On biharmonic hypersurfaces of three curvatures in Minkowski 5-space

F. Pashaie^{1,*}, N. Tanoomand-Khooshmehr², A. Rahimi³ and L. Shahbaz⁴

 $^{1-4}$ Deptartment of Mathematics, Faculty of Sciences, University of Maragheh, P.O.Box 55181-83111, Maragheh, Iran. Email: $^1{\rm f_pashaie@maragheh.ac.ir}$, $^2{\rm nasertanoumand@gmail.com}$, $^3{\rm rahimi@maragheh.ac.ir}$, $^4{\rm l_shahbaz@maragheh.ac.ir}$, $^*{\rm Corresponding~author}$

May 24, 2022

Abstract

In this paper, we study the L_k -biharmonic Lorentzian hypersurfaces of the Minkowski 5-space \mathcal{M}^5 , whose second fundamental form has three distinct eigenvalues. An isometrically immersed Lorentzian hypersurface, $\mathbf{x}:M_1^4\to\mathcal{M}^5$, is said to be L_k -biharmonic if it satisfies the condition $L_k^2\mathbf{x}=0$, where L_k is the linearized operator associated to the 1st variation of the mean curvature vector field of order (k+1) on M_1^4 . In the special case k=0, we have L_0 is the well-known Laplace operator Δ and by a famous conjecture due to Bang-Yen Chen each Δ -biharmonic submanifold of every Euclidean space is minimal. The conjecture has been affirmed in many Riemanian cases. We obtain similar results confirming the L_k -conjecture on Lorentzian hypersurfaces in \mathcal{M}^5 with at least three principal curvatures.

Keywords: Lorentz hypersurface, finite type, L_k -biharmonic, k-minimal. MSC(2010): 53A10, 53B35, 53C15, 53C43.