal{P}(n)$ such that $T(X)=P^{\prime} T(Y)$. It follows that $T(X) \prec T(Y) \prec T(X)$.

Next, assume $X=D Y$ for some $D \in \mathcal{D S}(n)$. Then $X=\sum_{i=1}^{k} \lambda_{i} P_{i} Y$ where $\sum_{i=1}^{k} \lambda_{i}=1, \lambda_{i} \geq 0$ and $P_{i} \in \mathcal{P}(n)$. Therfore, for every i $(1 \leq i \leq k)$ there exist $Q_{i} \in \mathcal{P}(n)$ such that $T(X)=\sum_{i=1}^{k} \lambda_{i} T\left(P_{i} Y\right)=$ $\sum_{i=1}^{k} \lambda_{i} Q_{i} T(Y)=D^{\prime} T(Y)$ where $D^{\prime}=\sum_{i=1}^{k} \lambda_{i} Q_{i}$. It follows that $T(X) \prec T(Y)$.

Theorem 2.3. A linear operator $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear preserves $\prec_{\text {log }}$ if and only if it has the form

$$
X \longmapsto r P X, \quad X \in \mathbb{R}^{n}
$$

for some permutation matrix P and some positive number r.
Proof. We first prove the necessity of the condition. Let T be a linear preserves $\prec_{l o g}$. If $n=1$, the result is trivial. So we may suppose that $n>1$. By Lemma 2.2, T preserves \prec. Hence, by Theorem 1.1, T is of the form (i) or (ii).

We show that T not is of the form (i). Put

$$
X=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{c}
n \\
1 \\
\vdots \\
1 \\
\frac{1}{n}
\end{array}\right)
$$

Then $X \prec_{l o g} Y$, and hence $T(X) \prec_{\log } T(Y)$. Thus $n a \prec_{\log }\left(2 n+\frac{1}{n}-2\right) a$, for some $a \in \mathbb{R}^{n}$, it follows that $n=\left(2 n+\frac{1}{n}-2\right)$ or $n=2-\frac{1}{n}$; a contradiction.

Now, suppose that T is of the form (ii). So,

$$
\begin{aligned}
T(X)=r P X+\operatorname{str}(X) e & =P\left(\begin{array}{ccccc}
r+s & s & s & \cdots & s \\
s & r+s & s & \cdots & s \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
s & s & s & \cdots & r+s
\end{array}\right) \\
& =P\left(\begin{array}{c}
r x_{1}+\operatorname{str}(X) \\
r x_{2}+\operatorname{str}(X) \\
\vdots \\
r x_{n}+s t r(X)
\end{array}\right)
\end{aligned}
$$

If $s<0$, choose a positive number m such that $\left|\frac{r+s}{m}\right|<|s|$. Since

$$
\begin{gathered}
\left(\begin{array}{c}
\frac{1}{m} \\
1 \\
\vdots \\
1
\end{array}\right)>0, \text { we get } T\left(\begin{array}{c}
\frac{1}{m} \\
1 \\
\vdots \\
1
\end{array}\right)>0 \text { and also } \\
T\left(\begin{array}{c}
\frac{1}{m} \\
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
\frac{r+s}{m}+(n-1) s \\
r+n s \\
\vdots \\
r+n s
\end{array}\right)<0
\end{gathered}
$$

which is a contradiction. Therfore s can not negative.

