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Abstract. In 2005 Avella and Vasil’Ev [2] presented an efficient cutting
plane algorithm for solving an integer binary programming formulation
of the university course timetabling problem (UCTP). Here, we present
a new and efficient adjustment of the branch and price algorithm for
solving the same formulation of UCTP. In every iteration of the branch
and price algorithm, the column generation algorithm is used for solving
the linear programming relaxation. For the first time, in this paper the
set packing constraints of the UCTP formulation are chosen as the spe-
cially structured constraints of the column generation algorithm. Then,
a new efficient two phase heuristic method is presented for solving the
set packing problem. The resulting adjusted column generation is used
within a branch and price algorithm and a comparison is performed with
the cutting plane algorithm presented by Avella and Vasil’Ev. The nu-
merical results show that the computing time of the presented branch
and price algorithm is always less than that of branch and cut algo-
rithm. Moreover, the number of subproblems and master problems of
the presented branch and price algorithm depends on the structure of
the problem. Finally, for all test instances the number of variables is
very large that justifies the use of the branch and price algorithm for
solving the problem.
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1 Introduction

The field of timetabling contains important ares such as employee and
sports timetabling, flight scheduling, timetabling in universities and
other institutions of education. This amount of usage interested many
researchers to study this problem. Timetabling has been proved to be
an NP-hard problem by Evans et. al. [13] (see also Bardadym [6]),
this make all computational calculations more difficult. Wren [30] de-
fined the timetabling as the allocation of some resources to some objects
subject to constraints, such that a set of objectives are satisfied.

Every university faces different variants of timetabling such as course
timetabling and exam timetabling at least twice a year. This paper, is
concerned with the course timetabling in universities. To define the
University Course Timetabling problem (UCTP), suppose that a set of
teachers, a set of courses, a set of classes, a set of rooms, a set of time
periods and a time horizon are given. The UCTP is to assign courses to
rooms and to time periods, satisfying additional constraints. An assign-
ment is called feasible, if it satisfies the set of hard constraints. On the
other hand soft constraints are used as the means for measuring the so-
lution quality. Hard and soft constraints originate from the organization
of an educational system.

The UCTP is usually divided into curriculum-based and enrollment-
based categories. In the curriculum-based category, rooms and time
periods are assigned to courses according to the curriculum specified by
the university [18]. The enrollment-based course timetabling is based on
the enrollment data of each individual student [21].

In this paper, an efficient branch and price algorithm is presented
for solving the university course timetabling problem. In every iteration
of the presented branch and price algorithm, the subproblem is solved
by a new efficient heuristic algorithm for solving the set packing prob-
lem. Some numerical results are also given to evaluate and compare the
presented algorithm. Numerical results justifies both the use of branch
and price algorithm for solving the problem and the efficiency of the pre-
sented algorithm. Moreover, the numerical results show that the number
of variable for all instances is very large. This justifies the necessity of
conducting research.
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1.1 Literature review

Scientific papers on UCTP can be divided into two major categories.
The first category is concerned with heuristic and metaheuristic methods
(see [3, 14, 23, 26, 28, 29, 22, 19]).

The second category contains exact algorithms. Since this paper is
concerned with an exact algorithm, here we only review research papers
of the second category. By using exact algorithms to solve UCTP, we
can issue the certificates of optimality and study the quality of solutions
found.

In 2004, Martin [20], an integer programming model is used to allo-
cate teachers to courses, rooms, and time periods. Their presented model
handles constraints such as back-to-back classes, maximum number of
teaching days, time periods of any configuration, multiple teachers for
courses, departmental balance, and pre-assignments. Their presented
model suggests four–index binary variable xijkl, accepting value one if
the instructor i is assigned to course j, in classroom k and in time slot l.
They used the CPLEX software to quite easily solve the UCTP at Ohio
University’s College of Business.

Daskalaki et al. [11] developed an integer programming formulation
for the university course timetabling, using the six–index binary vari-
ables xi,j,k,l,m,n, taking value one, when course m, taught by teacher
l to the group of students k, is scheduled for the jth period of day i
in classroom n. Constraints of their integer programming model deals
with uniqueness, completeness, consecutiveness, repetitiveness and pre-
assignment constraints.

The objective was the minimization the cost of allocating courses to
time periods and the cost of assignment of those courses that require
sessions of more than one consecutive hours, on a given day of the week.
Their presented model was solvable by software tools with integer pro-
gramming solvers. Their presented approach solved the UCTP of the
department of engineering that has many teachers and courses.

In 2005, Daskalaki and Birbas [12] proposed a two-stage relaxation
procedure that solves efficiently the integer programming formulation of
a university timetabling problem. Their presented model was also based
on the six–index binary variables. In their presented approach, the relax-
ation was performed in the first stage and concerns the constraints that



4 M. KHORRAMIZADEH

guarantee consecutiveness in multi-period sessions of certain courses.
They compared to a solution approach solving the problem in a sin-
gle stage. Numerical results showed that computation time is reduced
significantly without any loss in quality.

In 2005, Avella and Vasil’Ev [2] described a binary integer program-
ming problem formulation of UCTP and developed a branch and cut
algorithm for solving this formulation. The formulation was based on
three-index binary variables xcrt taking value one, when course c is
scheduled in room r at time period t. They reported a successful case-
study where a branch and cut algorithm yields the optimal solution of a
real-world timetabling problem for university courses. They also studied
the polyhedral structure of the problem related to a polytop of the set
packing problem and introduced several families of cutting planes that
are crucial for finding an optimal solution for the problem.

Qualizza and Serafini [24] proposed an original approach which was
essentially based on an integer linear programming formulation, but, in-
stead of the usual assignment, binary variables for each weekly course
timetable were used. Due to the exponential number of different course
timetables the formulation requires a column generation scheme. Their
integer programming formulation was based on two–index binary vari-
ables xjc taking value one if pattern j in P (c) is used for course c, where,
the pattern P (c) is the set of timetable patterns for the course c.

