Journal of Mathematical Extension Vol. 17, No. 7, (2023) (6)1-11 URL: https://doi.org/10.30495/JME.2023.2348 ISSN: 1735-8299 Original Research Paper

Linear Preserves of Logarithm Majorization

A. Mohammadhasani*

Sirjan University of Technology

M. Dehghanian

Sirjan University of Technology

Y. Sayyari Sirjan University of Technology

Abstract. Let $X, Y \in \mathbb{R}^n, X, Y > 0$, we say X logarithm majorized by Y, written $X \prec_{log} Y$ if $\log X \prec \log Y$. Let M_{nm}^+ be the collection of matrices with positive entries. For $X, Y \in M_{nm}^+$, it is said that X is *logarithm column (row) majorized* by Y, and is denoted as $X \prec_{log}^{column}$ $Y(X \prec_{log}^{row} Y)$, if $X_j \prec_{log} Y_j(X_i \prec_{log} Y_i)$ for all $j = 1, 2, \cdots m (i =$ $1, 2, \cdots n)$, where X_j and Y_j (X_i and Y_i) are the ith column (row) of X and Y respectively. In the present paper, the relations column (row) logarithm majorization on M_{nm}^+ are studied and also all linear operators $T: M_{nm}^+ \longrightarrow M_{nm}^+$ preserving column (row) logarithm majorization will be characterized.

AMS Subject Classification: 15A04; 15A21; 15A51 **Keywords and Phrases:** Doubly Stochastic, Linear Preserver, Logarithm Majorization.

Received: April 2022; Accepted: September 2023 *Corresponding Author

1 Introduction and Preliminaries

A square matrix D is said to be doubly stochastic matrix if its entries are all nonnegative and all column sums and row sums are one.

Throughout the paper, M_{nm} is the set of all $n \times m$ real matrices, M_n is the set of all $n \times n$ real matrices, M_{nm}^+ is the collection of matrices with positive entries, $\mathcal{DS}(n)$ is the set of all $n \times n$ doubly stochastic matrices, $\mathcal{P}(n)$ is the set of all $n \times n$ permutation matrices, $\mathbb{R}^n = M_{n1}$ is the set of all $n \times 1$ (column) vectors, and \mathbb{R}_n is the set of all $1 \times n$ (row) vectors. The canonical basis of \mathbb{R}^n will be denoted by $\{e_1, e_2, \dots e_n\}$, $e = \sum_{j=1}^n e_j, \ J = ee^t$, and $tr(X) = e^t X$ for any $X \in \mathbb{R}^n$. The set $\{1, 2, \dots, k\}$ denoted by \mathbb{N}_k .

The symbol $X = [X_1|X_2|\cdots|X_m]$ $(X = [X_1/X_2/\cdots/X_n])$ is used for the $n \times m$ matrix whose columns (rows) are $X_1, X_2, \cdots X_m \in \mathbb{R}^n$ $(X_1, X_2, \cdots, X_n \in \mathbb{R}^m)$.

For $X, Y \in \mathbb{R}^n, X, Y > 0$, it is said that X logarithm majorized by Y, written $X \prec_{log} Y$ if $\log X \prec \log Y$. This definition $X \prec_{log} Y$ is equivalent to

$$\begin{cases} \prod_{i=1}^{k} x_{[i]} \leq \prod_{i=1}^{k} y_{[i]}, & k = 1, 2, \cdots, n-1 \\ \prod_{i=1}^{n} x_{[i]} = \prod_{i=1}^{n} y_{[i]} \end{cases}$$

where $x_{[i]}$ denotes the ith component of the vector X^{\downarrow} whose components are a decreasing rearrangement of the components of X.

Let \mathcal{R} be a relation on \mathbb{R}^n . A linear operator $T: M_{nm} \longrightarrow M_{nm}$ is said to be a linear preserver of \mathcal{R} if $X\mathcal{R}Y$ implies $T(X)\mathcal{R}T(Y)$ for all $X, Y \in M_{nm}$.

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear operator. We say T is a preserver of \prec_{log} if T(X) > 0 whenever X > 0 and $T(X) \prec_{log} T(Y)$ whenever $X \prec_{log} Y$.

