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1 Introduction

The biharmonic maps on Euclidean spaces, as solutions of strongly ellip-
tic semilinear differential equations of order four, appear in the theory
of partial differential equations. From physical points of view, the bi-
harmonic surfaces play interesting roles the theories of elastics and fluid
mechanics. Also, the biharmonic Bezier surfaces play useful roles in
computational geometry. In the homotopy class of Brower of degree +1,
one cannot find a harmonic map from 2-torus into Euclidean 2-sphere,
although, there exists a biharmonic one ([6]). A famous conjecture of
Bang-Yen Chen states that each biharmonic submanifold of an Euclidean
space is minimal. In [5], the conjecture has been confirmed on hyper-
surface of E™ whose second fundamental form has at most two distinct
eigenvalues. Also, it has been affirmed on hypersurfaces of Euclidean
4-spaces in [8]. In [1], the subject is studied on submanifolds of Eu-
clidean spaces. Also, Chen had introduced a nice connection between
biharmonic hypersurfaces and the finite type ones.

Recently, some extensions of Chen’s conjecture has been studied
on some (semi-)Riemannian hypersurface of pseudo-Euclidean spaces.
For instance, one may find some results on biharmonic Riemannian or
Lorentzian hypersurfaces of M* in [3, 4, 11]. In this paper, replacing A
by Ly, we study Lj-conjecture on timelike hypersurfaces in M?® whose
shape operator has at least three eigenvalues.

Now, we present the organization of paper. Section 2 is allocated to
notations and concepts. In section 3, we show that if a Lg-biharmonic
timelike hypersurface has diagonal shape operator with three distinct
eigenvalues, the it is k-minimal. In section 4, we get same results on
Lj-biharmonic timelike hypersurfaces with non-diagonal shape operator
which has three possible csese. Also, in non-diagonal case, we show that
if the kth mean curvature of a Lj-biharmonic timelike hypersurfaces
is constant and one of its principal curvature is constant, then it is k-
minimal.
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2 Prerequisites

First, we recall prerequisite concepts and notations from [2, 9, 10, 12,

]. By definition, the Minkowski 5-space M® = E? is obtained from
Euclidean 5-space E° by endowing with the following non-degenerate
inner product (v,w) := —vjw; + X2_,v;w;, for every v,w € E°. For
each non-zero vector v € M?®, the value of (v, v) can be a negative, zero
or positive number and the vector v is said to be time-like, light-like or
space-like, respectively.

Every Lorentz hypersurface M; of M5 is defined by an isometric
immersion x : M} — M> such that induced metric on M is Lorentzian.
The Levi-Civita connections on M; and M?® (respectively) are denoted
by V and V. We consider a unit normal vector field n which defines the
second fundamental form S(i.e. the shape operator) on M.

In general, in each 4-dimensional Lorentz vector space Vi!, a basis
B := {v1,---,v4} is named orthonormal if it satisfies (v;,v;) = €]
for i,5 = 1,---,4, where ¢, = —1 and ¢; = 1 for ¢« = 2,3,4 (5,{ is the
Kronecker delta). Also, B is named pseudo-orthonormal if (vi,vi) =
(vo,v2) = 0, (v1,v2) = —1 and (v;,v;) = 55, for i = 1,2,3,4 and
j=3,4.

According to an orthonormal or pseudo-orthonormal basis B :=
{e1, -+ ,eq} chosen on the tangent bundle of M{l, there are two pos-
sible matrix forms G; := diag[—1,1,1,1] and Go = diag[[ 01 ],1, 1] for
the (induced) Lorentz metric on M.

In the case G; (with respect to an orthonormal basis), the funda-
mental form has two possible matrix forms F; = diag[A1, A2, A3, \4] and

Fao = diag[[ 5o ]7771,772],

where A # 0.
(Note that, x + i\ are two eigenvalues of F3).
In the case Ga (with respect to a pseudo-orthonormal basis), the fun-

damental form has two possible matrix forms F3 = diag[[ w0 } , ALy A2

k 0 0
and.7-"4:diag[[ 0 1],)\}.

Remark 2.1. In the case G, we substitute B := {e1,es,e3,e4} by a
new orthonormal basis B := {1, €2, €3, €4}, where €1 := %(61 + e2) and
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€y 1= %(el — e2). Then, we obtain F3 = diag[[ "_J“; K_%% , AL, A2] and
- K 0 g

Fy =diag[| o x =2 |, )\ (instead of F3 and Fy, respectively).
_E _vE

Now, we define the principal curvatures x;’s (for i = 1,--- ,4) of M}

in non-diagonal cases, as follow:

In the case S = Fo, we put kK1 = K+ i\, ko = K — i\, and K; := 1;_9,
for ¢« = 3,4.

When S = ]:'3, we take K1 = Ko = K, k3 := A1 and K4 := Ao.

In case S = Fy, we take k; := k for i = 1,2, 3, and k4 := \.

The characteristic polynomial of S on M{ is of the form

4 4
Q) = [t —ri) =D (=1)s;t* 7,

i=1 j=0

where, sg:=1, s; 1= Zl<j1<--~<ji<4 Kj, -+ Ky, for i =1,2,3,4.
For £k = 1,---,4, the kth mean curvature Hj of M{l is defined by
Hj,, = +~s,. We put for convenience that, Hy = 1. In usual, Mf is

named /é:c—mim'mal if H,y1 =0,.

When M{l has diagonal shape operator with constant eigenvalues, it
is called isoparametric. In non-diagonal case, isoparametric means that
the minimal polynomial of shape operator is constant. By Theorem
4.10 in [10], there is no isoparametric timelike hypersurface of M® with
complex principal curvatures.

