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Abstract. The purpose of this paper is to introduce some new con-
cept and extend the usual ones are introduced for variational inequality
problems over arbitrary product sets. Our result is a new version of the
results obtained by Igor V. Konnov [Relatively monotone variational
inequalities over product sets, Operation research letters 28(2001), 21-
26].
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1. Introduction

In recent years variational inequality have been generalized and ex-
tended in various different directions in abstract see ref.[11, 12]. More-
over many authors have investigated vector variational inequalities in
abstract spaces; see ref.[7, 8, 9, 16]. The development of efficient meth-
ods for proving existence of solution is one the most interesting and
important in variational inequalities theory and equilibrium type prob-
lem arising in operation research, economics, mathematical, physics
and other fields. It is well known that most of such problems arising
game theory, transportion and network economics have a decompos-
able structure i.e. thay can be formulated as variational inequalities
over Cartesian produce sets; see e.g. Nagurney [15] and Ferris and
Pang [5]. The most existence results for such variational inequalities
established under either compactness of the feasible set in the norm
topology or monotonicity-type assumption regardless of the decompos-
able structure of the variational inequalities see [3, 10]. In fact Bianchi
[2] considered the corresponding extension of P-mapping and noticed
that thay are not sufficient to derive existence results with the help of
Fans lemma.
In this paper we present (α, β)-monoton concept, which is suitable for
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variational inequalities on arbitrary produce of locally convex spaces,
and our results extend theorems of Konnov. [12].
Throughout this paper, let I be any set indexes, ⟨I⟩ denote the set
of all nonempty finite subsete of I and let P denotes the set of all
positive vector in l∞(I) i.e. P= {(ui) ∈ l∞(I) : ui > 0 ∀i ∈ I} ,
l∞(I) = {(ui)i∈I : ∃c > 0 , |ui| < c ∀i ∈ I}.

2. Basic Definition

For each i ∈ I, let Xi be a locally convex spaces and X∗
i its dual.

Set X =
∏

i∈I Xi, so that for each x ∈ X, we have x = (xi)i∈I where
xi ∈ Xi. We define the map <,>: X∗ × X → R by < f, x >= f(x)
and ≪,≫:

∏
i∈I X

∗
i ×X → R ∪ {+∞}

by ≪ g, x ≫=< g, x >+ − < g, x >−

where x ∈ X, g ∈
∏

i∈I X
∗
i and

< g, x >+= supJ∈⟨I⟩{
∑

j∈J < gj, xj >:< gj, xj >≥ 0 ∀j ∈ J} , <

g, x >−=< −g, x >+

we define the vector space X∗
w as follows :

X∗
w = {g ∈

∏
i∈I

X∗
i : (g, x) ∈ De′

≪,≫ : ∀x ∈
∏
i∈I

Xi}

where De′
≪,≫ = {(g, x) ∈ (

∏
i∈I X

∗
i )×X :≪ g, x ≫< ∞} .

It is clear that De′
≪,≫ ̸= ∅ , X∗

w ̸= ∅ .
Let Ki be nonempty subset of X and let K =

∏
i∈I Ki , Next for each

i ∈ I , let G : K → X∗
w be a mapping, now we define Gi : K → X∗

i by

Gi = PioG , where Pi : X
∗
w → X∗

i is defined to be Pi

(
(gj)j∈J

)
= gi .

we note that G(x) = (Gi(x))i∈I and ≪ G(x), y − x ≫=
∑

i∈I <
Gi(x), yi − xi >< ∞. In this paper we study variational inequality
problem as following :
a) The SyVIP(G,K) consist of finding x∗ ∈ K such that

< Gi(x
∗), yi − x∗

i > ≥ 0 ∀yi ∈ Ki , i ∈ I

We denote by SSyV IP (G,K) the solution set of the SyVIP(G,K).
b) For every given u = (u)i∈I ∈ P the V IP (G,K, u) consist of finding
x∗ ∈ K such that

≪
(
uiGi(x

∗)
)
i∈I , y−x∗ ≫=

∑
i∈I

ui < Gi(x
∗), yi−x∗

i >≥ 0 ∀yi ∈ Ki , i ∈ I

We denote by SV IP (G,K, u) the solution set of the VIP(G,K,u).
c) The dual VIP(G,K,u) (abbreviated DVIP(G,K,u)) consist of finding
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x∗ ∈ K such that

≪
(
uiGi(y)

)
i∈I , y−x∗ ≫=

∑
i∈I

< uiGi(y), yi−x∗
i >≥ 0 ∀yi ∈ Ki , i ∈ I

We denote by SDV IP (G,K, u) the solution set of the DVIP(G,K,u).

Definition 2.1. for each u ∈ l∞(I), the mapping G : K → X∗
w is said

to be u-hemicontinuous, if for any x, y ∈ K, the mapping
g : [0, 1] → R by g(λ) =

∑
i∈I ui < Gi(x+ λ(x− y)), yi − xi > is

continuous.
We note that for each λ ∈ [0, 1] , g(λ) < ∞.

Definition 2.2. Let α, β ∈ l∞(I), the mapping G : K → X∗
w is said

to be
a) (α, β)-monotone, if for all x, y ∈ K, we have

≪ βG(x)− αG(y), x− y ≫ ≥ 0

And strictly (α, β)-monotone, if the inequality is strict for all x ̸= y.
b) (α, β)-psedumonotone, if for all x, y ∈ K, we have

≪ αG(x), y − x ≫ ≥ 0 =⇒ ≪ βG(y), y − x ≫ ≥ 0

And strictly (α, β)-psedumonotone, if the second inequality is strict for
all x ̸= y.
c) (α, β)-psedumonotone-like, if for all x, y ∈ K, we have

≪ αG(x), y − x ≫ > 0 =⇒ ≪ βG(y), y − x ≫ ≥ 0

And strictly (α, β)-psedumonotone-like, if the second inequality is strict
for all x ̸= y.