They expressed the constraints of the problem by using the integer
linear programming matrix. Their objective function was the maximiza-
tion of the preference. They embedded the constraints and preferences
associated to a single course timetable in the column generation proce-
dure. They also discussed the interaction between the column genera-
tion procedure and the branch-and-bound method. Finally, they used
the CPLEX routines to solve their presented model.

In 2007, Al-Yakoob and Sherali [1], used four–index non-negative in-
teger variables xd,cd,t,r, besides some special variables for tutorials and
lab sessions, to formulate the class scheduling and timetabling prob-
lem faced at Kuwait University (KU), where, xd,cd,t,r is the number of
sections of class cd that are offered by department d during time-slot
t in a room of type r. Their principal focus was to design efficient
class offering patterns while taking into consideration newly imposed
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gender policies. They formulated a mathematical programming model
that assigns offered classes to time-slots and addresses gender issues by
defining appropriate surrogate constraints along with objective penalty
terms. They also solved their model by using the CPLEX routines.

Schimmelpfeng and Helber [27] described an integer programming
approach, which was based on a set of decision variables consisting of
five–index, three–index and two–index binary or integer variables. Their
model was solved by open source mixed-integer solvers and CPLEX
at the School of Economics and Management at Hannover University,
Germany.

In 2011, Hao and Benlic [15] presented a new partition-based ap-
proach that was based on the divide and conquer principle. Their pro-
posed approach uses iterative tabu search to partition the initial problem
into sub-problems which were solved with an ILP solver. They gener-
ated lower bounds for the curriculum-based course timetabling problem,
which was presented at the International Timetabling Competition ITC–
2007.

In 2012, Lach and Lubbecke [18] presented an integer programming
approach to the university course timetabling problem, in which weekly
lectures have to be scheduled and assigned to rooms. However, instead of
directly solving a natural formulation based on three-indexed variables
for the course/time/room assignment, they decomposed the problem in
two stages. In the first stage, they only match time periods and lectures.
In the second stage these pairs were feasibly assigned to rooms. The
CPLEX was used to solve their presented model.

Burke et al. [8] suggested a branch and cut algorithm for the Udine
benchmark datasets that reduced the number of variables necessary to
formulate the soft constraints. They presented a branch-and-cut proce-
dure, where constraints from enumeration of event/free-period patterns,
necessary to reach optimality, were added only when they were violated.
They also described problem-specific cuts from bounds implied by the
soft constraints, cuts from patterns given by days of instruction and free
days, and all related separation routines. They also discussed applicabil-
ity of standard cuts from graph coloring and weighted matching. They
used ILOG Concert and CPLEX 10 to implement their algorithm.

Gambini et al. [25] presented an integer programming formulation
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for a variant of the Class-Teacher Timetabling problem, which considers
the satisfaction of teacher preferences and also the proper distribution of
lessons throughout the week. Their formulation was based on four–index
binary decision variables xtcdp getting value one if teacher t was teaching
to class c at day d and the time period p. These variables were also linked
to some other auxiliary variables. Their formulation contained a very
large number of variables and was enhanced by cuts. Therefore, a cut
and column generation algorithm to solve its linear relaxation was also
provided.

Cacchiani et al. [9] splitted the objective function into two parts and
formulate integer linear programming models for both. The solution of
one model was obtained by using a column generation procedure. The
global bound was obtained by summing up the corresponding optimal
values. Their presented model was solved through the general purpose
solver CPLEX.

Two MIP formulations were developed for the curriculum based
course timetabling problem (CTT) by Bagger et al. [5]. They divided
the CTT into two separate models and connected them by flow for-
mulation techniques. They also showed that the resulting formulations
contain underlying network structures. The first presented MIP formu-
lation was based on the minimum cost flow problem, while the second
one was based on the multi-commodity flow problem. Their numeri-
cal results showed that the first formulation performs better on average
than other one for the CTT.

Bagger et al. [4], presented an integer-programming relaxation for
obtaining lower bounds for the curriculum-based course timetabling prob-
lem in which weekly assignments for courses to rooms and periods are
considered. Their presented model was a pattern formulation where a
pattern is an assignment of a course into a set of periods on one day. Dif-
ferent preprocessing techniques were implemented to reduce the number
of variables, and valid inequalities are derived and added to the model.
The proposed model was tested on 21 real-world data instances and On
17 of these instances, the best known solutions had been proven optimal,
and out of the remaining four, our model improved the lower bounds for
three of them.

Colajanni and Daniele [10], presented an integer programming for-
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mulation for the curriculum-based course timetabling problem. They
also applied their presented model to the real case study of the first year
of the Mathematics Degree Course of the University of Catania, Italy.

The strength of all aforementioned research papers is that they are
very efficient for solving the specific problem that they are designed to
solve. The main weakness of the above research papers is that they
can not be applied or adapted easily to solve general course timetabling
problems, efficiently. Here, we concentrate on the integer programming
formulation presented by Avella and Vasil’Ev [2]. The first reason is that
this model is closer to the course timetabling problem in universities of
Iran. On the other hand, in these problems, the number of variables is
usually very large that suggests using the branch and price algorithm
for solving this problem. The second reason is that the subproblem of
the branch and price algorithm is a set packing problem that can be
efficiently solved by some fast heuristic methods.

To explain the main ideas of this manuscript, at first we need to
briefly explain the column generation algorithm and the set packing
problem.