The well-known Newton map Py, : x(M{) — x (M) are defined by

P0:I7 PkZSkI_SOPkfh (.7:1727374)

Newton map has another equivalent formula, P, = Zfzo(—l)isk,iSi
which gives Py = 0. (see [2, 13]).
We will use the following notations

fik = > Kjy - Ko (i=1,2,34 1<k<3),
1< << <4 #i

iy ik = > Kjy kg, (=1,2,3,4; 1<k <3).
1< << <41 F#i1551 792
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According to possible matrix forms of .S, the map P; has different forms.
In the diagonal case S = Fi, where we have P; = diag[pi,j, - , paj),
for j =1,2,3.
In three non-diagonal cases we have as follow.
In the case S = F5, we have
P; = diag H S e ],u3;j7ﬂ4;j} :

AB1,2;:5—-1 Kp125—1 + H1,2;5

When S = F3, we have

Pj(p) _ dlag |:|: B1,255 + (8 — $)p1 251 —Lp1 251 ]7“3;j7”4;j:| )

Tri251 p1,2;5 + (5 + 31,251

In the case S = Fy, similarly P;(p) has the matrix form

wj + 26uj_1 + (52 — Duj_o —Suj_2 —%(ujfﬁ-nu,-fz)
2 p)
Suj—2 uj 4+ 2ru;_1 + (k% + $)uj_o %(uj71+'iuj72)
)
2
M2 (i1 + Kuj_2) 2 (w1 + ruj_2) uj +2kuj_q1 + K2uj o

where ug =uo =0, u; = A yg=1land u_1 =u_o =0.
In all cases we have the following important identities ([2, 13]).

(1) Sk+1 = Kifik + k1, (1 <i<4;1<k<3)

(i) fhisks1 = Ripbi gk + M lsk41, (1<i,l<4,i#1)
and
pi1 = 4Hy — X,

pip = 6Hy — 4NHy + )2, (1<i<4),
tr(Py,) = ¢, Hy,

tr(Py o S) = crHg1,

trS? = 4(4H? — 3H,),

4
tT(Pk o 52) — <k N 1) [4H1Hk+1 — (4 — k- 1)Hk+2],

where ¢ = (4 k)(3) = (k + 1)(kil).
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The linearized operator Ly : C*°(M7) — C®(M{) is defined by
Li(f) := tr(Py o V*f)

where (V2f(X),Y) = (VxVf,Y) for every smooth vector fields X and
Y on Mi.

Associated to the orthonormal frame {ej,---,e4} of tangent space
on a local coordinate system in the hypersurface = : Mj — M?> |, for
k=0,---,3, Li(f) has an explicit expression as

4

Li(f) = =) eipinleieif — Veeif). (2)

i=1

For a Lorentzian hypersurface x : M} — M?®, with a chosen (local)
unit normal vector field n, for an arbitrary vector a € M® we use the
decomposition a = a’ +a’¥ where a’” € T'M is the tangential component
of a, alV L TM, and we have the following formulae from [2, 13].

Vi(x,a) =a’,

V(n,a) = —SaT,

Lyx = cpHyq1n,

Lyn = —(41)VHi1 — (o) [AH1 Hyp1 — (4 — k — 1) Hypo)n.
Then, we get

(Z) L%X = 24[P2VH2 - 9H2VH2] + 12[L1H2 - 12H2(2H1H2 — Hg)]n
(i) L3x = 24[P3VHz — 6H3V H3| + 12[LoH3 — 4H3(4H, Hs — Hy)|n
(i4i) Lix = —12H,;VHy + 4(L3Hy — 4H1H})n

(3)
If a hypersurface x : Mj — M? satisfies the equation Lix = 0, then

it is said to be Lg-biharmonic. Equivalently, x is Li-biharmonic if and
only if it satisfies conditions:

. 4
(1) LyHpq1 = (k: N 1> Hyp1(4H 1 Hyppq — (4 =k — 1)Hy19),

(1) Pey1VHp1 =3(4 — k)Hp1 VHiyq.
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By (3)(4), a hypersurface = : M{ — M5 is Li-biharmonic if and only if
it satisfies conditions:

(i) LyHy = 12Hy(2H,Hy — Hs), (ii) P,VHy = 9H,VHy.  (5)

From (3)(i7) we get that a hypersurface x : M{ — M? is Lo-biharmonic
if and only if it satisfies conditions:

(i) LyHs = AH3(AH Hs — Hy), (ii) PsVHs = 6H3VHs.  (6)

Finally, (3)(iii) implies that a hypersurface z : M} — M? is Ls-
biharmonic if and only if it satisfies conditions:

(i) LsHy = 4H,H?, (i3) VH} = 0. (7)

5
The structure equations on M?® are dw; = wij N\ wj, wij +wji = 0
=1

J]=

5
and dw;; = ) wiy A wyj. Restricted on M, we have ws = 0 and then,
=1
4
0 =dws = ) ws; Aw;. So, by Cartan’s lemma, there exist functions
i=1

4
hij such that ws; = ) hjjw; and h;; = hj;; Which give the second
j=1
fundamental form of M, as B = ) hjjw;wjes. The mean curvature H
/L‘?j
4
is given by H = % >~ hii. Therefore, we obtain the structure equations

=1
on M as follow.

4
dw; = E wij A\ Wj, Wij + wj; = 0,
Jj=1

4

3
1
dwi; = E Wik N\ Wkj — 3 E Rijriwi N wi,
k=1 k=1

for i,j = 1,2,3, and the Gauss equations R;ji; = (hixhji— hihji), where
R;j1; denotes the components of the Riemannian curvature tensor of M.
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Denoting the covariant derivative of h;; by h;ji, we have

4 4 4
dhij = hijror + > hijwik + > hikwjk,
k=1 k=1 k=1

and by the Codazzi equation we get h;jr = hyk;j.

