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1 Introduction
Throughout this paper, R denotes a commutative Noetherian ring with
non-zero identity, M denotes a finitely generated R-module, and k ≥ −1
is an arbitrary integer. For a subset T of SpecR, we set

(T )>k := {p ∈ T | dimR/p > k},

(T )≤k := {p ∈ T | dimR/p ≤ k}.
This paper is essentially devoted to generalize some interesting conjec-
tures in commutative algebra, which deal with the concept of depth of
a module. An effective instrument for the computation of the depth of
a module is the Auslander-Buchsbaum Formula which is related to its
projective dimension. There are various generalizations of the depth of
a module. The notion of k-regular sequence was introduced by Chinh
and Nhan [4] which is an extension of the well-known notion of filter
regular sequence introduced by Schenzel, Trung, and Cuong [8] and the
notion of regular sequence as well. So it is important to know what does
happen to the Strong Intersection Theorem for filter regular sequences
or even more general for k-regular sequences (k ≥ −1).
To generalize the Intersection Theorem, we need to generalize the
Auslander-Buchsbaum inequality to derive a relation between the k-
depth of an arbitrary ideal a of R and the k-projective dimension on
a not necessarily local ring. For this purpose, firstly, in section 2, we
introduce the concept of k-projective dimension which is an extension
of the well-known notion of projective dimension (for k ≥ −1). Then
we give some properties of k-projective dimension which we shall need
in the sequel.
In section 3, we are concerned with the k-projective dimension of M /xM ,
where x is a k-regular element on both R-module M and R. The main
result of this section is the following theorem.
Theorem 1. (Generalized Second Change of Rings Theorem). Let M
be an R-module and x be a poor k-regular element on both M and R.
Then k-pdRM ≥ k -pdR/xRM /xM (see Theorem 3.2).

As a consequence of this theorem, we get that k-pdRM /xM ≤ 1 +k -
pdRM for any poor k-reqular element x on both M and R (see Corollary
3.3).
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Classically, there exist two theorems which relate two k-projective
dimensions of M and M /xM over two rings R and R/xR. Most of these
properties are familiar results for the case k = −1, cf. [3], [7], and [10].
The main generalizations of this paper appear in section 4. Recall that
the projective dimension of an R-module is related to its depth as follows.

Auslander-Buchsbaum Formula. ([3, Theorem 1.3.3]). Let R be
a local ring and M be a non-zero finitely generated R-module of finite
projective dimension. Then

pdRM + depthM = depthR.

The following theorem presents a generalized inequality of Auslander-
Buchsbaum Formula for an arbitrary ideal and any Noetherian ring.

Theorem 2. Let M be an R-module with finite k-projective dimension,
and a be an ideal of R such that (SuppR/a)>k ̸= ∅. Then k-pdRM ≥ k -
depth(a,R)− k -depth(a,M ) (see Theorem 4.1).

Conjecture (The Dimension Inequality). Let R be a local ring, M
and N be finitely generated R-modules with ℓ(M ⊗R N ) < ∞. Assume
that pdRM < ∞. Then

dimM + dimN ≤ dimR.

Serre in [9] proved the above cojecture for a regular local ring R, for
finitely generated R-modules M and N with ℓ(M ⊗R N ) < ∞. Since
R is a regular local ring, dimR = depthR. Therefore by Auslander-
Buchsbaum Formula, we have dimN ≤ pdRM . As a regular local ring
has finite projective dimension, in 1973, Peskine and Szpiro used the
above formulation to generalize Serre’s Theorem, replacing the condition
that R is regular local ring with the much weaker condition that pdRM <
∞.
The Intersection Theorem. [6] Let R be a local ring and let M and
N be finitely generated R-modules with ℓ(M ⊗R N ) < ∞. Assume that
pdRM < ∞. Then dimN ≤ pdRM .
One of our main results in this paper is to show that dimN is at most
k-projective dimension of M which is nearer upper bound for dimN than
projective dimension of M , (see Example 2.12 and Theorem 4.6).
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Theorem 3. (Generalized Intersection Theorem). Let R be a k-Cohen-
Macaulay ring. Let M and N be finitely generated R-modules and a be
an ideal of R with (SuppR/a)>k ̸= ∅ such that dimM +dimN ≤ k -htRa.
Assume that k-pdRM < ∞. Then dimN ≤ k -pdRM (see Theorem 4.6).