1.2 Column generation algorithm

In this section we briefly describe a generic column generation algorithm.
Consider the following linear programming problem:

Minimize cTx
s.t. Ax = b (P )

x ∈ X

where, A ∈ Rm×n, c ∈ Rn and b ∈ Rm and X is a polyhedral set
having a special structure. The set of constraints Ax = b are called the
general constraints and the set of constraints represented by x ∈ X are
called specially structured constraints. According to the representation
theorem in linear programming, any point x ∈ X can be written as:

x =
t∑

j=1

λjxj +
l∑

j=1

µjdj ,
t∑

j=1

λj = 1, λj ≥ 0, µj ≥ 0. (1)

where x1, . . . , xt are extreme points of X and d1, . . . dl are extreme di-
rections of X. If we substitute for x in (1), the previous optimization
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problem is transformed into the next master problem in the variables
λ1, . . . , λt and µ1, . . . , µl.

Minimize
∑t

j=1(c
T
j xj)λj +

∑l
j=1(c

T
j dj)µj

s.t.
∑t

j=1(Axj)λj +
∑l

j=1(A
Tdj)µj = b (MP )∑t

j=1 λj = 1, λj ≥ 0, µj ≥ 0.

In every iteration of the column generation, given a basic feasible so-
lution having w as the vector of dual variables, we solve the following
so-called subproblem which is easy because of the special structure of
X:

Max (wTA− cT )x
s.t. x ∈ X. (SP )

If the optimal value of this problem is zero, then the current basic feasible
solution is optimal. Otherwise, a candidate variable enters the basis. In
a column generation algorithm, the major computational effort is due to
solving the pricing problem. In other words if we can solve the pricing
problem efficiently, then the resulting column generation algorithm is
also efficient.

1.3 Set packing problem

In the set packing problem (SPP), there are n objects which can be
packed into a number of subgroups among m predefined feasible subsets
labeled as S1, . . . , Sm. Each subset Sj has a payoff value of wj . The
SPP aims to divide these n objects into non-overlapping subgroups such
that their total payoff is maximized. The integer binary programming
model for the set packing problem is as follows:

max
∑n

j=1 wjxj∑n
j=1 aijxj ⩽ 1, i = 1, . . . ,m,

xj ∈ {0, 1} , ∀j = 1, . . . , n.

where the aij are 0/1 coefficients and the wj are weights.

1.4 Main ideas of this paper

In this paper, we consider the same formulation as the one proposed by
Avella and Vasil’Ev [2], (to be described in Section 2) and present a new
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and efficient adjustment of the branch and price algorithm for UCTP. In
every iteration of the branch and price algorithm, a linear programming
relaxation is solved by using the column generation algorithm.

On the other hand, in the binary integer programming formulation
of Avella and Vasil’Ev [2], many constraints of the UCTP are in the
form of the constraints of the set packing problem. Therefore, to make
the column generation algorithm as efficient as possible, we first consider
set packing constraints of the UCTP as specially structured constraints
and the rest of constraints of UCTP as the general constraints. Then,
we present an efficient two phase heuristic algorithm for solving the set
packing problem which is used for solving the pricing problem in every
iteration of the column generation algorithm. The resulting column gen-
eration algorithm will be used for solving the pricing problem, in every
iteration of the branch and price algorithm. Finally, we compare the
resulting branch and price algorithm with the branch and cut algorithm
of Avella and Vasil’Ev [2]. Finally, we present numerical results that
justify the efficiency of our presented algorithm.

Recall that the column generation based research papers (that we
are aware of), are those of Qualizza and Serafini [24], Gambini et al.
[25] and Cacchiani et al. [9]. Some important differences between these
three approaches and the approach of this paper, will be illustrated in
the following sections and during the presentation of the contents of this
paper.

In Section 2 we describe the binary integer programming formulation
of UCTP presented by Avella and Vasil’Ev [2]. In Section 4 we present
our new adjustment of the branch and price algorithm for solving UCTP.
Section 5 is concerned with the numerical results justifying the efficiency
of our presented branch and price algorithm for solving UCTP. Section
5 is devoted to conclusions.

2 Binary Integer Programming Formulation

This paper is concerned with the integer programming formulation of
the problem presented by Avella and Vasil’Ev [2].

To describe this formulation, at first we need to consider some no-
tations. Let C be the set of courses and c̄ be the number of elements
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of C (|C| = c̄). For c ∈ C, let nc and ncmin (ncmax) denote the number
of hours to be scheduled per week and the minimum (maximum) daily
number of teaching hours. Let G be a set of groups (a group consists
of students attending exactly the same courses). Suppose that |G| = ḡ
and for g ∈ G, let Cg ⊂ C denote courses attended by group g. It is
assumed that some classes can attend the same courses. Let D be the
working days of the week. let |D| = d̄ and for any d ∈ D, let τd and
ιd denote the first time periods of the morning and afternoon session in
day d, respectively.

Let S be the set of teachers. Assume that |S| = s̄ and for s ∈ S,
let Cs ⊂ C denote the set of courses taught by teacher s and ks be the
maximum number of teaching days. Let R and T be the set of rooms
and time periods, respectively. Moreover, suppose that |R| = r̄, |T | = t̄,
lmax is the maximum daily number of teaching hours for any groups of
students and pcrt is the penalty of scheduling course c ∈ C, in room
r ∈ R and at the time period t ∈ T . Let the binary variable xcrt be 1 if
course c ∈ C is scheduled in room r ∈ R at time period t ∈ T . Suppose
that the binary variable ucd is 1 if the course c ∈ C is assigned to the
day d ∈ D and the binary variable ψsd is 1 if d ∈ D is a teaching day
for teacher d ∈ D.

A feasible (acceptable) assignment of courses C to rooms R and to
time periods T , should satisfy the following conditions. nc hours of a
week must be scheduled for every course c ∈ C i.e.