3 Diagonal shape operator

The first lemma can be proved by the same manner of similar one in
[16].

Lemma 3.1. Let M{ be a Lorentzian hypersurface in M> of type I with
real principal curvatures of constant multiplicities. Then the distribution
of the space of principal directions corresponding to the principal curva-
tures is completely integrable. In addition, if a principal curvature be of
multiplicity greater than one, then it will be constant on each integral
submanifold of the corresponding distribution.

Proposition 3.2. If ¢ : M} — M?® is a Lg-biharmonic Lorentzian
hypersurface with diagonal shape operator, constant (k — 1)th and kth
mean curvatures and non-constant (k+1)th mean curvature, then it has
a non-constant principal curvature of multiplicity one.

Proof. In the case k = 3, by condition (7)(é7), the 4th mean curvature
is constant on M, which contradicts by assumption. So, it is enough
to give proof for cases k = 1,2. Using the assumptions, there exists
an open connected subset U of M, on which we have VHy,; # 0. By
conditions (5)(i¢) and (6)(ii), 1 = Hggﬁ is an eigenvector of P4
with the corresponding eigenvalue 3(4 — k)Hp1, on Y. Without loss of
generality, we can take a suitable orthonormal local basis {ey, ea, €3, €4}
for the tangent bundle of M, consisting of the eigenvectors of the shape
operator A such that Ae; = \je; and Py 1€; = pj pr164, (fori =1,2,3,4)
and then

firger = 3(4 = k) Heqa (8)
4
By the polar decomposition VHy1 = > e;(Hyy1)e;, we get
i=1

e1(Hp1) # 0, ea(Hpp1) = e3(Hyq1) = ea(Hy41) = 0. (9)
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We continue the proof separately in two cases k =1 and k = 2.
Case 1: k=1. By (1) and (8) we have

1
Hy = 3h (M —4H). (10)

Then, having assumed H to be constant, from (9) we get

61()\1) 75 O, 62()\1) - 63()\1) == 64()\1) == 0, (11)

which gives that A1 is non-constant. Now, putting V., e; = Zizl wfjek
(for i,j = 1,2,3,4), the identity e, < €;,e; >= 0 gives ¢jw], = — €W},
(for 4,5,k = 1,2,3,4). Furthermore, for distinct i,j,k = 1,2,3,4, the
Codazzi equation implies

ei(Ng) = i = M)l (N = Apwly = ke = Al (12)

Since by (11) we have e1(A1) # 0, we claim A\; # A\ for j = 2,3,4.
Because, assuming \; = \; for some integer j # 1, we have e;()\;) =
e1(A1) # 0. On the other hand, from (12) we obtain 0 = (A — \j)w); =
e1(Aj) = e1(A1). So, we got a contradiction. Therefore, the main claim
is affirmed in case k = 1.

Case 2: k = 2. This case is similar to case k = 1, but, the equality
(10) will be changed to

~1
Hs = 7)\1()\% —4H\; + 6Hy), (13)

which, by assuming Hy and H to be constant, gives the same result as
(11). The rest part of proof is straightforward as Case 1 and give that
A1 is a non-constant principal curvature of multiplicity one. O

The last proposition can be stated in the case k = 0, which may be
found in [7] and [17].

Proposition 3.3. If ¢: M{ — M?® is a Ly-biharmonic Lorentzian hy-
persurface with diagonal shape operator, exactly three distinct principal
curvatures, constant (k—1)th and kth mean curvatures and non-constant
(k+1)th mean curvature, then there exists a locally moving orthonormal
tangent frame {e1,ea,e3,e4} of principal vectors of M} with associated
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principal curvatures Ay, Ao = A3, A4, which satisfy the following equali-
ties:

(1)Ve,e1 =0, Ve,e1 = aea, Vese1 = aez, Ve,e1 = —fey,
(1) Ve e0 = —aey + wiyes + ey, Ve, €2 = w%eg fori=1,3,4;
(191)Vege3 = —eg — w§’263 +veq, Veez = —w%eg fori=1,2,4,
(iv)Veyeq =0, Veyeq = —vea, Vezeq = —ves, Ve,eq = Pe,

(14)

(A )\ 2 A
where o — 61 2)} 8= ei( 1+ 2) . ea(X2)

B VIR R v Vi

Proof. Similar to the proof of Proposition 3.2, taking a suitable local ba-
sis {e1, e2, e3, e4} for T M, one can see that the equalities (8) —(12) occur
and A is of multiplicity one. Also, direct calculations give [ea, e3](A1) =
[es, eq] (A1) = [e2, e4] (A1) = 0, which yields

1 _ 1 1 _ 1 1 _ 1
Wa3 = W39, W3q = W43, Woyq = Wys. (15)

Now, having assumed Mj to has three distinct principal curvatures,
(without loss of generality) we can take Ay = A3, and then Ay = 4H; —
A1 — 2)q2. Hence, applying equalities (12) for distinct positive integers i,
j and k less than 5, we get ea(A2) = e3(A2) = 0 and then,

(i) W%l = w%z = W%s = W%4 = W%l = ng = W§4 = W§4 = wfﬁ = Wi‘s =0,

. e1(A2) —e1(A1 +2)9) —eq(A2)
(i7) % :W??: = M= Ay Wﬁﬂzﬁa %4:W§4:m,
(idd) (A — A)wygy = (A1 — A2)win, (A1 — Ag)wzg = (A1 — Ag)wiz.-

(16)

From (15) and (16) we get wly = wiy, = wiy = wis = wiy = wi; = 0.
Therefore, all items of the proposition obtain from the above results.
O