For a perfect R-module M the following conjecture follows immedi-
ately from the Intersection Theorem. Also, for k-perfect modules, we
prove a generalization of the following conjecture (see Theorem 4.11).
The Strong Intersection Conjecture.[2] Let R be a local ring and
let M and N be finitely generated R-modules with ℓ(M ⊗R N ) < ∞.
Assume that pdRM < ∞. Then

dimN ≤ gradeM .

Theorem 4. Let R be a k-Cohen-Macaulay ring. Let M and N be
finitely generated R-modules and a be an ideal of R with (SuppM /aM )>k

̸= ∅, such that dimM + dimN ≤ k -htRa. Assume that M is k-perfect
with k-pdRM < ∞. Then dimN ≤ k -gradeM (see Theorem 4.11).
Ischebeck Inequality. Let R be a local ring and M be a non-zero
R-module. It is well-known that for any p ∈ AssM , depthM ≤ dimR/p.
Also for any prime ideal p of R,

depthM ≤ depth(p,M ) + dimR/p.
In a Noetherian ring R, we say that (∗) holds for the ideal a of R with
(SuppR/a)>k ̸= ∅, if for any p ∈ AssR,

k-depth(a,R) ≤ dimR/p.

The Grade Conjecture. ([6, Conjecture (f) of Chapter II]) Let R be
a local ring and M be a finitely generated R-module with pdRM < ∞.
Then

gradeM + dimM = dimR.

To generalize the Grade Conjecture, we prove the following Theorem
(see Theorem 4.8).
Theorem 5. Let R be a Noetherian ring and a be an ideal of R and M
be a finitely generated R-module with (SuppM /aM )>k ̸= ∅. If (∗) holds
for a, then we have the double inequality:

k-depth(a,R) ≤ k -gradeM + dimM ≤ dimR.
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2 Preliminaries
In this section, we shall deal with a particular generalization of the
concept of projective dimension called k-projective dimension. First, we
recall the concept of k-regular sequences as introduced by Chinh and
Nhan in [4].

Definition 2.1. [1] Let M be an R-module. A sequence a1, ..., an of
elements of R is called a poor k-regular M -sequence whenever ai /∈ p for
all

p ∈ Ass(M /

i−1∑
j=1

ajM ), dimR/p > k

for all i = 1, ..., n. Moreover, if dim(M /
∑n

i=1 aiM ) > k , a1, ..., an is
called a k-regular M -sequence. An element a of R is called a k-regular
M -element if a /∈ p for all p ∈ AssM satisfying dimR/p > k .

In the case k = −1 (k = 0 and k = 1, resp.), we deal with the
familiar concept of regular M -sequenece (filter regular M -sequence and
generalized regular M -sequence, resp.). (See [8] and [5], resp.)

Definition 2.2. [1]. Let M be an R-module and a be an ideal of R
with (SuppM /aM )>k ̸= ∅. Then we denote the length of any maximal
k-regular M -sequence contained in a by k-depth(a,M ).

In the case k = −1 (k = 0 and k = 1, resp.), this is the usual notion
depth(a,M ) (f -depth(a,M ), g-depth(a,M ), resp.)

Remark 2.3. Let a be an ideal with (SuppM /aM )>k ̸= ∅. For all
p ∈ Supp(M /aM ) > k , we have

k < dimR/p ≤ dimM /aM .

Therefore, whenever we are concerned with k-depth(a,M ), we should
know that −1 ≤ k < dimM /aM .

By the above definition, we have the following lemmas.