Theorem 1.1. ([1]) Suppose that $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a linear operator. Then T preserves \prec if and only if T satisfies one of the following conditions (i) or (ii).

(i) T(X) = tr(X)a for some $a \in \mathbb{R}^n$.

(ii) T(X) = rPX + str(X)e = rPx + sJX for some $r, s \in \mathbb{R}$ and $P \in \mathcal{P}(n)$.

Theorem 1.2. ([3]) Suppose that $T: M_{nm} \longrightarrow M_{nm}$ is a linear operator. Then T preserves \prec^{column} if and only if there exist $A_1, A_2, \dots A_m \in M_{nm}, b_1, b_2, \dots b_m \in \bigcup_{i=1}^m span\{e_i\}, P_1, P_2, \dots, P_m \in \mathcal{P}(n)$ and $S \in M_m$ such that for every $i \in \mathbb{N}_m, b_i = 0$ or $A_1e_i = A_2e_i = \dots = A_me_i = 0$ and for all $X = [X_1|X_2| \cdots |X_m] \in M_{nm}$,

$$T(X) = \sum_{j=1}^{m} (trX_j)A_j + [P_1Xb_1|P_2Xb_2|\cdots|P_mXb_m] + JXS.$$
(1)

In section 2, we show that every linear mapping which preserves logarithm majorization on \mathbb{R}^n has the form $X \mapsto rPX$, for all $X \in \mathbb{R}^n$, where $P \in \mathcal{P}(n)$ and some positive number r.

In section 3, we characterize linear operators $T: M_{nm}^+ \to M_{nm}^+$ which preserve logarithm column (row) majorization.

For more details on multivariate majorization, we suggest the reader to [2], [4], [7], [10]. Some types of majorization such as multivariate or matrix majorization were motivated by the senses of vector majorization and were (see [8], [13]).

The study of doubly stochastic matrices in relationship to majorization, see [1], [5], [6], [9], [14], [15].

In recent years, characterize the structure of majorization preserving linear operators on certain spaces of matrices has been intensively studied (see [11], [12], [16], [17]).

2 Linear Preservers of Logarithm Majorization on \mathbb{R}^n

In this section we characterize linear operators $T : \mathbb{R}^n \to \mathbb{R}^n$ which preserve \prec_{log} .

Lemma 2.1. Let $X, Y \in \mathbb{R}^n$ and X, Y > 0. Then $X \prec_{log} Y \prec_{log} X$ if and only if X = PY for some $P \in \mathcal{P}(n)$.

Proof. Let $X, Y \in \mathbb{R}^n, X, Y > 0$. Thus $X \prec_{log} Y \prec_{log} X$ if and only if

$$\begin{cases} 0 < \prod_{i=1}^{k} x_{[i]} \le \prod_{i=1}^{k} y_{[i]} \le \prod_{i=1}^{k} x_{[i]}, & k = 1, 2, \cdots, n-1 \\ 0 < \prod_{i=1}^{n} x_{[i]} = \prod_{i=1}^{n} y_{[i]}. \end{cases}$$

The above condition holds, if and only if $x_{[i]} = y_{[i]}$ for every $i = 1, 2, \dots, n$, i.e. if and only if X = PY for some $P \in \mathcal{P}(n)$. \Box

Lemma 2.2. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear preserves \prec_{log} . Then T preserves \prec .

Proof. Suppose that T is a linear preserver of \prec_{log} on \mathbb{R}^n . We show that

$$X \prec Y \prec X \Longrightarrow T(X) \prec T(Y) \prec T(X)$$

for all $X, Y \in \mathbb{R}^n$. First, assume that X, Y > 0 and $X \prec Y \prec X$. It follows that X = PY for some $P \in \mathcal{P}(n)$ and hence $X \prec_{log} Y \prec_{log} X$ by Lemma 2.1. Thus by hypothesis $T(X) \prec_{log} T(Y) \prec_{log} T(X)$ and hence there exist $P' \in \mathcal{P}(n)$ such that T(X) = P'T(Y). It follows that $T(X) \prec T(Y) \prec T(X)$.