Proposition 3.4. If z: M{ — M?® is a Ly-biharmonic Lorentzian hy-
persurface with diagonal shape operator, exactly three distinct principal
curvatures, constant (k—1)th and kth mean curvatures and non-constant
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(k + 1)th mean curvature, then there exists an orthonormal (local) tan-
gent frame {e1, e, 3,4} of principal vectors of My with associated prin-
cipal curvatures A1, Ao = Az, Aq, satisfying es(A2) =0 and

1
61()\2)61 ()\1 + 2)\2) = 5)\2()\1 — )\2)()\4 — )\1)(2/\1 + 44X + )\4). (17)

Proof. From Gauss curvature tensor R(X,Y)Z =VxVyZ—-VyVxZ—
V(x,y)4, by substituting X, ¥ and Z by different choices from ey, e,
e3 and ey, using the results of Proposition 3.3, we get the following
equalities:

(i) er(@) +&® = =M A, B2 —ei(B) = =My
e4(A2) > i ea(A2) 0:

(i) e1 N — M\t 04)\2 Esvie
(i) eq(a) — (o + 5))\6;(_)‘2)\)4 — 0 (18)

(i) ey [ £42) ) +af— <;;(_AZA)4>2 — Xos.

Now, from (2), (5), (6), (7) applying Proposition (3.3) for the case k = 1,
we obtain
()\1 — 4H1)€161(H2) — (2()\2 — 4H1)a + ()\1 + 2)\2),6)61(H2)

(19)
= 12H,(2H, Hy — Hs),

where « := ;11(_)‘)2\3 and (8 := w Similarly, for k = 2 we get

— )\2()\2 + 2/\4)6161(H3) + (2()\1)\2 + A+ )\2)\4)04 — >\1(/\1 + 2)\2)5)61 (Hg)
= 4H3(4H1H3 — H4),
(20)

and for k = 3 we get
(—)\3)\4)6161(1’[4) + )\1)\2(2)\404 — )\Qﬁ)el(Hg) = 4H1H2. (21)
On the other hand, from (9) and (14), we obtain

€;€e1 (Hk—H) = 0, (22)
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for i = 2,3,4. Also, by differentiating o and g along ey, we get

1
(M1 = Ag)ea(a) — aes(A2) = eser(N2) = 5()\1 — Aa)es(B) + Bea(Az),
then ]
5 (A1 = A)ea(B) = (A = Az)ea(a) — (a + Blea(A2),
which, by substituting the value of e4(a) from (18), gives

ea(B) = —8es(A2) (e + B) (A2 — H1)
! (A = A (A2 — A

Again, differentiating (19), (20) and (21) along es4 and using (22),
(18) and the last value of e4(53), we get es(A2) =0 or

4(a+ B)[—H1(8\ 4+ 12X2) + M % + 3\ Xy + 16HP ey (Ha)

6Ho( Ao — Ng)2 = 0.
M= + 2(2 4)

Finally, we claim that e4(A2) = 0.
Indeed, if the claim be false for example in the case k = 1 (the other
cases can be followed in similar manners), then we have

A(a + B)yer(Ha)
A — M

= 6Hy(Mo — M), (23)

where v = —8H A\ + A2+ 3 A — 12H  \o + 16 H?. Differentiating (23)
along ey, we get

Q(Oé + ﬁ) [6’}/()\2 — Hl) + (3)\1 - 12H1)()\1 + )\2 - 2H1)(>\1 + 3)\2 — 4H1)] 61(H2)

()\1 + Ay — 2H1)2

= 36Hy(4H| + A1 + 3X2)°.
(24)

Eliminating e; (H2) from (23) and (24), we obtain
7(2)\1 — 2H1) = ()\1 — 4H1)()\1 + Ay — 2H1)(—4H1 + M+ 3)\2). (25)

By differentiating (25) along e4, we get 4H; = A1, which is not
possible since A1 is not constant. Consequently, e4(A2) = 0. Therefore,
the latest equality in (18) gives the main result. O
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Theorem 3.5. If ¢ : M{ — M5 is a Ly-biharmonic Lorentzian hy-
persurface with diagonal shape operator, exactly three distinct principal
curvatures, constant (k—1)th and kth mean curvatures and non-constant
(k 4+ 1)th mean curvature, then it is k-minimal.

Proof. First, we assume Hjq is non-constant on M and try to get a
contradiction. We continue the proof separately in three cases k = 1,
k=2and k = 3.

Case 1: k£ = 1. By differentiating (10) in direction of e; and using
the definition of 3, we get

61(H2) = %(21{1 — )\1)61()\2) + %()\1 + Aoy — 2H1)()\1 — 2H1)ﬁ (26)

By Proposition 3.4 and equalities (18), from (26) we obtain

4
ere1(Ha) = g)\l)\Q()\l —A2)(A1 + 2H;)

(4Hy — AL — 2X2) (A1 — 2H1)(4M1 A0 + A2 — 4H My — 2H1 Aq)

()\1 + Ay — 2H1)ﬁ — ()\1 — )\2)0&
A — 2H,

+ 3,6’—4a+2 61(H2).

(27)
Combining (19) and (27), we get
(Pr2a+ Pyaf)e1(Hz) = Psg, (28)

where Py 2, P> 2 and P3¢ are polynomials in terms of A; and A of degrees
2, 2 and 6, respectively.