Lemma 2.4. Let M be an R-module and a be an ideal of R with
(SuppM /aM )>k ̸= ∅. Then
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k-depth(a,M ) = min{depth(aRq,Mq) | q ∈ (SuppM /aM )>k}.

Lemma 2.5. Let M be an R-module and a be an ideal of R with
(SuppM /aM )>k ̸= ∅. Then

depth(a,M ) ≤ k -depth(a,M ) ≤ dimM .

Proposition 2.6. ([1, Proposition 2.7]). Let M be an R-module, a be
an ideal with (SuppM /aM )>k ̸= ∅ and x ∈ a be a k-regular M -element.
Then

k-depth(a/xR,M /xM ) = k -depth(a,M /xM ) = k -depth(a,M )− 1 .

Proposition 2.7. ([1, Proposition 2.8]). Let M be an R-module, a be
an ideal with (SuppM /aM )>k ̸= ∅. Then

k-depth(a,M ) = min{ k- depth(p,M ) | p ∈ V (a)}.

Following, we introduce the concept of k-projective dimension as a
generalization of projective dimension of an R-module.

Definition 2.8. Let M be an R-module. The k-projective dimension of
M denoted by k-pdRM , is defined
k-pdRM = sup{i ∈ N0|∃N , (SuppN )>k ̸= ∅ s.t dimExtiR(M ,N ) > k},
if sup exists; otherwise, we define k-pdRM = −∞.
By this convention, a zero module has k-projective dimension −∞. It is
clear that if (SuppM )>k = ∅, then k-pdRM = −∞.

In the case k = −1, the notion of k-pdRM is the same as pdRM , the
projective dimension of M .

By the above definition, we have the following results.

Lemma 2.9. Let M be an R-module and t be a non-negative integer.
Then k-pdRM ≤ t if and only if dimExtiR(M ,N ) ≤ k , for all i > t and
all R-modules N with (SuppN )>k ̸= ∅.

Lemma 2.10. Let M be an R-module, and t be a non-negative integer.
If for every p ∈ (SpecR)>k , dimExtiR(M ,R/p) ≤ k , for all i > t, then
k-pdRM ≤ t .
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Remark 2.11. For every R-module M , if j ≥ k is an integer, then
j-pdRM ≤ k -pdRM . Let k-pdRM = t be an integer. Then by Lemma
2.9, dimExtiR(M ,N ) ≤ k for all i > t and all R-modules N with
(SuppN )>k ̸= ∅. So that for all j ≥ k, we have dimExtiR(M ,N ) ≤ j .
Therefore j-pdRM ≤ k -pdRM , as desired. Specially, j-pdRM ≤ pdRM
for all j ≥ −1.

Example 2.12. It is notable that, the k-projective dimension of an R-
module is not necessarily equal to its projective dimension. It is clear
that Z2 is not projective module over Z, in fact pdZZ2 = 1 ; but 0-
pdZZ2 ̸= 1 .

In the following, we give some properties of k-projective dimension
which we shall need in the sequel.

Lemma 2.13. For every R-module M and for all p ∈ SpecR, we have

k-pdRpMp ≤ k -pdRM .

Proof. We may assume that k-pdRM = t is an integer. Let p ∈ SpecR
and X be an arbitrary Rp-module with (SuppRpX )>k ̸= ∅. Then there is
an R-module N such that X = Np. By Lemma 2.9, dimExtiR(M ,N ) ≤ k
for all i > t, and so dimExtiRp

(Mp,Np) ≤ k for all i > t. It means that
k-pdRpMp ≤ t . □

Before the following lemma, we remind that for any R-module X,
there exists a maximal ideal m in SuppX such that dimRX = dimRmXm.

Proposition 2.14. Let M be a non-zero R-module. Then

k-pdRM = max{k -pdRmMm | m ∈ SuppM ∩MaxR}.