∑
r∈R

∑
t∈T

xcrt = nc, c ∈ C. (2)

Each class g ∈ G cannot attend more than one course at a time period
t ∈ T , ∑

c∈Cg

∑
r∈R

xcrt ⩽ 1, g ∈ G, t ∈ T. (3)

Each teacher s cannot teach more than one course at time t ∈ T ,

∑
c∈Cs

∑
r∈R

xcrt ⩽ 1, s ∈ S, t ∈ T. (4)
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Each room r ∈ R cannot host more than one course at time t ∈ T ,∑
c∈C

xcrt ⩽ 1, r ∈ R, t ∈ T. (5)

The number of hours of the course c ∈ C is day d ∈ D, must be in
[ncmin, n

c
max] i.e.∑

r∈R

∑
τd⩽t<τd+1

xcrt ⩾ ncminucd, c ∈ C, d ∈ D. (6)

∑
r∈R

∑
τd⩽t<τd+1

xcrt ⩽ ncmaxucd, c ∈ C, d ∈ D. (7)

The timetable of each course should be compact.∑
r∈R

(xcrt1 − xcrt2 + xcrt3) ⩽ 1
c ∈ C, d ∈ D,

τd ⩽ t1 < t2 < t3 < τd+1.
(8)

All the hours of a course c ∈ C scheduled in a day d ∈ D should be
located in the same room r ∈ R.

xcr1t1 + xcr2t2 ⩽ 1,
c ∈ C, 1 ⩽ r1 < r2 ⩽ r̄,

d ∈ D, τd ⩽ t1 < t2 < τd+1.
(9)

Each group cannot attend more than lmax teaching hours a day.∑
c∈Cg

∑
r∈R

∑
τd⩽t<τd+1

xcrt ⩽ lmax, g ∈ G, d ∈ D (10)

Courses of a group can be taught only either in the morning or in the
afternoon session.∑

r∈R
xc1rt1 +

∑
r∈R

xc2rt2 ⩽ 1
g ∈ G, c1, c2 ∈ Cg, c1 ̸= c2, d ∈ D

τd ⩽ t1 < ιd ⩽ t2 < τd+1
(11)

The timetable of each group should be compact.∑
c∈Cg

∑
r∈R

(xcrt1 − xcrt2 + xcrt3) ⩽ 1
g ∈ G, d ∈ D,

τd ⩽ t1 < t2 < t3 < τd+1.
(12)
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The number of working days of the teacher s ∈ S must be less than or
equal to ks,∑

r∈R
xcrt ⩽ Ψsd, c ∈ C, s ∈ S, d ∈ D, τd ⩽ t < τd+1. (13)

∑
d∈D

Ψsd ⩽ ks, s ∈ S. (14)

Each course c ∈ C can only be assigned to a specified subset of rooms
Rc ⊂ R.

xcrt = 0, c ∈ C, r ∈ R⧸Rc, t ∈ T. (15)

Each room is available only in a subset of timeslots Tr ∈ T ,

xcrt = 0, c ∈ C, r ∈ R, t ∈ T⧸Tr. (16)

Each teacher is available only in a subset of timeslots Ts ∈ T ,

xcrt = 0, s ∈ S, c ∈ Cs, r ∈ R, t ∈ T⧸Ts. (17)

Finally, the objective is to minimize the sum of the penalties,

min
∑
c∈C

∑
r∈R

∑
t∈T

pcrtxcrt. (18)

3 Comparison with Other Column Generation
Approaches

Here, we explain some differences between our presented approach and
other approaches based on column generation. In Qualizza and Serafini
[24] the integer programming formulation was based on two–index binary
variables xjc taking value one if pattern j in P (c) is used for course c,
where, the pattern P (c) is the set of timetable patterns for the course
c. In Gambini et al. [25], the formulation is based on four–index binary
decision variables xtcdp getting value one if teacher t was teaching to
class c at day d and the time period p. These variables were also linked
to some other auxiliary variables.
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In Cacchiani et al. [9], variables are of two types. A variable of
the first type represents a feasible assignment of lectures to rooms and
time periods for the whole time horizon. A variable of the second type
represents a feasible assignment of lectures to time periods for the whole
time horizon, such that it only takes into account the penalties deriving
from violating the minimum number of working days and having isolated
lectures. Therefore, the variables of this paper are quite different from
those of [9, 25, 24].

To clarify the difference between the model of this manuscript and
the model of other three approaches using the column generation more,
note that, Qualizza and Serafini [24], did not handle the set of constraints
(7), (8), (10) and (12). Gambini et al. [25], did not handle the set of
constraints (7), (8), (10), (11) and (12). Cacchiani et al. [9], did not
handle the set of constraints (7), (8), (10) and (11). Moreover, Qualizza
and Serafini [24], considered as objective function the maximization of a
preference. In Cacchiani et al. [9] and Gambini et al. [25], the objective
function aims at minimizing the total cost of the penalties for violating
the soft and hard constraints.

4 Adjustment of the Branch and Price Method

In this section we describe our presented branch-and-price algorithm for
university course timetabling problem. In a branch and price algorithm,
the LP-based branch-and-bound algorithm is combined with the col-
umn generation algorithm to solve each LP relaxation. In the column
generation algorithm, the pricing subproblems should be fast to solve.

In every iteration of the branch and price algorithm, the linear pro-
gramming relaxation of the binary integer programming formulation of
the UCTP described in section 2 is solved by using the column genera-
tion algorithm. Therefore, if we present an efficient algorithm for solving
the column generation algorithm then we can expect that the resulting
branch and price algorithm is also efficient.

The efficiency of the column generation algorithm strongly depends
on the way we partition the constraints of UCTP into general constraints
and specially structured constraints, and on the efficiency of the al-
gorithm solving the pricing problem. In our presented approach, the
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specially structured constraints are chosen such that the resulting sub-
problem is a set packing problem. Indeed, the set of constraints (3), (4),
(5), (9) and (11) are considered as the specially structured constraints
and the remaining constraints are chosen as general constraints. Re-
cently, we presented an efficient two phase algorithm (to be described in
the next subsection) for solving the set packing problem and justified its
efficiency. In this paper we use this algorithm for solving the set packing
problem corresponding to the pricing problem in every iteration of the
column generation algorithm.