Next, assume X = DY for some $D \in \mathcal{DS}(n)$. Then $X = \sum_{i=1}^{k} \lambda_i P_i Y$ where $\sum_{i=1}^{k} \lambda_i = 1, \lambda_i \geq 0$ and $P_i \in \mathcal{P}(n)$. Therfore, for every i $(1 \leq i \leq k)$ there exist $Q_i \in \mathcal{P}(n)$ such that $T(X) = \sum_{i=1}^{k} \lambda_i T(P_i Y) =$ $\sum_{i=1}^{k} \lambda_i Q_i T(Y) = D' T(Y)$ where $D' = \sum_{i=1}^{k} \lambda_i Q_i$. It follows that $T(X) \prec T(Y)$. \Box

Theorem 2.3. A linear operator $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear preserves \prec_{log} if and only if it has the form

$$X \longmapsto rPX, \qquad X \in \mathbb{R}^n$$

for some permutation matrix P and some positive number r.

Proof. We first prove the necessity of the condition. Let T be a linear preserves \prec_{log} . If n = 1, the result is trivial. So we may suppose that n > 1. By Lemma 2.2, T preserves \prec . Hence, by Theorem 1.1, T is of the form (i) or (ii).

We show that T not is of the form (i). Put

$$X = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} n\\1\\\vdots\\1\\\frac{1}{n} \end{pmatrix}.$$

Then $X \prec_{log} Y$, and hence $T(X) \prec_{log} T(Y)$. Thus $na \prec_{log} (2n + \frac{1}{n} - 2)a$, for some $a \in \mathbb{R}^n$, it follows that $n = (2n + \frac{1}{n} - 2)$ or $n = 2 - \frac{1}{n}$; a contradiction.

Now, suppose that T is of the form (ii). So,

$$T(X) = rPX + str(X)e = P\begin{pmatrix} r+s & s & s & \cdots & s \\ s & r+s & s & \cdots & s \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ s & s & s & \cdots & r+s \end{pmatrix}$$
$$= P\begin{pmatrix} rx_1 + str(X) \\ rx_2 + str(X) \\ \vdots \\ rx_n + str(X) \end{pmatrix}.$$

If
$$s < 0$$
, choose a positive number m such that $\left|\frac{r+s}{m}\right| < |s|$. Since $\begin{pmatrix} \frac{1}{m} \\ 1 \\ \vdots \\ 1 \end{pmatrix} > 0$, we get $T\begin{pmatrix} \frac{1}{m} \\ 1 \\ \vdots \\ 1 \end{pmatrix} > 0$ and also $T\begin{pmatrix} \frac{1}{m} \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{r+s}{m} + (n-1)s \\ r+ns \\ \vdots \\ r+ns \end{pmatrix} < 0$,

which is a contradiction. Therfore s can not negative.

6 A. MOHAMMADHASANI, M. DEHGHANIAN AND Y. SAYYARI

If s > 0, put

$$X := e = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} \quad \text{and} \quad Y := \begin{pmatrix} n\\1\\\vdots\\\frac{1}{n} \end{pmatrix}.$$

Then $X \prec_{log} Y$, and hence, $T(X) \prec_{log} T(Y)$. Since

$$T(X) = P\begin{pmatrix} r+ns\\ \vdots\\ r+ns \end{pmatrix} \quad \text{and} \quad T(Y) = P\begin{pmatrix} rn+s(2n-2+\frac{1}{n})\\ r+s(2n-2+\frac{1}{n})\\ \vdots\\ \frac{r}{n}+s(2n-2+\frac{1}{n}) \end{pmatrix},$$

thus

$$\begin{aligned} (r+ns)^n &= [rn+s(2n-2+\frac{1}{n})][r+s(2n-2+\frac{1}{n})]\\ &\cdots [r+s(2n-2+\frac{1}{n})][\frac{r}{n}+s(2n-2+\frac{1}{n})]\\ &> (rn+ns)(r+ns)^{n-2}(\frac{r}{n}+ns)\\ &= [r^2+n^2rs+n^2s^2+rs](r+ns)^{n-2}\\ &> [r^2+2nrs+n^2s^2](r+ns)^{n-2}\\ &= (r+ns)^n, \end{aligned}$$

which is a contradiction. Therefore s = 0, and the form of T is

$$X \longmapsto rPX$$

where $P \in \mathcal{P}(n)$ and r > 0, since T > 0.