Proof. By Lemma 2.13, k-pdRmMm ≤ k -pdRM for all m ∈ SuppM ∩
MaxR. Let k-pdRM = t . Then there is an R-module N with (SuppN )>k

̸= ∅ such that dimExttR(M ,N ) > k .
Assume that m is a maximal ideal in SuppExttR(M ,N ) such that
dimRExt

t
R(M ,N ) = dimRmExt

t
Rm

(Mm ,Nm). Hence k-pdRmMm ≥ t and
so k-pdRM = k -pdRmMm, as required. □

Now, we are ready to get a relation between the concept of projective
dimension and k-projective dimension.
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Proposition 2.15. Let M be an R-module. Then

k-pdRM = sup{pdRpMp | p ∈ (SuppM )>k}.

Proof. First assume that k-pdRM = t is an integer and p ∈ (SuppM )>k .
We show that ExtiRp

(Mp,X ) = 0 for all i > t and all Rp-modules X.
Let i > t and N be an R-module such that X = Np. Assume that
ExtiRp

(Mp,Np) ̸= 0 . Then p ∈ SuppExtiR(M ,N ) and so dimR/p ≤
dimExtiR(M ,N ) ≤ k which is a contradiction. Thus pdRpMp ≤ t , for all
p ∈ (SuppM )>k . On the other hand, as k-pdRM = t , there exists an
R-module N ′ with (SuppN ′)>k ̸= ∅ such that dimExttR(M ,N ′) > k . Let
q ∈ SuppExttR(M ,N ′) be such that dimR/q > k . Then ExttRq

(Mq,N
′
q) ̸=

0 and so pdRqMq ≥ t . But, as we have seen, pdRqMq ≤ t . Therefore
pdRqMq = k -pdRM . Finally, if k-pdRM = −∞, then dimExtiR(M ,N ) ≤
k for all i ≥ 0 and all R-modules N with (SuppN )>k ̸= ∅. Therefore
for all p ∈ (SuppM )>k , dimExtiRp

(Mp,X ) ≤ k for all i ≥ 0 and all Rp-
modules X with (SuppX )>k ̸= ∅. That means pdRpMp = −∞ for all
p ∈ (SuppM )>k . □

At the end of this section, we peruse the behaviour of k-depth and
k-pd along exact sequences, which are needed in the next sections, and
all come from definitions.

Lemma 2.16. Let 0 −→ A −→ B −→ C −→ 0 be a short exact sequence
of R-modules, and a be an ideal of R. Then

(i) k-depth(a,A) ≥ min{k -depth(a,B), k -depth(a,C ) + 1}.

(ii) k-depth(a,B) ≥ min{k -depth(a,A), k -depth(a,C )}.

(iii) k-depth(a,C ) ≥ min{k -depth(a,B), k -depth(a,A)− 1}.

Corollary 2.17. Let 0 −→ A −→ B −→ C −→ 0 be a short exact
sequence of R-modules and a be an ideal of R. If k-depth(a,B) > min{k -
depth(a,A), k -depth(a,C )}, then k-depth(a,A) = k -depth(a,C ) + 1 .

Lemma 2.18. Let 0 −→ A −→ B −→ C −→ 0 be a short exact sequence
of R-modules. Then

(i) k-pdRA ≤ max{k -pdRB , k -pdRC − 1}.
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(ii) k-pdRB ≤ max{k -pdRA, k -pdRC}.

(iii) k-pdRC ≤ max{k -pdRB , k -pdRA+ 1}.

Corollary 2.19. Let 0 −→ A −→ B −→ C −→ 0 be a short exact
sequence of R-modules. If k-pdRB < max{k -pdRA, k -pdRC}, then k-
pdRA = k -pdRC − 1 .

3 Main Theorems
Theorem 3.1. (Generalized First Change of Rings Theorem). Let x
be a poor k-regular element on R and M be an R/xR-module with k-
pdR/xRM < ∞. Then

k-pdRM = 1 + k -pdR/xRM .