If $s>0$, put

$$
X:=e=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \quad \text { and } \quad Y:=\left(\begin{array}{c}
n \\
1 \\
\vdots \\
\frac{1}{n}
\end{array}\right)
$$

Then $X \prec_{\text {log }} Y$, and hence, $T(X) \prec_{l o g} T(Y)$. Since
$T(X)=P\left(\begin{array}{c}r+n s \\ \vdots \\ r+n s\end{array}\right) \quad$ and $\quad T(Y)=P\left(\begin{array}{c}r n+s\left(2 n-2+\frac{1}{n}\right) \\ r+s\left(2 n-2+\frac{1}{n}\right) \\ \vdots \\ \frac{r}{n}+s\left(2 n-2+\frac{1}{n}\right)\end{array}\right)$,
thus

$$
\begin{aligned}
(r+n s)^{n}= & {\left[r n+s\left(2 n-2+\frac{1}{n}\right)\right]\left[r+s\left(2 n-2+\frac{1}{n}\right)\right] } \\
& \cdots\left[r+s\left(2 n-2+\frac{1}{n}\right)\right]\left[\frac{r}{n}+s\left(2 n-2+\frac{1}{n}\right)\right] \\
> & (r n+n s)(r+n s)^{n-2}\left(\frac{r}{n}+n s\right) \\
= & {\left[r^{2}+n^{2} r s+n^{2} s^{2}+r s\right](r+n s)^{n-2} } \\
> & {\left[r^{2}+2 n r s+n^{2} s^{2}\right](r+n s)^{n-2} } \\
= & (r+n s)^{n},
\end{aligned}
$$

which is a contradiction. Therefore $s=0$, and the form of T is

$$
X \longmapsto r P X
$$

where $P \in \mathcal{P}(n)$ and $r>0$, since $T>0$.
Clearly, the linear operator $X \longrightarrow r P X$, for $r>0$ and $P \in \mathcal{P}(n)$, preserves logarithm majorization $\prec_{\text {log }}$.

3 Linear Preservers of Logarithm Column (Row) Majorization on $M_{n m}$

In this section, we characterize linear operators $T: M_{n m}^{+} \rightarrow M_{n m}^{+}$which preserve logarithm column (row) majorization. First we need some
known facts and lemmas.
Definition 3.1. Let $X=\left[X_{1}\left|X_{2}\right| \cdots \mid X_{m}\right], Y=\left[Y_{1}\left|Y_{2}\right| \cdots \mid Y_{m}\right] \in M_{n m}^{+}$. The matrix X is said to be logarithm column(row) majorized by Y, and is denoted as $X \prec_{\text {log }}^{\text {column }} Y\left(X \prec_{\text {log }}^{\text {row }} Y\right)$, if $X_{j} \prec_{\text {log }} Y_{j}\left(X_{i} \prec_{\text {log }} Y_{i}\right)$ for all $j=1,2, \cdots m(i=1,2, \cdots n)$.
Lemma 3.2. Let $T: M_{n m}^{+} \longrightarrow M_{n m}^{+}$be a linear operator that preserve logarithm column majorization $\prec_{\text {log }}^{\text {column }}$. Then T preserves $\prec^{\text {column }}$.
Proof. Let $X, Y \in M_{n m}^{+}$and $X \prec \prec^{\text {column }} Y \prec$ column X. Then $X_{i} \prec Y_{i} \prec$ X_{i} for all $i=1,2, \cdots, m$, and hence $X_{i} \prec_{l o g} Y_{i} \prec_{\log } X_{i}$. Thus $X \prec_{\text {log }}^{\text {column }}$ $Y \prec_{\text {log }}^{\text {column }} X$, and hence by hypothesis $T(X) \prec_{\text {log }}^{\text {column }} T(Y) \prec_{\text {log }}^{\text {column }}$ $T(X)$. Therfore $(T X)_{i} \prec_{\log }(T Y)_{i} \prec_{\log }(T X)_{i}$, and hence $(T X)_{i} \prec$ $(T Y)_{i} \prec(T X)_{i}$ for every $i=1,2, \cdots, m$. It follows that $T(X) \prec$ column $T(Y) \prec \prec^{\text {column }} T(X)$.