4.1 Two phase algorithm for solving set packing problem

The algorithm has two phases. In the first phase, a greedy method is
utilized for generating a set of feasible solutions P0. The second phase
is concerned with an iterative step. In the iterative step some members
of P0 are chosen, a combination procedure is applied to them and new
solutions replace worst members of the population. The iterative step
is repeated until the stopping criteria are satisfied. For set packing
problem, we use a binary vector p ∈ {0, 1}n as a solution representation.
For example, suppose that n = 6. A binary vector p = (0, 1, 0, 0, 1, 1) is
a binary vector in {0, 1}6 and this solution corresponds to the selection
of second, fifth and sixth subsets in the solution.

4.1.1 Phase one: construction of a set of feasible solutions

In this subsection we describe the greedy algorithm for generating a set of
ps distinct feasible solutions P0 = {p1, p2, . . . , pps}. At first we describe
a quick overview of the algorithm. The algorithm starts by sorting the
variables using a predetermined priority (to be described later). Then,
ps feasible solutions are generated. Each feasible solution is generated
from the trivial solution by iteratively setting a variable’s value to 1.

Moreover, this greedy algorithm has ps iterations. In each iteration,
a solution is built from the trivial feasible solution, xj = 0, 1 ≤ j ≤ n.
Some variable values are set to 1, as long as the solution is maintained
feasible. Changes concern only one variable at each iteration. Variables
with a maximum coefficient in the objective value are prioritized and
the one with highest priority is chosen as the variable that is set to 1.
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The tie breaking rule is as follows. For the first variable, among the
most interesting variables, the choice is the one corresponding to the
one involving a minimum number of constraints and with the minimum
index (in order).

For the rest of variables, among the most interesting variables, the
choice is the one corresponding to the one with the minimum index.
Here, experimentally, we let the tie breaking rule for selecting the first
variable to be more expensive than other variables. Changes stop when
no variable can be fixed to 1 without losing feasibility. The pseudo-
code of the algorithm for generating initial population is presented in
Algorithm 1. In step 1 of this algorithm, the population P0 is initialized.
In the step 2, variables are ordered according to their coefficient in the
objective value and are stored in list L. While steps 1 and 2 comprise the
initial steps, steps 3 to 11 are concerned with iterative steps of Algorithm
1. In the ith iteration of Algorithm 1, the set of nonzero variables S̄i
and the set of infeasible variables Zi are initialized to empty set. In
step 5, the first member of S̄i is determined as described before. In step
6, the selected member is added to S̄i and Zi, Dk and Ti are updated
accordingly. The rest of members of S̄i are determined through steps 7
to 10. More specifically, in step 8, the variable with largest weight in
the objective function outside S̄i∪Zi is selected. In step 9, this variable
is inserted to S̄i and Zi is updated. In step 11, the constructed solution
is added to P0.

Extensive numerical results presented in [17] show that algorithm 1
generate feasible solutions with high quality. In the ith iteration of this
algorithm, S̄i is the set of nonzero variables in the ith solution and if a
variable in Zi is set to one then the solution becomes infeasible.

4.1.2 Phase two: iterative step

In phase two of the algorithm an iterative step is repeated until the
stopping criteria are satisfied. In the iterative step, at first two members
q1 and q2 of the initial set of solutions are randomly chosen. Then, a
combination method is used to generate a new solution qnew as follows.

Let I1 = {xj : xj = 1 in q1} and I2 = {xj : xj = 1 in q2}. The com-
bination method starts with the feasible solution in which all variables
are zero. Then all variables in I = I1

⋂
I2 are set to one. Here,
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Algorithm 1 Phase I: Generating an initial set of feasible solutions

1: P0 ← ∅.
2: L← List of sorted variables based on their coefficient in the objective

function.
3: for i :=1 to ps do
4: S̄i ← ∅ and Zi ← ∅.
5: Let xk correspond to the first member of L such that xk /∈

⋃i−1
t=0 S̄t .

Among the most interesting variables, choose the one correspond-
ing to the one involving a minimum number of constraints and
with the minimum index (in order).

6: S̄i ← S̄i ∪ {xk}. Zi = Zi ∪ Dk, where Dk =
{
xt : t ∈

⋃
i∈Ik Ti

}
and Ti = {j : aij = 1, 1 ≤ j ≤ n}.

7: for j := 2 to n do
8: Let xk correspond to the largest weight in objective function

such that xk /∈ S̄i ∪ Zi.
9: S̄i ← S̄i ∪ {xk}. Zi = Zi ∪Dk.

10: end for
11: Add the new constructed solution to P0.
12: end for

note that since q1 and q2 are feasible the resulting solution is also
feasible. To maintain the feasibility, for all xk in I, all variables in

Dk =
{
xt : t ∈

⋃
i∈Ik Ti

}
are added to the set Zc (all variables in Zc are

not set to 1 in the combination method).

To complete the combination method, we have to decide whether
variables outside of I have value one or not. Therefore, we use the fol-
lowing iterative procedure. In every iteration four different candidate
variables are examined and the one corresponding to the greatest im-
provement in the objective function, will be chosen and is set to one
in qnew. The set of these four candidate variables consists of a vari-
able in (I2 \ I1)

⋂
Zc
c , a variable in (I1 \ I2)

⋂
Zc
c , and two variables in

(I1
⋃
I2)

⋂
Zc
c , where Z

c
c denotes the complement of Zc.