Proof. For some p ∈ (SuppM )>k , k-pdRM = pdRpMp, by Proposition
2.15. If x /∈ p, then x/1 is invertible in Rp. Since xM = 0 , then
x/1Mp = 0 . That is Mp = 0 , which is a contradiction. Therefore x ∈ p.
As x/1 is non-zerodivisor on Rp by [1, Theorem 2.3], and Mp ̸= 0 is
an Rp/

x
1Rp-module with pdRp/

x
1
Rp
Mp < ∞, so we have pdRpMp = 1 +

pdRp/
x
1
Rp
Mp (e.g. see[10, Theorem 4.3.3]). Therefore k-pdRM ≤ 1 + k -

pdR/xRM . Now, let q/xR ∈ (SuppR/xRM )>k be such that k-pdR/xRM =
pd(R/xR)q/xRMq/xR. Thus k-pdR/xRM = pdRq/

x
1
Rq
Mq. Again using [10,

Theorem 4.3.3], we obtain pdRq/
x
1
Rq
Mq = pdRqMq − 1 ≤ k -pdRM − 1 ,

which completes the proof. □

Theorem 3.2. (Generalized Second Change of Rings Theorem). Let M
be an R-module and x be a poor k-regular element on both M and R.
Then

k-pdRM ≥ k -pdR/xRM /xM .

Proof. If k-pdR/xRM /xM = −∞, then there is nothing to prove. So we
assume that it is finite. Let k-pdR/xRM /xM = pd(R/xR)p/xR(M /xM )p/xR,
for some p/xR ∈ (SuppR/xRM /xM )>k , by Proposition 2.15. We have
pdRp/(

x
1
Rp)Mp/

x
1Mp ≤ pdRpMp, by [10, Theorem 4.3.5]. But, by Propo-

sition 2.15, pdRpMp ≤ k -pdRM . This proves the theorem. □
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Corollary 3.3. Let M be an R-module with k-pdRM < ∞. If x is a
poor k-regular element on both M and R, then

k-pdRM /xM ≤ 1 + k -pdRM .

Proof. Combine the First and Second Generalized Change of Rings
Theorems. □

Corollary 3.4. Let M be an R-module. Let x1, · · · , xr be a poor k-
regular sequence on both M and R. Then

k-pdRM /(x1 , ..., xr )M ≤ r + k -pdRM .

Proof. The proof is by induction on r and using Corollary 3.3. □

4 Main Generalizations
The following theorem is a generalization of a part of the Auslander-
Buchsbaum Formula. This formula shows the relation between k-depth
and k-projective dimension of an R-module.

Theorem 4.1. Let R be a Noetherian (not necessarily local) ring and
M be an R-module with finite k-projective dimension. Let a be an ideal
of R such that (SuppR/a)>k ̸= ∅. Then

k-pdRM ≥ k -depth(a,R)− k -depth(a,M ).

Proof. We prove by induction on k-pdRM = n. If n = 0, then
pdRpMp = 0 , for all p in (SuppM )>k , by Proposition 2.15. It means
that Mp is a direct sum of finite copies of Rp, for all p ∈ (SuppM )>k

and so depth(aRp,Mp) = depth(aRp,Rp). Therefore by Lemma 2.4,

k − depth(a,M ) = min{depth(aRq,Mq) | q ∈ (SuppM /aM )>k}
= min{depth(aRq,Rq) | q ∈ (SuppM /aM )>k}
≥ min{depth(aRq,Rq) | q ∈ (SuppR/a)>k}
= k − depth(a,R),