Now, suppose that $X \prec^{\text {column }} Y$. Then there exist $D_{1}, D_{2}, \cdots, D_{m} \in$ $\mathcal{D S}(n)$ such that $Y_{i}=D_{i} X_{i}$ for every $i=1,2, \cdots, m$. This implies that

$$
\begin{aligned}
Y & =\left[D_{1} X_{1}\left|D_{2} X_{2}\right| \cdots \mid D_{m} X_{m}\right] \\
& =\left[\sum_{j=1}^{k} \lambda_{1 j} P_{j} X_{1}\left|\sum_{j=1}^{k} \lambda_{2 j} P_{j} X_{2}\right| \cdots \mid \sum_{j=1}^{k} \lambda_{m j} P_{j} X_{m}\right] \\
& =\sum_{i_{1}, i_{2}, \cdots, i_{m}=1}^{k}\left(\lambda_{1 i_{1}} \lambda_{2 i_{2}} \cdots \lambda_{m i_{m}}\right)\left[P_{i_{1}} X_{1}\left|P_{i_{2}} X_{2}\right| \cdots \mid P_{i_{m}} X_{m}\right],
\end{aligned}
$$

since $\sum_{j=1}^{k} \lambda_{i j}=1$ for $i=1, \ldots, m$ and $P_{j} \in \mathcal{P}(n)$ for all $j=1, \ldots, k$. Hence,

$$
\begin{aligned}
T(Y) & =\sum_{i_{1}, i_{2}, \cdots, i_{m}=1}^{k}\left(\lambda_{1 i_{1}} \lambda_{2 i_{2}} \cdots \lambda_{m i_{m}}\right) T\left(\left[P_{i_{1}} X_{1}\left|P_{i_{2}} X_{2}\right| \cdots \mid P_{i_{m}} X_{m}\right]\right) \\
& =\sum_{i_{1}, i_{2}, \cdots, i_{m}=1}^{k}\left(\lambda_{1 i_{1}} \lambda_{2 i_{2}} \cdots \lambda_{m i_{m}}\right)\left[Q_{i_{1}} X_{1}^{\prime}\left|Q_{i_{2}} X_{2}^{\prime}\right| \cdots \mid Q_{i_{m}} X_{m}^{\prime}\right] \\
& =\left[D_{1}^{\prime} X_{1}^{\prime}\left|D_{2}^{\prime} X_{2}^{\prime}\right| \cdots \mid D_{m}^{\prime} X_{m}^{\prime}\right] .
\end{aligned}
$$

Therefore $T(X) \nprec^{\text {column }} T(Y)$.

8 A. MOHAMMADHASANI, M. DEHGHANIAN AND Y. SAYYARI

Theorem 3.3. Let $T: M_{n m}^{+} \longrightarrow M_{n m}^{+}$be a linear operator. Then T preserves $\prec_{\text {log }}^{\text {column }}$ if and only if there exist positive real numbers $r_{1}, r_{2}, \cdots, r_{m}$, and $P_{1}, P_{2}, \cdots, P_{m} \in \mathcal{P}(n)$ such that

$$
T(X)=\left[r_{1} P_{1} X e_{i_{1}}\left|r_{2} P_{2} X e_{i_{2}}\right| \cdots \mid r_{m} P_{m} X e_{i_{m}}\right]
$$

where $i_{1}, i_{2}, \cdots, i_{m} \in \mathbb{N}_{m}$.
Proof. The case $n=1$ being clear, we let $n \geq 2$. Assume the linear operator $T: M_{n m}^{+} \longrightarrow M_{n m}^{+}$preserves $\prec_{l o g}^{\text {column }}$. Then, by Lemma 3.2, T preserves $\prec^{\text {column }}$. Thus, by Theorem $1.2, T$ is of the form (1). So it is enough to show that $A_{1}=A_{2}=\cdots=A_{m}=0$, and $S=0$.
First, we prove that $A_{j}=0$ for every $j \in \mathbb{N}_{m}$. Assume that $A_{j} \neq 0$ for some $j \in \mathbb{N}_{m}$. Without loss of generality suppose that $A_{j} e_{1} \neq 0$, then $b_{1}=0$. Put

$$
X:=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)_{n \times m} \quad, \quad Y:=\left(\begin{array}{cccc}
n & n & \cdots & n \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 \\
\frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)_{n \times m} .
$$