These variables are selected as follows. The first one is a variable
with greatest weight in (I2 \ I1)

⋂
Zc
c . Here, if there are more than one

variable with greatest weight in (I2\I1)
⋂
Zc
c , then the one with smallest
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number of nonzero in the corresponding column of A, is chosen. If there
are still more than one variable with these properties, then the variable
with smallest index is chosen. The second candidate variable is a variable
in (I1 \ I2)

⋂
Zc
c and is chosen similarly. The third candidate variable is

chosen in a similar way from (I1
⋃
I2)

⋂
Zc
c . Finally, the fourth variable

is randomly chosen from (I1
⋃
I2)

⋂
Zc
c such that it is different from the

third one.

After the selection of one of these candidate variables, the value of the
selected variable xr will be changed from zero to one in qnew and is added
to S̄c . Then, all variables in Dr =

{
xt : t ∈

⋃
i∈Ir Ti

}
are added to Zc .

The aforementioned iterative procedure stops when no variable outside
S̄c can be set to 1 without destroying the feasibility. The pseudo-code
of the combination method is presented in algorithm 2. Step 1 indicates
that the input of this algorithm is the set of initial population generated
by Algorithm 1. Steps 2 to 15 comprise the iterative steps of Algorithm
2. In every iteration of Algorithm 2 at first two random members of
P0 are selected in step 3. In step 4, the set of nonzero variables S̄c
and the set of infeasible variables Zc are initialized to empty set. The
set of all nonzero variables in the selected solutions are added to S̄c.
Zc is updated accordingly in step 6. Steps 7 to 13 are concerned with
the inner loop of Algorithm 2, where all components are processed and
the new solution is constructed. Finally, the new solution produced by
using the combination method replaces the worth member of the set of
solutions in step 14.

Here, we explain another difference between our presented approach
and the column generation based approaches of Qualizza and Serafini
[24], Cacchiani et al. [9] and Gambini et al. [25]. In none of the other
three approaches, the subproblem is a set packing problem. Moreover,
the other three approaches use the CPLEX which is a General-purpose
software. Our presented approach uses a Special–purpose software de-
signed to solve the set packing problem.

In what follows, we describe the presented specific branch and price
algorithm. The original problem (OP) described in section 2 can be
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Algorithm 2 Phase II: Iterative step

1: Let P0 be the set of feasible solutions constructed in phase I.
2: while Stopping criteria are not satisfied do
3: Select two random solutions q1 and q2.
4: S̄c ← ∅, Zc ← ∅.
5: Add all variables in I1 ∩ I2 to S̄c.

6: ∀xk ∈ I1 ∩ I2, add all variables in Dk =
{
xt : t ∈

⋃
i∈Ik Ti

}
to Zc.

7: while
∣∣S̄c ∪ Zc

∣∣ < n do
8: Select a variable xα1 ∈ (I2 \ I1)

⋂
Zc
c with greatest weight.

9: Select a variable xα2 ∈ (I1 \ I2)
⋂
Zc
c with greatest weight.

10: Select a variable xα3 ∈ (I1
⋃
I2)

⋂
Zc
c with greatest weight.

11: Randomly, select a variable xα4 ∈ (I1
⋃
I2)

⋂
Zc
c .

12: Let xk be the best variable from of the set {xα1 , xα2 , xα3 , xα4}.
Add xk to the set of S̄c. Add all variables in Dk ={
xt : t ∈

⋃
i∈Ik Ti

}
to Zc.

13: end while
14: Replace the worst solution in P0 by the constructed solution.
15: end while

written as follows:

min cTx (19)

A1x = b1, constraints (2), (20)

A2x ≥ b2, constraints (6), (21)

A3x ≤ b3, constraints (7), (8), (10), (12), (13), (14), (22)

x ∈ H, constraints (3), (4), (5), (9), (11). (23)

Since H is a bounded polyhedron we have:

H = {x : x =

T∑
t=1

λtx
t,

T∑
t=1

λt = 1, λt ∈ {0, 1}, for t = 1, . . . T}.

Therefore, OP can be written as the following Integer Master Problem
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(IMP):

min
T∑
t=1

(cTxt)λt,

T∑
t=1

(A1x
t)λt = b1,

T∑
t=1

(A2x
t)λt ≥ b2,

T∑
t=1

(A3x
t)λt ≤ b3,

T∑
t=1

λt = 1, λt ∈ {0, 1}, t = 1, . . . T.

The presented branch and price algorithm at first applies the column
generation algorithm (to be described later) on the linear program-
ming relaxation of IMP (LPRIMP). Let λ̃ = (λ̃1, . . . , λ̃T ) be the op-
timal solution of LPRIMP. If λ̃ is not integer, then the IMP is not yet
solved. To solve the IMP we use the ideas of the branch and bound
algorithm as follows. Since points ηt ∈ H are 0–1 vectors, we have
η̃ =

∑T
t=1 λtη

t ∈ {0, 1}T if and only if λ̃ is integer. Therefore, if λ̃ is
not integer, then there is some j that η̃j is fractional and on which we
can branch. This way the set X of all feasible solutions is split into
X0 = X ∩ {η : ηj = 0} and X1 = X ∩ {η : ηj = 1} and the ideas of the
branch and bound algorithm can be applied. Two new active nodes are
added to the search tree of branch and bound and a new integer master
problem is associated to each new active node. Next an active node of
the search tree is selected and the corresponding linear programming
relaxation is solved by using the column generation algorithm. The re-
sulting algorithm that combines the ideas of the column generation an
branch and bound is called the branch and price algorithm. The pseudo-
code of the specific branch and price algorithm is presented in Algorithm
4.