Differentiating (28) along e; and using equalities (17), (18)-(i) and
(28), we get the following equality

Pyga+ Psgf3 = Psse1(Ha), (29)

where Py g, P55 and Fs 5 are polynomials in terms of A\; and A of degrees
8, 8 and 5, respectively.
Combining (26) and (29), we obtain

<P478 + §P6,5()\1 — )\2)(}\1 — 2H1)> o
(30)

4
+ <P578 3 6,5()\1 + Ao —2H;) (M — 2H1)> 6 =0.
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On the other hand, combining (26) with (28) and using Proposition
3.4, we get

P272()\1 + A9 —2H1)()\1 —2H1),82 —P172()\1 — )\2)()\1 —2H1)Oé2 = C, (31)

where ( stands for
3
Ao(4H1—A1—2X2)(AM1—2H1) (Pap(AM — A2) — Pra(A + Ao — 2H1))+ZP3,6-
Using Proposition 3.4 and equality (30), we get

o 2P55(A1— M)A —2H1) + Psg
o = 1 )\2>\47
Pyg+ 3Ps5(A1 — A2)(A\1 — 2H71)
%P6,5()\1 — M) (M —2Hy) — Pyg

© Psg— 2Ps5(M — A1) (A1 — 2H;)

32 Aoy

Eliminating a? and 82 from (31), we obtain

2

— )\2/\4()\1 + 2H1)(>\2 — /\1)P172 <P5,8 — 3

2
P675()\1 — )\4)()\1 — 2H1)>

4

1
— 5)\2)\4()\1 + 2H1)()\1 — )\4)P272 <P478 + 3

2
P675(/\1 — )\2)()\1 — 2H1)>

2 4
= <P5,8 - §P6,5()\1 —A)(A1 — 2H1)> <P4,8 +3 6,5(A1 — A2)(A1 — 2H1)> ;
(32)
which is a polynomial equation of degree 22 in terms of Ao and A;.
Now consider an integral curve of e; passing through p = ~(tg) as
v(t), t € I. Since e;(\1) = e;(A2) =0 fori = 2,3,4and e1(\1), e1(A2) #
0, we can assume A2 = Ao(t) and A\; = A1(A2) in some neighborhood of
Ao = A2(to). Using (30), we have

Do dt a0y
Do dt Do ()
()\1 + Ay — 2Hl)ﬁ — ()\1 — )\Q)Oz
S (33)
_ 2 (P478 + %P675()\1 — )\2)()\1 — 2H1)) ()\1 + Ay — 2H1) B
(3Ps,5(A1 + A2 — 2H1) (A1 — 2H1) — Psg) (A1 — A2)

=2
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Differentiating (32) with respect to Ag and substituting %\; from (33),
we get

f(A1,A2) =0, (34)

another algebraic equation of degree 30 in terms of A1 and Aso.
We rewrite (32) and (34) respectively in the following forms

22 30
D THODN =0, > (M)A =0, (35)
i=0 =0

where f;(A1) and g;j(A1) are polynomial functions of A;. We eliminate
A30 between these two polynomials of (35) by multiplying g3oAS and foo
respectively on the first and second equations of (35), we obtain a new
polynomial equation in Ay of degree 29. Combining this equation with
the first equation of (35), we successively obtain a polynomial equation
in Ay of degree 28. In a similar way, by using the first equation of (35)
and its consequences we are able to gradually eliminate \o. At last, we
obtain a non-trivial algebraic polynomial equation in A\; with constant
coefficients. Therefore, we get that the real function A; is constant and
then by (10), Ha is constant, which contradicts with the first assumption.
Hence, Ho is constant on M*.

Now, we claim that Hy = 0.

Having assumed that Hy # 0, by (5)-(i), we obtain that Hs is con-
stant. Therefore all the mean curvatures H; are constant functions,
this is equivalent to M* is an isoparametric hypersurface of E?. By
Corollary 2.7 in [10], an isoparametric Lorentzian hypersurface of type
I has at most one nonzero principal curvature, which contradicts with
the assumption that, three principal curvatures of M are assumed to be
mutually distinct. So Hy = 0.

Case 2: k = 2. By differentiating (13) in direction of e; and using
the definition of 3, we get

61(H2) = (6H2 — 8H1>\1 + 3)\%)[61()\2) - ()\1 + )\2 — 2H1)ﬁ]. (36)
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By Proposition 3.4 and equalities (18), from (36) we obtain

4
ere1(Hq) = g/\l)\2(/\1 — A2)(A1 + 2H7)

4
+ §(4H1 — A — 2)\2)(}\1 — 2H1)(4)\1)\2 + )\12 —4H1 My — 2H1)\1)

()\1 + )\2 — 2H1)5 — ()\1 — )\2)0&
A\ — 2H;

+ (38 —4da+2 e1(Ha).

(37)
Combining (20) and (37), we get
(Pr2a+ Prof)er(Hz) = Psg,

O

4 Nondiagonal shape operator

In this section, we show that some Lj-biharmonic connected orientable
Lorentzian hypersurface with nondiagonal shape operator has to be k-
minimal.

Theorem 4.1. Let z : M{ — M?® be an Ly-biharmonic connected ori-
entable Lorentzian hypersurface with shape operator of type Fa. If Mi
has constant ordinary mean curvature and a constant real principal cur-
vature, then it is k-minimal.

Proof. The first stage is to show that Hyiq is constant. We sup-
pose that Hy,q is nonconstant. Using the open subset U = {p €
M : VHZ, | (p) # 0} we get a contradiction. With respect to a suit-
able (local) orthonormal tangent frame {ej,---,es} on M7, we have
Se1 = ker — Xea, Sea = Aey + kea, Ses = mies, Seqs = moeyq and
then, we have Pre; = [k(m + m2) + mmeler + A + m2)ea, Poegy =
=X + m)er + [k(m + m2) + mnelea, Paes = (k2 + A2 + 2km2)es and
Prey = (K% + X2 4 26m1 )ey.
4

Using the polar decomposition VHy 1 = > €;e;(Hy11)e;, from con-
i=1
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dition (4)(ii) we get

(i) (kp12k + p1,2:641 — 3(4 — k) Hpq1)erer (Ha) — Apg a.p€2ea(Hppq) =0
(i) A gperer(Hyq1) + (kpa 2k + p12ik+1 — 3(4 — k) Hyq1)eoea(Hy1) =0
(iil) (psk+1 — 3(4 — k)Hgy1)eses(Hiy1) = 0,
(iv) (pagetr — 3(4 = k) Hiy1)esea(Hpqr) = 0.