It is clear that $X \prec_{\text {log }}^{\text {column }} Y$, so $T(X) \prec_{\text {log }}^{\text {column }} T(Y)$. It easy to see that

$$
(T X)_{1}=\sum_{j=1}^{m}\left(\operatorname{tr} X_{j}\right) A_{j} e_{1}+J X S e_{1}=n\left(\sum_{j=1}^{m} A_{j} e_{1}+J S e_{1}\right)
$$

and,

$$
(T Y)_{1}=\sum_{j=1}^{m}\left(\operatorname{tr} Y_{j}\right) A_{j} e_{1}+J Y S e_{1}=\left(2 n+\frac{1}{n}-2\right)\left(\sum_{j=1}^{m} A_{j} e_{1}+J S e_{1}\right)
$$

where $(T X)_{1}$ is the first column of $T(X)$ and $(T Y)_{1}$ is the first column of $T(Y)$. Since $(T X)_{1} \prec_{l o g}(T Y)_{1}$, it follows that $n=2 n+\frac{1}{n}-2$, which is a contradiction. Therefore $A_{j}=0$, for every $j \in \mathbb{N}_{m}$.

Now, we show that $S=0$. By Theorem 1.2, for every $i, j \in \mathbb{N}_{m}$, there exist $r_{j} \in \mathbb{R}$ such that $b_{j}=r_{j} e_{i_{j}}$.

For every $i, j \in \mathbb{N}_{m}$, consider the embedding $\psi, \psi_{j}: \mathbb{R}^{n} \longrightarrow M_{n m}$ by $\psi(X):=[X|X| \cdots \mid X]=\sum_{i=1}^{m} X e_{i}^{t}, \psi_{j}(X):=[X|\cdots| X|2 X| X|\cdots| X]=$ $\psi(X)+X e_{j}^{t}$ and projection $E_{i}: M_{n m} \longrightarrow \mathbb{R}^{n}$ by $E_{i}(X):=X e_{i}$. Put $S=\left[S_{1}\left|S_{2}\right| \cdots \mid S_{m}\right]$. It is easy to show that for every $j \in \mathbb{N}_{m}$, $E_{j} T \psi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ by $E_{j} T \psi(X)=r_{j} P_{j} X+\operatorname{tr}\left(S_{j}\right) \operatorname{tr}(X) e$ preserves $\prec_{l o g}$. Then by Theorem 2.3, the form of $E_{j} T \psi$ is $X \longmapsto r P X$, where $r>0$. Therefore

$$
T(X)=\left[r_{1} P_{1} X e_{i_{1}}\left|r_{2} P_{2} X e_{i_{2}}\right| \cdots \mid r_{m} P_{m} X e_{i_{m}}\right]+J X S,
$$

where r_{j} is positive real number, for every $j \in \mathbb{N}_{m}$.
Fix $j \in \mathbb{N}_{m}$. For every $i \in \mathbb{N}_{m}, E_{j} T \psi_{i}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ by $E_{j} T \psi_{i}(X)=$ $t_{i} P_{i} X+\sum_{k=1}^{m} S_{k j} \operatorname{tr}(X) e+S_{i j} \operatorname{tr}(X) e$ preserves $\prec_{l o g}$. So, the form of $E_{j} T \psi_{i}$ is $X \longmapsto r P X$, where $r>0$. It follows that for every $i \in \mathbb{N}_{m}$, we obtain

$$
\begin{equation*}
\sum_{k=1}^{m} S_{k j}+S_{i j}=0 \tag{2}
\end{equation*}
$$

and $t_{i}=r_{i}$ or $t_{i}=2 r_{i}$. So, $S_{1 j}=S_{2 j}=\cdots=S_{m j}=0$ is a solution of the system of m linear equations in m variables (2). Since $j \in \mathbb{N}_{m}$ is arbitrary, therefore $S=0$