Next we describe the column generation algorithm. The column gen-
eration is used to solve the linear programming relaxation of the integer
master problem (LPRIMP) associated to each node the search tree in
the branch and price algorithm. In the column generation algorithm, at
first a subset of columns of LPRIMP is selected that provide us with a
feasible Restricted Master Problem (RMP). To select these columns the
phase I or the big–M method can be used (see [7] for details).
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Now, assume that we are in the ith iteration of the column generation
and the columns corresponding to each λt ∈ Ti have been added to the
RMP. Therefore, the RMP has the following form:

min
∑
t∈Ti

(cTxt)λt,∑
t∈Ti

(A1x
t)λt = b1,

∑
t∈Ti

(A2x
t)λt ≥ b2,

∑
t∈Ti

(A3x
t)λt ≤ b3,∑

t∈Ti

λt = 1, λt ≥ 0, t ∈ Ti.

Then, we use the CPLEX software to solve the RMP and obtain the
optimal primal solution λ̄∗ and optimal dual solution (π∗1, π

∗
2, π

∗
3, µ

∗). In
the next step, we consider the pricing problem (subproblem)

ζi = max{(cT − (π∗1)
TA1 − (π∗2)

TA2 − (π∗3)
TA3)x− µ∗ : x ∈ H}.

To solve the above subproblem we first apply the presented two phase
algorithm (Algorithm 2) to obtain a near optimal basic feasible solution
η̃. Then we apply the simplex algorithm on η̃ to obtain an optimal basic
feasible solution of the subproblem. Let ζi be the optimal solution. If
ζi = 0 then λ̄∗ is optimal for LPRIMP. If ζi > 0 then the column corre-
sponding to the optimal solution is introduced that leads to a new RMP.
The pseudo-code of the column generation is presented in Algorithm 3.
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Algorithm 3 Column Generation

1: (Initialization) Select a subset of columns providing a feasible Re-
stricted Linear Programming Master Problem (RMP).

2: (Solving RLPMP) Solve the RLPMP to obtain optimal primal
solution λ̄∗ and optimal dual solution (π∗1, π

∗
2, π

∗
3, µ

∗).
3: (Solve the subproblem) Apply the two phase algorithm (Algo-

rithms 1 and 2) for solving the set packing problem to obtain a
nearly optimal basic feasible solution η̃. Use the simplex method
starring from η̃, to compute the optimal basic feasible solution of
the subproblem. Let ζ be the optimal solution of the subproblem.

4: (Stopping criterion) If ζ = 0 then stop λ̄∗ is optimal.
5: (Generating a new column) If ζ > 0 add the column correspond-

ing to the optimal solution to the RLPMP and go to step 2.
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Algorithm 4 Specific Branch and price algorithm

1: (Initialization of the root) Associate the original problem S0 to
the root node of the search tree and add the root node to the list of
active nodes of search tree.

2: (Process the root) Apply the column generation method (Algo-
rithm 3) to solve the linear programming relaxation of the original
problem S0 with formulation P 0. If the optimal solution (with op-
timal value z0) is feasible (and therefore optimal) for S0, then Stop.
Let λ∗ = NULL and GUB = +∞ (λ∗ and GUB denote the best
feasible solution and objective value obtained so far). i=1.

3: while The list of active nodes of search tree is not empty do
4: (Node selection) Select an active node with associated problem

Si and formulation P i from the search tree.
5: (Bounding) Apply the column generation algorithm (Algorithm

3) to solve the linear programming relaxation of Si with formula-
tion P i.

6: (Prune by infeasibility) If the problem is infeasible, then prune
by infeasibility.

7: (Prune by bound) Let λi and llb be the optimal solution and
optimal value of linear programming relaxation of Si. If llb >
GUB then prune by bound.

8: (Prune by optimality) If the optimal solution of linear pro-
gramming relaxation of Si is integer, then update the best feasi-
ble solution and objective value obtained so far (if llb < GUB let
GUB = llb and λ∗ = λi).

9: (Branching) Let η̃ =
∑T

t=1 λtη
t ∈ {0, 1}T . Select an index j such

that η̃j is fractional. Select an index j such that ηj is fractional.
Branch on ηj (Two new active nodes are added to the search tree).
on which we can branch

10: end while
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5 Numerical results

In this section we examine the numerical performance of the branch
and price method. All calculations and methods run on a system with
Win 7 operating system with Intel(R) Core(TM) i3 of CPU and 6 Gb
of RAM. The presented branch and price algorithm of this paper was
compared with the branch and cut algorithm of Avella and Vasil’Ev [2].
Because, both algorithms are exact algorithms and are based on the
same model. The branch and cut algorithm of Avella and Vasil’Ev [2]
was re-implemented and both algorithms were run to optimality. The
experiment aims to evaluate the presented branch and price algorithm
on 21 public competition instances of the Track 3 of ITC–2007 [16]. The
characteristics of these problem instances are given in table 1. In this
table, “name” denotes the name of the problem, c̄ denotes the number
of courses, r̄ denotes the number of rooms, t̄ denotes the number of time
periods and ḡ denotes the number of groups.

Clearly, there are some differences between the UCTP problem of this
paper and those of Track3 of ITC–2007. However, we needed some test
problems to discuss the efficiency of our presented method and perform
a comparison with the branch and cut method of Avella and Vasil’Ev
[21]. Therefore, we decided to use the ITC–2007 instances.