(38)

It is enough to prove four simple claims as

e1(Hpy1) = ea(Hiq1) = e3(Hp41) = ea(Hp41) = 0.

Claim 1: e;(Hp41) = 0. If e1(Hgy1) # 0, then dividing both sides
ezex(Hy41)

of equalities (38)(i, ii) by €1e1(Hg41) and taking u := e (i)

we get

(1) Kp12g + 1201 — 3(4 — k) Hep1 = Apa 20, (39)
(13) (Kp12k + p12k+1 — 3(4 — k)Hp11)u = =\ 2.k,

which, by substituting (i) in (i7), gives Au1 2.1(1+u?) = 0, then Ay o =

0. Since A # 0 (by definition), we get p1 2.1 = 0. So, by (39)(%), we obtain

1241 = 3(4 — k) Hi . (40)

In the case £ = 1, from p12,1 = 0 we have 71 + 72 = 0. Since 7y is
assumed to be constant, from (40) we get that 9Hy = —n? = —n? is
constant which contradicts with assumption e;(Hsz) # 0. So, we have
€1 (Hg) =0.

In the case k = 2, from j11 2.2 = 0 we have 1112 = 0 and p11,2.3 = 0. So,
by (40) we get Hs = 0 which contradicts with assumption ej(Hs) # 0.
Hence, we have e;(Hs3) = 0.

In the case k = 3, condition (7)(ii) gives that Hy is constant and
then 61(H3) =0.

Therefore, Claim 1 is affirmed.

Claim 2: ey(Hpt1) = 0. if ea(Hgy1) # 0, then dividing both

sides of (38)(i,i7) by ezea(Hg+1) and taking v := %IM’ we get

1.2, (1 + v?) = 0, which gives A1 2 = 0. in a similar way, one can
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get the same results. Hence, the second claim (i.e. ex(Hg+1) = 0) is
satisfied.
Claim 3: e3(Hj41) = 0. In order to prove the third one, we assume
es(Hpi1) # 0 and get a contradiction. From equality (38)(iii) we have
pgge+1 = 3(4 — k) Hp1. (41)

In the case k = 1, from (41) we get —3k2+ (2k+3m1 ) (4H1 —m1) = —A2 <
0, then, —2[2k2 + (g1 — 4H1 )k + 21 (m — 3H1)] = —(A2 + k% 4+ 1) < 0.

Remember that the last inequality occurs if and only if we have d < 0
where

§ = (m —4H)* — 16m (m — 3H1) = — 1507 + 40m Hy + 16H7.
The condition § < 0 is equivalent to a new inequality § < 0 where
6= (40H)? + (4 x 15 x 16)H? = 2560H7%,

which is a contradiction.

In the case k = 2, we have u3.3 = 6Hs3.

In the case k = 3, condition (7)(ii) gives that Hy is constant and
then e3(Hy) = 0.

So, the third claim is proved.

Claim 4: es(Hp41) = 0. If es(Hi1) # 0, then from equality
(38)(iv) we have pigp41 = 3(4 — k)Hpy1.

In case k =1, we get

—11k% 4+ (24H; — 10my)k + 121 Hy — 307 = —)\? <0,
then,
—2[6K2 + (5m — 12H)k + 21 (m — 3H)] = —(A2 + k2 + %) < 0.

Remember that the last inequality occurs if and only if we have § < 0
where

6 = (5m — 12H,)? — 481 (n — 3Hy) = —23n? + 24n H, + 144H?.
The condition § < 0 is equivalent to a new inequality § < 0 where

6 = (24H1)? + (4 x 23 x 144)H? = 13824H?%,
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which is a contradiction. So, e4(H2) = 0.

In the case k = 2, we have p4.3 = 6H3.

In the second stage, we prove that Hy; = 0. since Hy; is constant,
we have Ly Hy1 = 0. Then, by (4)(4), we have Hy11(4H1 Hp1—(4—k—
1)Hgy2) = 0. Assuming Hyq # 0 we get 4H 1 Hp g = (4 — k — 1)Hyy9,
which implies that Hy o is constant. Therefore, Mj is a Lorentzian
isoparametric hypersurface of Ef which, by Corollary 2.9 in [10], has at
most one non-zero real principal curvature. Hence, we have 71172 = 0
which gives Hy = (k2 + A2)mim2 = 0. Therefore, M} is 3-minimal. g

Proposition 4.2. Let k be a positive integer number less than 4, x :
M} — E} be an Lg-biharmonic connected orientable lorentzian hyper-
surface with shape operator of type Fz in E}. If M} has three distinct
principal curvatures and constant kth mean curvature, then its (k4 1)th
mean curvature has to be constant.

Proof. Suppose that, Hyxi11 be non-constant. Considering the open
subset U = {p € M : VHZ ,(p) # 0}, we try to show U = (). By
the assumption, with respect to a suitable (local) orthonormal tangent
frame {ey, -+ ,e4} on M, the shape operator A has the matrix form Bs,
such that Ae; = (k + %)61 - %62, Aey = %el + (k — %)62, Aes = Mes
and Aes = Azeq, and then, for j = 1,2,3 we have Pje; = [p1,2,; +
(k — i 2-1]er + sp1,2-1€2, Poes = —3pno-1e1 + |12 + (K —
$)i1,2;5-1)e2, and Prez = pg;je3 and Pres = pug;jeq.