Clearly, the linear operator $X \longrightarrow rPX$, for r > 0 and $P \in \mathcal{P}(n)$, preserves logarithm majorization \prec_{log} . \Box

3 Linear Preservers of Logarithm Column (Row) Majorization on M_{nm}

In this section, we characterize linear operators $T: M_{nm}^+ \to M_{nm}^+$ which preserve logarithm column (row) majorization. First we need some known facts and lemmas.

Definition 3.1. Let $X = [X_1|X_2|\cdots|X_m], Y = [Y_1|Y_2|\cdots|Y_m] \in M^+_{nm}$. The matrix X is said to be *logarithm column(row) majorized* by Y, and is denoted as $X \prec^{column}_{log} Y(X \prec^{row}_{log} Y)$, if $X_j \prec_{log} Y_j(X_i \prec_{log} Y_i)$ for all $j = 1, 2, \cdots m (i = 1, 2, \cdots n)$.

Lemma 3.2. Let $T: M_{nm}^+ \longrightarrow M_{nm}^+$ be a linear operator that preserve logarithm column majorization \prec_{log}^{column} . Then T preserves \prec^{column} .

Proof. Let $X, Y \in M_{nm}^+$ and $X \prec^{column} Y \prec^{column} X$. Then $X_i \prec Y_i \prec X_i$ for all $i = 1, 2, \cdots, m$, and hence $X_i \prec_{log} Y_i \prec_{log} X_i$. Thus $X \prec^{column}_{log} Y \prec^{column}_{log} X$, and hence by hypothesis $T(X) \prec^{column}_{log} T(Y) \prec^{column}_{log} T(X)$. Therfore $(TX)_i \prec_{log} (TY)_i \prec_{log} (TX)_i$, and hence $(TX)_i \prec (TY)_i \prec (TX)_i$ for every $i = 1, 2, \cdots, m$. It follows that $T(X) \prec^{column} T(Y) \prec^{column} T(Y) \prec^{column} T(Y)$.

Now, suppose that $X \prec^{column} Y$. Then there exist $D_1, D_2, \cdots, D_m \in \mathcal{DS}(n)$ such that $Y_i = D_i X_i$ for every $i = 1, 2, \cdots, m$. This implies that

$$Y = [D_1 X_1 | D_2 X_2 | \cdots | D_m X_m]$$

= $\left[\sum_{j=1}^k \lambda_{1j} P_j X_1 \middle| \sum_{j=1}^k \lambda_{2j} P_j X_2 \middle| \cdots \Bigr| \sum_{j=1}^k \lambda_{mj} P_j X_m \right]$
= $\sum_{i_1, i_2, \cdots, i_m = 1}^k (\lambda_{1i_1} \lambda_{2i_2} \cdots \lambda_{mi_m}) [P_{i_1} X_1 | P_{i_2} X_2 | \cdots | P_{i_m} X_m]$

since $\sum_{j=1}^{k} \lambda_{ij} = 1$ for i = 1, ..., m and $P_j \in \mathcal{P}(n)$ for all j = 1, ..., k. Hence,

$$T(Y) = \sum_{i_1, i_2, \cdots, i_m = 1}^k (\lambda_{1i_1} \lambda_{2i_2} \cdots \lambda_{mi_m}) T([P_{i_1} X_1 | P_{i_2} X_2 | \cdots | P_{i_m} X_m])$$

=
$$\sum_{i_1, i_2, \cdots, i_m = 1}^k (\lambda_{1i_1} \lambda_{2i_2} \cdots \lambda_{mi_m}) [Q_{i_1} X_1' | Q_{i_2} X_2' | \cdots | Q_{i_m} X_m']$$

=
$$[D_1' X_1' | D_2' X_2' | \cdots | D_m' X_m'].$$

Therefore $T(X) \prec^{column} T(Y)$. \Box

8 A. MOHAMMADHASANI, M. DEHGHANIAN AND Y. SAYYARI

Theorem 3.3. Let $T : M_{nm}^+ \longrightarrow M_{nm}^+$ be a linear operator. Then T preserves \prec_{log}^{column} if and only if there exist positive real numbers r_1, r_2, \cdots, r_m , and $P_1, P_2, \cdots, P_m \in \mathcal{P}(n)$ such that

$$T(X) = [r_1 P_1 X e_{i_1} | r_2 P_2 X e_{i_2} | \cdots | r_m P_m X e_{i_m}]$$

where $i_1, i_2, \cdots, i_m \in \mathbb{N}_m$.