Here, we explain how we used an instance of Track 3 of ITC–2007
to test algorithms of this paper. In an instance of Track 3 of ITC–2007
each course c has a certain number of lectures, a minimum number of
working days (mwc) and a number of students attending this course.
On the other hand, to test algorithms of this paper, each course of an
input instance must have a weekly number of teaching hours (nc) and a
minimum (maximum) number of daily teaching hours (ncmin(n

c
max)), a

subset of rooms Rc ⊂ R to which the course c can be assigned.
Therefore, for each course of an input instance of Track 3 of ITC–

2007, we let nc be the number of lectures, ncmin be one and ncmax be the
greatest integer less than or equal to nc/mwc i.e. ⌊nc/(mwc)⌋. Moreover,
we let Rc be those rooms for which the number of students of the course
c is less than or equal to the capacity of the room. We let lmax and ks (for
each teacher s ∈ S) be the number of days of a week. We assumed that
all rooms are available at all time periods. Time periods at which the
teacher s is available (T⧸Ts) are exactly those of Track 3 of ITC–2007.
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In an instance of Track 3 of ITC–2007, there are no morning and
afternoon sessions. For some instances that was possible, we divided
daily time periods into morning and afternoon sessions. These instances
are recorded in table 1. In this table “name” denotes the name of the
instance, “All” denotes the number of all time periods in a day, “morn-
ing”(“afternoon”) denotes the number of time periods that we consid-
ered for morning (afternoon) session. For the rest of instances we as-
sumed that we have only one session in every day. Note that, because
of the above differences, it is not possible to perform a comparison be-
tween our results and the best results of other authors on the Track3 of
ITC–2007.

name All morning afternoon

comp11 9 1 −5 6 −9
comp12 6 1 −3 4 −6
comp18 6 1 −3 4 −6

Table 1: Morning and Afternoon sessions of some instances

Without loss of generality, all coefficients of the variables in the
objective function are set to one. However, these coefficients can be
changed according to the desirability of the corresponding university for
which the scheduling is performed. The numerical results are recorded
in table 2. In this table nv denotes the number of variables, nm denotes
the number of master problems in the branch and price method and ns
denotes the number of subproblems. Moreover, time denotes the com-
puting time (in minutes) and obj denotes the objective function value
and O.M means that the corresponding algorithm runs out of memory.

In table 2, our presented branch and price method is compared with
the branch and cut method of Avella and Vasil’Ev [2], with respect to
the computing time and the objective function value. The numerical
results of this table show that in all cases, the computing time of our
presented branch and price method is less than that of the branch and
cut method. This happens because in every iteration of the branch and
cut method a general linear programming relaxation is solved, while
in every iteration of our presented branch and price method the sub-
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problem is solved with an efficient algorithm that is designed to solve
the corresponding set packing problem. In some cases (comp07 and
comp20) the branch and cut method fails to obtain the solution of the
problem, while our presented branch and price algorithm obtains the
optimal solution in a reasonable computing time. However, in some
cases (comp12,comp15,comp16) both problems fail to obtain the opti-
mal solution of the problem. What caused the algorithms to fail on some
instances was the lack of system memory. In all cases, both algorithms
obtain the same objective function value.

90

Branch and Price Branch and Cut
name c̄ r̄ t̄ ḡ nv ns time(m) obj. time(m) obj.

comp01 30 6 30 14 5430 1320 48 160 83 160
comp02 82 16 25 70 32882 3925 221 281 306 281
comp03 72 16 25 68 28872 3625 167 253 196 253
comp04 79 18 25 57 35629 3625 243 270 384 270
comp05 54 9 36 139 17550 7020 111 152 157 152
comp06 108 18 25 70 48708 4375 259 357 554 357
comp07 131 20 25 77 65631 4900 647 434 O.M −
comp08 86 18 25 61 38786 3875 213 324 311 324
comp09 76 18 25 75 34276 4025 219 277 268 277
comp10 115 18 25 67 51865 4325 598 370 729 370
comp11 30 5 30 13 6780 1890 56 162 59 162
comp12 88 11 36 150 34936 8460 − − − −
comp13 82 19 25 66 39032 4050 254 308 305 308
comp14 85 17 25 60 36210 3625 203 275 280 275
comp15 72 16 25 150 28872 3625 − − − −
comp16 108 20 25 68 54108 4500 − − − −
comp17 99 17 25 70 42174 4175 296 339 353 339
comp18 47 9 36 52 15275 3888 97 138 126 138
comp19 74 16 25 66 29674 3700 168 248 215 248
comp20 121 19 25 78 57569 4800 483 390 O.M −
comp21 94 18 25 78 5430 1320 53 327 69 327

Table 2: Comparison with the branch and cut algorithm
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Figure 1: Number of variables increases with the 
number of courses

Figure 1 depicts change in the number of variables versus change of
number of courses. According to this figure, the number of variables con-
siderably increases with the number of courses. For example, when the
number of courses is 131, the number of variable is 65631 i.e. the ratio
between the number of courses and number of variables is approximately
0.002. This indicates that the number of variables in the instances is
very large and justifies the use of branch and price algorithm for solving
the problem.
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Figure 2 shows the number of generated subproblems (or equivalently
master problems) for each problem instance. Form this figure, it can be
observed that the number of generated subproblems does not necessarily
increases with the number of courses. For example, for the problem
with 88 courses the number of generated subproblems is 8460, while this
number for the problem with 131 courses is 4900. Therefore, the number
of generated subproblems depends on the structure of the problem.
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Figure 3 is concerned with the computing time of the branch and
price algorithm and branch and cut algorithm. The numerical results
show that for all instances the computing time of the branch and price
algorithm is considerably less than that of the branch and cut algorithm.
Moreover, for larger instances the difference between these computing
times is larger.

6 Conclusions

In this paper, we considered a binary integer programming formulation
of the university course timetabling problem and presented an efficient
adjustment of the branch and price algorithm for solving the problem.
Then, we performed a comparison with the branch and cut algorithm of
Avella and Vasil’Ev [2]. The numerical results justify the efficiency of
our presented algorithm. Moreover, for all test problems the computing
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time of the presented branch and price algorithm was less than that of
branch and cut algorithm. The number of variables compared to the
size of input instances was very large that justifies the use of branch and
price algorithm for solving the problem. The size of the search tree in the
presented branch and price algorithm depends on the structure of the
problem and does not increase necessarily with the size of the problem.
One suggestion for future work is to apply metaheuristic algorithm for
solving the problem and compare the results. Another suggestion is to
apply other heuristic algorithms for solving the subproblem.
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