Theorem 3.4. Let $T: M_{n m}^{+} \longrightarrow M_{n m}^{+}$be a linear operator. Then T preserves $\prec_{\text {rog }}^{\text {row }}$ if and only if there exist positive real numbers $r_{1}, r_{2}, \cdots, r_{n}$, and $P_{1}, P_{2}, \cdots, P_{n} \in \mathcal{P}(m)$ such that

$$
T(X)=\left[r_{1} e_{i_{1}} X P_{1} / r_{2} e_{i_{2}} X P_{2} / \cdots / r_{m} e_{i_{m}} X P_{n}\right]
$$

where $i_{1}, i_{2}, \cdots, i_{n} \in \mathbb{N}_{n}$.
Proof. Define $T^{\prime}: M_{n m}^{+} \longrightarrow M_{n m}^{+}$by $T^{\prime}(X)=\left[T\left(X^{t}\right)\right]^{t}$ for all $X \in$ $M_{n m}^{+}$. It is easy to see that T is a linear preserve of $\prec_{\text {log }}^{\text {row }}$ if and only if T^{\prime} is a linear preserver of $\prec_{\text {log }}^{\text {column }}$. By Theorem 3.3, the desired conclusion is obtained.

References

[1] T. Ando, Majorization, Doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl., 118 (1989), 163-248.
[2] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl., 199 (1994), 17-67.
[3] A. Armandnejad, F. Akbarzadeh, and Z. Mohammadi. Row and column-majorization on $M_{n, m}$ Linear Algebra Appl., 437 (2012), 1025-1032.
[4] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[5] R.A Brualdi, The doubly stochastic matrices of a vector majorization, Linear Algebra Appl., 61 (1984), 141-154.
[6] R. A Brualdi and G. Dahl, majorization-constrained doubly stochastic matrices, Linear Algebra Appl., 361 (2003), 75-97.
[7] G.-S. Cheon and Y.-H. Lee, The doubly stochastic matrices of a multivariate majorization. J. Korean Math. Soc., 32 (1995), 857867.
[8] G. Dahl, Matrix majorization, Linear Algebra Appl., 288 (1999), 53-73.
[9] G. Dahl, majorization polytopes, Linear Algebra Appl., 297 (1999), 157-175.
[10] M. Dehghanian and A. Mohammadhasani, A note on multivariate majorization, J. Mahani Math. Res. Cent., 11(2) (2022), 119-126.
[11] A.M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl., 423 (2007), 255-261.
[12] A.M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra, 15 (2006), 260-268.
[13] A. M. Hasani, Y. Sayyari and M. Sabzvari, G-tridiagonal majorization on $M_{n, m}$, Communications in Mathematics, 29 (3) (2021), 395 -405.
[14] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[15] A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorizations and its Applications, second ed., Springer, New York, 2001.
[16] Y. Sayyari, A. Mohammadhasani and M. Dehghanian, Linear maps preserving signed permutation and substochastic matrices, Indian J. Pure Appl. Math., 54 (2023), 219-223.
[17] P. Torabian, Linear Preservers of Chain Majorization, J. Math. Ext., 3 (1) (2008), 1-11.

Ahmad Mohammadhasani

Assistant Professor of Mathematics
Department of Mathematics
Sirjan University of Technology
Sirjan, Iran
E-mail: a.mohammadhasani53@gmail.com
Mehdi Dehghanian
Assistant Professor of Mathematics
Department of Mathematics
Sirjan University of Technology
Sirjan, Iran
E-mail: mdehghanian@sirjantech.ac.ir

Yamin Sayyari

Assistant Professor of Mathematics
Department of Mathematics
Sirjan University of Technology
Sirjan, Iran
E-mail: y.sayyari@sirjantech.ac.ir

[^0]: Received: April 2022; Accepted: September 2023

 * Corresponding Author