as desired.
Now, suppose that n > 0 and the result has been proved for smaller
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values of n. Hence pdRM > 0 and there exists an exact sequence
0 −→ K −→ F −→ M −→ 0 where F is a free R-module and K is a non-
zero R-module. By Corollary 2.19, we have k-pdRK = k -pdRM − 1 , so
by inductive hypothesis, k-pdRM − 1 ≥ k -depth(a,R)− k -depth(a,K ).
If k-depth(a,M ) ≥ k -depth(a,K ), then k-pdRM−1 ≥ k -depth(a,R)−k -
depth(a,K ) > k -depth(a,R) − k -depth(a,M ) − 1 , so k-pdRM > k -
depth(a,R)− k -depth(a,M ), as desired.
Now, suppose that k-depth(a,K ) > k -depth(a,M ). Then k-depth(a,R)
≥ k-depth(a,M ), by Lemma 2.16(ii). If k-depth(a,R) = k -depth(a,M ),
then the assertion holds. Now, let k-depth(a,R) > k -depth(a,M ),
then since k-depth(a,R) > min{k -depth(a,M ), k -depth(a,K )}, we get
k-depth(a,K ) = k -depth(a,M ) + 1 , by Corollary 2.17. Therefore

k-pdRM − 1 ≥ k-depth(a,R)− k -depth(a,K )

= k-depth(a,R)− k -depth(a,M )− 1 .

Thus k-pdRM ≥ k -depth(a,R)− k -depth(a,M ), as desired. □
In case of k = −1, we get a relation between the projective dimen-

sion of a finitely generated R-module, with the depth of an ideal on an
arbitrary (not necessarily local) ring.

Corollary 4.2. Let M be an R-module with finite projective dimension
and a be a proper ideal of R. Then

pdRM ≥ depth(a,R)− depth(a,M ).

In 1965, Serre [9] proved the following theorem.

Theorem 4.3. (Dimension Inequality). Let R be a regular local ring,
M and N be finitely generated R-modules with ℓ(M ⊗R N ) < ∞. Then

dimM + dimN ≤ dimR.

Applying the above inequality, Serre concluded that dimN ≤ pdRM .
This conclusion and Example 2.12, motivates us to show that k-projective
dimension of M might be nearer upper bound for dimN than projective
dimension of M (see Theorem 4.6).

Definition 4.4. Let M be an R-module and a be an ideal of R with
(SuppM /aM )>k ̸= ∅. The k-height of a with respect to M is defined by
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k-htM a = min{htM p|p ∈ (SuppM /aM )>k}.

For an ideal a of R with (SuppM /aM )>k = ∅, we set k-htM a = +∞. In
the case k = −1, the notion of k-htM a is the same as htM a, the height
of ideal a with respect to M .

Definition 4.5. Let M be an R-module. M is called a k-Cohen-
Macaulay module (abbreviately k-C.M.), whenever either k-depth(a,M )
= k-htM a for all ideal a of R with (SuppM /aM )>k ̸= ∅ or (SuppM )>k =
∅.
In the case k = −1, (−1)-modules are exactly Cohen-Macaulay modules.

Theorem 4.6. (Generalized Intersection Theorem). Let R be a k-
Cohen-Macaulay ring. Let M and N be finitely generated R-modules and
a be an ideal of R with (SuppR/a)>k ̸= ∅ such that dimM +dimN ≤ k -
htRa. Assume that k-pdRM < ∞. Then

dimN ≤ k -pdRM .

Proof. As R is a k-Cohen-Macaulay ring, by using Theorem 4.1, we
have dimM +dimN ≤ k -depth(a,M )+k -pdRM . Since k-depth(a,M ) ≤
dimM , we deduce that dimN ≤ k -pdRM . □

Definition 4.7. Let M be an R-module with (SuppM )>k ̸= ∅. We
define k-gradeM as k-depth(AnnM ,R). For a proper ideal a of R
with (SuppR/a)>k ̸= ∅, we denote k-gradeR/a with k-gradea that is
k-depth(a,R). One can see that

k-gradeM = inf{i ≥ 0 | dimExtiR(M ,R) > k}.

Also, it is clear that 0-gradeM (1-gradeM ) is the length of maximal
filter (generalized) regular M -sequence in AnnM for k=0 (k=1).