We continue the proof separately in three cases k = 1, £ = 2 and
k= 3.

Case 1: k = 1. Using the polar decomposition VHy =

4
1=

eiei(Hz)ei,
1
from conditions (5)(ii), we get

—_

(i) [MA2 + (k= 5) (A1 + A2) — 9Ho]ere (Ha) = %()\1 + A2)egea(Ha),

[\

. 1 1
(ZZ) [)\1A2 + (/43 + 5)()\1 + AQ) — 9H2]6262(H2) = —§<)\1 -+ )\2)6161(H2),
(ii1) (k? + 2KkXg — 9Ho)eses(Ha) = 0,

(Z"U) (I‘i2 + 251 — 9H2)€3€4(H2) =0.
(42)

Now, we prove the following claim.
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Claim: e;(H2) =0 for i = 1,2,3,4.
If e (Hs) # 0, then by dividing both sides of equalities (42)(i,4i) by
6161(H2) we get

(Z) Ao + (H — %)(/\1 + )\2) —9H, = %()\1 + )\Q)U, (43)
(1) Mo + (5 + %)()\1 + Ao — OHyJu = —%@1 ),

Z’nggz; By substituting (i) in (i7), we obtain (A1 + A2)(1 +

u)? =0, then A\; + \a =0 or u = —1.

If \; + Ao = 0, then, from (43)(i) we obtain 9Hy = —\?, which gives
3k% = —)\% Since H; is assumed to be constant on M, then x = 2H7 is
constant on M. Hence, A\ and Ay are also constant on M. Therefore, M {1
is an isoparametric Lorentzian hypersurface of real principal curvatures
in £}, which by Corollary 2.7 in [10], cannot has more than one nonzero
principal curvature contradicting with the assumptions. So, Ay + A # 0
and then u = —1.

From u = —1, we get Aj A2 + k(A1 + A2) = 9Ha, then

where u :=

3/€2 + 4%()\1 + )\2) + A2 = 0.

Since 4H; = 2k + A1 + Ao is assumed to be constant on M, by
substituting which in the last equality, we get A2 — Hi\ — 3H? = 0,
which means A, k and the kth mean curvatures (for £k = 2,3,4) are
constant on M. So, we got a contradiction and therefore, the first part
of the claim is proved.

By a similar manner, each of assumptions e;(Hs) # 0 for i = 2,3, 4,
gives the equality A\? +2xk\ = 9Hs, which implies the contradiction that
Hy is constant on M. So, the claim is affirmed. O

Theorem 4.3. Let x : M} — Ef be a Ly-biharmonic timlike hyper-
surface with shape operator of type Fs in Ef. If M} has at most two
distinct principal curvature and constant ordinary mean curvature, then
it s 1-manimal.

Proof. By assumption H; is assumed to be constant and then, by
Proposition 4.2 it is proved that Hs has to be constant. By (4)(i) we
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obtain that Hj is constant. Therefore, M{ is isoparametric. On the
other hand, by Corollary 2.7 in [10], an isoparametric Lorentzian hyper-
surface of Case I in the E{’ has at most one nonzero principal curvature,
so we get A = 0 (for example). Then Hy = %/@, Hy; = %/@2 and Hs = 0,
hence, by (4)(i), we get k = 0. Therefore Hp =0. [0

Proposition 4.4. Let x : M{ — E? be an Ly-biharmonic connected
orientable lorentzian hypersurface with shape operator of type Fs in E3.
Assume that M{l has one constant principal curvature and constant or-
dinary mean curvature. Then its 2th mean curvature has to be constant.
Furthermore, all of principal curvatures of M{l are constant and M{l 18
1soparametric.

Proof. Suppose that, Hy be non-constant. Considering the open subset
U={pe M:VH3(p) # 0}, we try to show U = ). By the assumption,
with respect to a suitable (local) orthonormal tangent frame {e1,--- ,e4}
on M, the shape operator A has the matrix form Bs, such that Ae; =
(k+ %)61 — %62, Aeg = %61 +(k— %)62, Aez = Aez and Aey = Aoey, and
then, we have Poe; = [M Ao+ (k — %)()\1 + Xo)ler + %()\1 + X\2)ea, Pres =
—%()\1 + )\2)61 + [)\1)\2 + (IQ + %)(}\1 + )\2)]62, and Pye3z = (52 + 2/-{)\2)63
and Pyeq = (k? + 2K)1)eq.
4
Using the polar decomposition VHy = Y €;e;(H2)e;, from condition
i=1
(4)(ii) we get

(Z) [)\1)\2 + (li — %)()\1 + )\2) — 9H2]€1€1(H2) = %()\1 + )\Q)EQGQ(HQ),

.. 1 1
(ZZ) [)\1/\2 + (FL + 5)()\1 + )\2) — 9H2]62€2(H2) = 5()\1 + )\2)6161 (Hg),
(227,) (H2 + 2Ky — 9H2)63€3(H2) =0,

(iv) (Rz + 2kA1 — 9H2)€3€4<H2) =0.
(44)

Now, we prove some simple claims.
Claz'm: 61(H2) = eg(HQ) = 63(H2) = 64(H2) =0.
If e1(Hz) # 0, then by dividing both sides of equalities (44)(i,4i) by



22

F. PASHAIE et al.

€1e1 (HQ) we get

1 1
(Z) Ao + (Ii — 5)()\1 + )\2) —9H, = 5()\1 + )\Q)U,

1 1 (45)
(Zl) [)\1)\2 + (R + 5)(/\1 + )\2) — 9H2]u = —5()\1 + )\2),
where u := ETZEZ;; By substituting (¢) in (i7), we obtain 3 (A1 +A2)(1+

u)? = 0, Then A\ + A2 = 0 or u = —1. If A\; + Ay = 0, then, by
assumption we get that k = 2H; is constant, and also, from (43)(i) we
obtain Hy = 5'A? which gives (k2 — \}) = LA} and then A} = 3x2.
Hence, we get Ho = %1/12, which means H» is constant.