Lemma 2.3. Let α, β ∈ P and G : K → X∗
w then

a) SSyV IP (G,K) = SV IP (G,K, α)
b) SDV IP (G,K, α) = SDV IP (G,K, β)
c) SV IP (G,K, α) = SV IP (G,K, β)

Proof: by definition 2.2 the desired result is obtained.

Lemma 2.4. Let α ∈ P and the mapping G : K → X∗
w be

α-hemicontinuous, then

SDV IP (G,K, α) ⊆ SV IP (G,K, α)

Proof: let x∗ ∈ SDV IP (G,K, α), thus∑
i∈I

< αiGi(y), yi − x∗
i > ≥ 0 ∀y ∈ K

Set y = x∗ + λ(y − x∗), therefore α-hemicontinuous implies x∗ ∈
SV IP (G,K, α).

Lemma 2.5. Let α, β ∈ P and the mapping G : K → X∗
w be

β-hemicontinuous, and (α, β)-psedumonotone then
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SDV IP (G,K, β) = SV IP (G,K, α).

The proof is parollel to the proof of lemma 2.4 and so is omited.

corollary 2.6. Let the conditions of lemma 2.5 hold, then

SDV IP (G,K, α) = SV IP (G,K, α) = SSyV IP (G,K).

Definition : A set-valued F : E → 2E is called a KKM-mapping if,
for every finite subset {x1, x2, ..., xn} of E,
Co{x1, x2, ..., xn} ⊆

∪n
i=1 F (xi), where Co denotes the convexhull.

Lemma 2.7. [Fan-4] Let E be a Hausdorff topological vector space
and F : E → 2E be a KKM-mapping such that for any x ∈ E,F (x) is
closed and F (x0) contained in a compact set D ⊆ E for some x0 ∈ E.
Then

∩
x∈E F (x) ̸= ∅.

3. Main results

Theorem 3.1. suppose that α, β ∈ P,X locally convex space,
K ⊆ X is nonempty weakly compact and let the mapping
G : K → X∗

w be β-hemicontinuous, and (α, β)-psedumonotone then
SV IP (G,K, α) ̸= ∅.
Proof : Define set-valued mapping H,T : K → 2K by

T (y) = {x ∈ K :
∑
i∈I

< αiGi(x), yi − xi > ≥ 0}

T (y) = {x ∈ K :
∑
i∈I

< βiGi(y), yi − xi > ≥ 0}.

We denote T is KKM-mapping. Let {y1, y2, ..., yn} be any finite subset
of K and z ∈ Co{y1, y2, ..., yn} then z =

∑n
j=1 λjy

j , for some λj ≥
0, j = 1, 2, ..., n . If z /∈

∪n
j=1 T (y

j), then∑
i∈I

αi < Gi(z), y
j
i − zi > < 0 ∀j = 1, 2, ..., n.

Therefore, 0 =
∑

i∈I αi < Gi(z), zi−zi > < 0, is a contradiction, hence

T is a KKM-mapping. Since T (y)
w
⊆ K, by lemma 2.7

∩
y∈K

T (y)
w
̸=

∅. Since G is (α, β)-psedumonotone we have T (y) ⊆ H(y), that is clear
H(y) is weakly closed, therefore

∩
y∈K

H(y) ̸= ∅, that is
SDV IP (G,K, α) ̸= ∅

But Lemma 2.5. implies that SV IP (G,K, α) ̸= ∅.
Corollary 3.2. Suppose that α, β ∈ P,X locally convex space,
K ⊆ X is nonempty weakly compact and let the mapping
G : K → X∗

w be β-hemicontinuous, and stictly (α, β)-psedumonotone
then V IP (G,K, α) has a uniqe solution.

Proof : Theorem 3.1 implies that SV IP (G,K, α) ̸= ∅.
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Assume P for contradiction, that x1, x2 ∈ SV IP (G,K, α), and x1 ̸= x2

for any y ∈ K, we have
∑

i∈I αi < Gi(x
1), x2

i − x1
i > ≥ 0, since strictly

(α, β)-psedumonotone, implies∑
i∈I

βi < Gi(x
2), x1

i−x2
i >< 0 =⇒ x2 /∈ SV IP (G,K, β) = SV IP (G,K, α).

Corollary 3.3. Suppose that α, β ∈ P,X locally convex space and
the mapping G : K → X∗

w be β-hemicontinuous, and stictly
(α, β)-psedumonotone and let there exist a weakly compact subset E
of K, and a piont e ∈ E ∩K such that∑

i∈I αi < Gi(x), ei − xi > < 0 ∀x ∈ K \ E then
SV IP (G,K, α) ̸= ∅.
Proof : Since proof of theorem 3.1 and under the above assumption

we have T (e) ⊆ E, therefore T (y)
w
is weakly compact, hence by

lemma 2.7 we have SV IP (G,K, α) ̸= ∅.
Next theorem shows that this paper generalized theorems of V.Konnov
[3].

Theorem 3.4. Suppose that |I| = n < ∞ and {Xi}i∈I be finite
family of locally convex spaces. Then∏

i∈I X
∗
i = X∗

w

Proof : For each f ∈ X∗ , we define < f, xi >=< fi, xi >
where xi = (0, ..., xi, 0, ...), fi ∈ Xi

∗ . Now we define Γ : X∗ → X∗
w by

Γ(f) = (fi)i∈I .
It is easy to see that Γ is homeomorphism , that complate proof .
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