Proof. The case n = 1 being clear, we let $n \ge 2$. Assume the linear operator $T: M_{nm}^+ \longrightarrow M_{nm}^+$ preserves \prec_{log}^{column} . Then, by Lemma 3.2, T preserves \prec^{column} . Thus, by Theorem 1.2, T is of the form (1). So it is enough to show that $A_1 = A_2 = \cdots = A_m = 0$, and S = 0.

First, we prove that $A_j = 0$ for every $j \in \mathbb{N}_m$. Assume that $A_j \neq 0$ for some $j \in \mathbb{N}_m$. Without loss of generality suppose that $A_j e_1 \neq 0$, then $b_1 = 0$. Put

$$X := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}_{n \times m}, \quad Y := \begin{pmatrix} n & n & \cdots & n \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \\ \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}_{n \times m}$$

It is clear that $X \prec_{log}^{column} Y$, so $T(X) \prec_{log}^{column} T(Y)$. It easy to see that

$$(TX)_{1} = \sum_{j=1}^{m} (trX_{j})A_{j}e_{1} + JXSe_{1} = n\left(\sum_{j=1}^{m} A_{j}e_{1} + JSe_{1}\right)$$

and,

$$(TY)_1 = \sum_{j=1}^m (trY_j)A_je_1 + JYSe_1 = (2n + \frac{1}{n} - 2)\left(\sum_{j=1}^m A_je_1 + JSe_1\right),$$

where $(TX)_1$ is the first column of T(X) and $(TY)_1$ is the first column of T(Y). Since $(TX)_1 \prec_{log} (TY)_1$, it follows that $n = 2n + \frac{1}{n} - 2$, which is a contradiction. Therefore $A_j = 0$, for every $j \in \mathbb{N}_m$. Now, we show that S = 0. By Theorem 1.2, for every $i, j \in \mathbb{N}_m$, there exist $r_j \in \mathbb{R}$ such that $b_j = r_j e_{i_j}$.

For every $i, j \in \mathbb{N}_m$, consider the embedding $\psi, \psi_j : \mathbb{R}^n \longrightarrow M_{nm}$ by $\psi(X) := [X|X| \cdots |X] = \sum_{i=1}^m Xe_i^t, \psi_j(X) := [X| \cdots |X| 2X|X| \cdots |X] =$ $\psi(X) + Xe_j^t$ and projection $E_i : M_{nm} \longrightarrow \mathbb{R}^n$ by $E_i(X) := Xe_i$. Put $S = [S_1|S_2| \cdots |S_m]$. It is easy to show that for every $j \in \mathbb{N}_m$, $E_jT\psi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $E_jT\psi(X) = r_jP_jX + tr(S_j)tr(X)e$ preserves \prec_{log} . Then by Theorem 2.3, the form of $E_jT\psi$ is $X \longmapsto rPX$, where r > 0. Therefore

$$T(X) = [r_1 P_1 X e_{i_1} | r_2 P_2 X e_{i_2} | \cdots | r_m P_m X e_{i_m}] + JXS,$$

where r_j is positive real number, for every $j \in \mathbb{N}_m$.

Fix $j \in \mathbb{N}_m$. For every $i \in \mathbb{N}_m$, $E_j T \psi_i : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ by $E_j T \psi_i(X) = t_i P_i X + \sum_{k=1}^m S_{kj} tr(X) e + S_{ij} tr(X) e$ preserves \prec_{log} . So, the form of $E_j T \psi_i$ is $X \longmapsto r P X$, where r > 0. It follows that for every $i \in \mathbb{N}_m$, we obtain

$$\sum_{k=1}^{m} S_{kj} + S_{ij} = 0 \tag{2}$$

and $t_i = r_i$ or $t_i = 2r_i$. So, $S_{1j} = S_{2j} = \cdots = S_{mj} = 0$ is a solution of the system of *m* linear equations in *m* variables (2). Since $j \in \mathbb{N}_m$ is arbitrary, therefore S = 0 \Box