Also, by assumption A\; + A2 # 0 we get u = —1, which, using (45) (1)
and 4H; = 2k + A1 + Ao, gives 5% — 16k Hy — A\ (4Hy — 25 — ) = 0.
Without loss of generality, we assume that A is constant on M. So, from
the last equation we get that x, Ao and Hy are constant on U, which is
a contradiction. Therefore, the first claim is proved. The second claim
(i.e. e2(H2) = 0) can be proven by a similar manner.

Now, if e3(Hz) # 0, then using (44(iii)) and 4H; = 2k + A1 + A2 and
by assuming A; to be constant on M, we get

P (?H1 — %Al)m — 4N\ Hy + 2\ =0,
which gives that x, A2 and Hs are constant on U/, which is a contradic-
tion. Therefore, the third claim is proved.

The forth claim (i.e. e4(H2) = 0) can be proven by a manner exactly
similar to third one. O

Theorem 4.5. Let x : M{ — E} be a Li-biharmonic timlike hyper-
surface with shape operator of type Fz in E}. Assume that Mj has
one constant principal curvature and constant ordinary mean curvature.
Then, it is 1-minimal.

Proof. By Proposition 4.4, all of principal curvatures of M; are con-
stant and Mf is isoparametric. We claim that Hs is null. Since, by
Corollary 2.7 in [10], an isoparametric Lorentzian hypersurface of real
principal curvatures in E? has at most one nonzero principal curvature,
we get Ho = 0. U
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Proposition 4.6. Let x : M} — E} be an Li-biharmonic connected
orientable Lorentzian hypersurface with shape operator of type Fy in
E}. If M} has constant ordinary mean curvature, then its 2th mean
curvature is constant.

Proof. Suppose that, Hy be non-constant. Considering the open subset
U={pe M:VH3(p) # 0}, we try to show U = ). By the assumption,
with respect to a suitable (local) orthonormal tangent frame {e1,--- ,e4}
on M, the shape operator A has the matrix form Bs, such that Ae; =

Kep — geg, Aey = ke — @eg, Aes = ?el — @eg + kes and Aes = ley

and then, we have Pye; = (k24 2K\ — %)61 + %62 + g(fi + Nes, Poeg =
Sher + (K2 + 26A + Dea + Y2 (k + Nes, Paes = =Y2(k + Ner + Y2 (k +

Nea + (k2 + 26\ )es and Pyey = 3Kk%ey.
4
Using the polar decomposition VHy = ) €;¢;(Ha)e;, from condition
i=1
(4)(ii) we get

(Z) (HQ + 28\ — % - 9H2)6161(H2) — %6262([‘[2) — \gﬁ(/ﬁ} + )\)6383([‘[2) =0

1 1 2
(’LZ) 56161(1{2) + (HQ + 2K\ + 5 — 9H2)6262(H2) + \2[(,‘4/ + )\)6363(H2) =0

(i74) ?(/{ + A)(€e1e1(Ha) + ezea(Hz)) + (K2 + 26\ — 9Ha)ezez(Hz) = 0,
(iv) (3x* — 9Hy)eseq(Ha) = 0.
(46)

Now, we prove some simple claims.

Claim: 61(H2) = 62(H2) = 63(H2) = 64(H2) = 0.
If e1(Hz2) # 0, then by dividing both sides of equalities (46)(i, i7,iii) by
ere1(Hs), and using the identity 2Hy = k? + k) in Case I11, putting

ur = S50 and e = S5, we et
. 1 7, 5 1 V2
(1) —§—§/€ _§;§)\—§u1—7(/€+)\)U2—0,
1 1 2
(i) 5+ (5 = ;42 -~ gm)ul + {(n + Nug =0, (47)

(#i7) ;/i(li +A) (14 up) — (;QQ + gmA)uz =0,
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which, by comparing (i) and (ii), gives Stk(7x + B5A)(1 +wp) = 0. If
k = 0, then Hy = 0. Assuming x # 0, we get u; = —1 or A = —%H. If
u; # —1 then A = —%H, then by (47)(éii) we obtain u; = —1, which is

a contradiction. Hence we have u; = —1, which by (47)(é, i) implies
Ug = 0.
Now we discuss on two cases A = —%K, or \ # —%/{. If A= —%/{,

then, k = %Hl, Hy = %1/@2, Hs = %4#;3 and Hy = %7/&4 are all constants
on U. Also, the case A # —Zx is in contradiction with (47)(i1).

Hence, the first claim e;(Hz) = 0 is affirmed. Similarly, the second
claim (i.e. e2(H2) = 0) can be proved.
get 63(H2) =0.

The final claim (i.e. ea(Hsz) = 0), can be proved using (47)(iv), in a
straightforward manner. ([

Theorem 4.7. Let x : M} — E} be an Li-biharmonic connected ori-
entable Lorentzian hypersurface with shape operator of type Fy in E7. If
M{L has constant ordinary mean curvature, then, it is 1-minimal.

Proof. By Proposition 4.6, the 2th mean curvature of M; is constant,
which, by (4()), gives L1Hy = 9H H3 — 3HyHs = 0. If Hy = 0, it
remains nothing to prove. By assumption Hs # 0, we get 3H1 Hy = H3,
which gives k(k?—3H1k+3H?) = 0, where k? —3H1k+3H? > 0, Hence,
k = 0. Therefore, Hy = H3 = Hy = 0. O
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