Ischebeck Inequality. Let R be a local ring and M be a non-zero
R-module. It is well-known that for any p ∈ AssM , depthM ≤ dimR/p.
Also for any prime ideal p of R,

depthM ≤ depth(p,M ) + dimR/p.

In a Noetherian ring R, we say that (∗) holds for the ideal a of R with
(SuppR/a)>k ̸= ∅, if for any p ∈ AssR,
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k-depth(a,R) ≤ dimR/p.

Clearly, in any local ring (for k = −1), (∗) holds for the unique maximal
ideal which is known as Ischebeck Inequality.
The following theorem holds in a Noetherian ring (not necessarily local)
for an arbitrary ideal. The well-known inequalities of Peskine and Szpiro
([6], Lemma 4.8]) followed by this result in local case.

Theorem 4.8. Let R be a Noetherian ring, a be an ideal of R, and M
be an R-module such that AnnM ⊆ a and V(a)>k ̸= ∅. If (∗) holds for
a, then we have the double inequality:

k-depth(a,R) ≤ k -gradeM + dimM ≤ dimR.

Proof. Let p be a prime ideal of SuppM such that dimR/p = dimM .
Then, by Lemma 2.4,

k − gradeM + dimM ≤ k − depth(p,R) + dimR/p

≤ depthRp + dimR/p

≤ dimRp + dimR/p

≤ dimR

which is the inequality on the right.
We prove the inequality on the left by induction on k-gradeM . Let k-
gradeM = 0 . Then k-depth(AnnM ,R) = 0 , so there exists a prime
ideal p ⊇ AnnM in (AssR)>k . Satisfying ideal a in (∗), we have k-
depth(a,R) ≤ dimR/p ≤ dimM as required. Now, suppose that n > 0
and the inequality on the left is proved for any finitely generated R-
module N with (SuppN /aN )>k ̸= ∅ which k-grade of N is less than n.
Let M be an R-module of k-grade n. There exists a k-regular R-element
α ∈ AnnM . Thus k-gradeR/αRM = n − 1 by Proposition 2.6. Now, by
inductive hypothesis k-depth(a,R/αR) ≤ k -gradeR/αRM + dimR/αRM ,
and evidently k-depth(a,R) ≤ k -gradeRM + dimRM . □

Corollary 4.9. [6, Lemma 4.8]. Let (R,m) be a local ring and M be a
non-zero R-module. Then

depthR ≤ gradeM + dimM ≤ dimR.

Specially when R is a Cohen-Macaulay ring, the Grade Conjecture holds.
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Proof. We immediately deduce the assertion from Theorem 4.8, for
k = −1. □

Now, we propose the following conjecture, which is a generalization
of the Grade Conjecture.

The Generalized Grade Conjecture. Let M be an R-module of
finite k-projective dimension and (SuppM )>k ̸= ∅. Then

k-gradeM + dimM = dimR.

It is well-known that the above conjecture is true for perfect modules in
the case k = −1.

Definition 4.10. Let M be an R-module with finite k-projective dimen-
sion and (SuppM )>k ̸= ∅. M is called a k-perfect R-module, whenever

k-pdRM = k -gradeM .

By definitions 2.8 and 4.7, it is clear that k-gradeM ≤ k -pdRM .

The Generalized Strong Intersection Conjecture. Let R be a k-
Cohen-Macaulay ring. Let M and N be finitely generated R-modules
and a be an ideal of R with (SuppM /aM )>k ̸= ∅, such that dimM +
dimN ≤ k -htRa. Assume that k-pdRM < ∞. Then

dimN ≤ k -gradeM .

This conjecture holds for k-perfect modules, as follows.

Theorem 4.11. Let R be a k-Cohen-Macaulay ring. Let M and N be
finitely generated R-modules and a be an ideal of R with (SuppM /aM )>k

̸= ∅, such that dimM + dimN ≤ k -htRa. Assume that M is k-perfect
with k-pdRM < ∞. Then

dimN ≤ k -gradeM .

Proof. It follows immediately from Theorem 4.6. □
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