Theorem 3.4. Let $T: M_{nm}^+ \longrightarrow M_{nm}^+$ be a linear operator. Then T preserves \prec_{log}^{row} if and only if there exist positive real numbers r_1, r_2, \cdots, r_n , and $P_1, P_2, \cdots, P_n \in \mathcal{P}(m)$ such that

$$T(X) = [r_1 e_{i_1} X P_1 / r_2 e_{i_2} X P_2 / \dots / r_m e_{i_m} X P_n]$$

where $i_1, i_2, \cdots, i_n \in \mathbb{N}_n$.

Proof. Define $T': M_{nm}^+ \longrightarrow M_{nm}^+$ by $T'(X) = [T(X^t)]^t$ for all $X \in M_{nm}^+$. It is easy to see that T is a linear preserve of \prec_{log}^{row} if and only if T' is a linear preserver of \prec_{log}^{column} . By Theorem 3.3, the desired conclusion is obtained. \Box

References

- [1] T. Ando, Majorization, Doubly stochastic matrices, and comparison of eigenvalues, *Linear Algebra Appl.*, 118 (1989), 163-248.
- [2] T. Ando, Majorization and inequalities in matrix theory, *Linear Algebra Appl.*, 199 (1994), 17-67.
- [3] A. Armandnejad, F. Akbarzadeh, and Z. Mohammadi. Row and column-majorization on $M_{n,m}$ Linear Algebra Appl., 437 (2012), 1025-1032.
- [4] R. Bhatia, *Matrix Analysis*, Springer-Verlag, New York, 1997.
- [5] R.A Brualdi, The doubly stochastic matrices of a vector majorization, *Linear Algebra Appl.*, 61 (1984), 141-154.
- [6] R. A Brualdi and G. Dahl, majorization-constrained doubly stochastic matrices, *Linear Algebra Appl.*, 361 (2003), 75-97.
- [7] G.-S. Cheon and Y.-H. Lee, The doubly stochastic matrices of a multivariate majorization. J. Korean Math. Soc., 32 (1995), 857-867.
- [8] G. Dahl, Matrix majorization, *Linear Algebra Appl.*, 288 (1999), 53-73.
- [9] G. Dahl, majorization polytopes, *Linear Algebra Appl.*, 297 (1999), 157-175.
- [10] M. Dehghanian and A. Mohammadhasani, A note on multivariate majorization, J. Mahani Math. Res. Cent., 11(2) (2022), 119-126.
- [11] A.M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, *Linear Algebra Appl.*, 423 (2007), 255-261.
- [12] A.M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electron. J. Linear Algebra*, 15 (2006), 260-268.

- [13] A. M. Hasani, Y. Sayyari and M. Sabzvari, *G*-tridiagonal majorization on $M_{n,m}$, *Communications in Mathematics*, 29 (3) (2021), 395 -405.
- [14] R. Horn and C. Johnson, *Matrix Analysis*, Cambridge University Press, 1985.
- [15] A. W. Marshall, I. Olkin and B. C. Arnold, *Inequalities: Theory of Majorizations and its Applications*, second ed., Springer, New York, 2001.
- [16] Y. Sayyari, A. Mohammadhasani and M. Dehghanian, Linear maps preserving signed permutation and substochastic matrices, *Indian* J. Pure Appl. Math., 54 (2023), 219-223.
- [17] P. Torabian, Linear Preservers of Chain Majorization, J. Math. Ext., 3 (1) (2008), 1-11.

Ahmad Mohammadhasani

Assistant Professor of Mathematics Department of Mathematics Sirjan University of Technology Sirjan, Iran E-mail: a.mohammadhasani53@gmail.com

Mehdi Dehghanian

Assistant Professor of Mathematics Department of Mathematics Sirjan University of Technology Sirjan, Iran E-mail: mdehghanian@sirjantech.ac.ir

Yamin Sayyari

Assistant Professor of Mathematics Department of Mathematics Sirjan University of Technology Sirjan, Iran E-mail: y.sayyari@sirjantech.ac.ir