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1 Introduction

Integral equations arise in many scientific and engineering fields [14, 24,
26]. Since exact methods are not efficient to solve some integral equa-
tions, high-performance numerical methods are considered for solving
these equations. Various analytic and numerical methods have been
proposed for approximating the solutions of integral equations. The col-
location and Galerkin methods are two commonly numerical approaches
for solving these equations. Other Numerical methods using block-pulse
functions (BPFs) [7, 22], rationalized Haar functions [6], least-square
method [10], extrapolation of Nyström method [12], discrete Galerkin
method [13], Bernoulli wavelet [19], wavelets [4], Bernstein’s polyno-
mials [5], operational matrices [25], triangular functions (TFs)[15], the
regularization-homotopy method [1], and so on [2, 11, 16, 21, 27] have
been introduced for solving two-dimensional integral equations. Also,
some numerical methods have been presented to solve integral equa-
tions using successive approximations methods based on quadrature
rules [8, 9, 17, 18, 23]. Here, for two reasons we use the midpoint rule
to approximate the solution of the two-dimensional nonlinear Fredholm
integral equations of the second kind with singular kernel. Firstly, ac-
cording to the fact that Simpson and trapezoidal rules cannot be used
for approximating integrals which are not defined in the first and the
endpoints of the integration. Another reason is the error bound of the
midpoint rule compared to the Simpson and trapezoidal rules. In this pa-
per, a new iterative method based on the midpoint formula is proposed
for solving the following two-dimensional nonlinear Fredholm integral
equations of the second kind:

w(s, t) = ψ(s, t) + µ

∫ u2

l2

∫ u1

l1

Λ(s, t, τ, ν) Φ(w(τ, ν)) dτdν, (1)

where w(s, t) is an unknown function on Θ = [l1, u1]×[l2, u2] while ψ(s, t)
and Λ(s, t, τ, ν) are known functions on Θ and Θ×Θ, respectively.
Simple application as well as the possibility of creating and applying
an algorithm are the advantages of this method that encourages us to
use it. The structure of this article is divided into five sections. In
Sect. 2, we review preliminaries of quadrature rule for 2-D integrals and
required definitions. The existence and uniqueness of the solution of the
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Eq. (1) are studied using the fixed point technique in Sect. 3. Also,
the convergence of the proposed method is described in this section. In
Sect. 4, an iterative algorithm is presented for the implementation of
the method. Finally, to show the accuracy of the method and to verify
the theoretical results, some numerical examples are given in Sect. 5.

2 Preliminaries

In current section, some required concepts and some definitions are pre-
sented.

Definition 2.1. Let ψ : Θ → R be a bounded mapping. The function
χΘ(ψ, .) : R+ ∪ {0} → R+ with the following definition

χΘ(ψ, ξ) = sup{|ψ(τ, ν)− ψ(s, t)|;

τ, s ∈ [l1, u1]; ν, t ∈ [l2, u2];
√

(τ − s)2 + (ν − t)2 ≤ ξ},

is called the modulus of oscillation of ψ on Θ. The function χΘ(ψ, ξ) is
called uniform modulus of continuity of ψ, if ψ ∈ C(Θ).

Theorem 2.2. Some used properties throughout this paper are as fol-
lows:

(a) |ψ(τ, ν)−ψ(s, t)| ≤ χΘ(ψ,
√
(τ − s)2 + (ν − t)2) for all τ, s ∈ [l1, u1]

and ν, t ∈ [l2, u2],

(b) χΘ(ψ, ξ) is a non-decreasing mapping in ξ,

(c) χΘ(ψ, 0) = 0,

(d) χΘ(ψ, ξ1 + ξ2) ≤ χΘ(ψ, ξ1) + χΘ(ψ, ξ2) for any ξ1, ξ2 ≥ 0,

(e) χΘ(ψ, nξ) ≤ nχΘ(ψ, ξ) for any ξ ≥ 0 and n ∈ N,

(f) χΘ(ψ, µξ) ≤ (µ+ 1)χΘ(ψ, ξ) for any ξ, µ ≥ 0,

(g) χΘ(ψ, ·) is continuous at 0 iff ψ ∈ C(Θ),

(h) If Θ ⊆ Θ′, then χΘ(ψ, ξ) ≤ χΘ′(ψ, ξ) for all ξ ≥ 0.
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Proof. This theorem is proved in [20, 28] for the one-dimensional case.
It can be proved for the 2D case in a similar way. □

Theorem 2.3. Suppose ψ : Θ → R be an integrable bounded mapping.
For any divisions l1 = τ0 < τ1 < ... < τn = u1 and l2 = ν0 < ν1 < ... <
νn = u2 and any points γi ∈ [τi−1, τi] and ρj ∈ [νj−1, νj ], we have∣∣∣∣∣∣

∫ u2

l2

∫ u1

l1

ψ(s, t) dsdt−
n∑

j=1

n∑
i=1

(τi − τi−1)(νj − νj−1)ψ(γi, ρj)

∣∣∣∣∣∣
≤

n∑
j=1

n∑
i=1

(τi − τi−1)(νj − νj−1)χ[τi−1,τi]×[νj−1,νj ]
(ψ,

√
(τi − τi−1)2 + (νj − νj−1)2).

Proof. The proof of the theorem is the same as [17]. □

Corollary 2.4. Assume that ψ : Θ → R be an integrable bounded map-
ping. Defining

χτν×st = χ[τ,ν]×[s,t]

(
ψ,

√
(ν − τ)2 + (t− s)2

)
,

we have∣∣∣∣ ∫ u2

l2

∫ u1

l1

ψ(s, t) dsdt−
[
(τ − l1)(ν − l2)ψ(u, α1)(τ − l1)(u2 − ν)ψ(u, α2)

+ (u1 − τ)(u2 − ν)ψ(l2, α2) + (u1 − τ)(u2 − ν)ψ(v, α2)

]∣∣∣∣
≤ (τ − l1)(ν − l2)χl1τ×l2ν + (u1 − τ)(ν − l2)χτu1×l2ν

+ (τ − l1)(u2 − ν)χl1τ×νu2 + (u1 − τ)(u2 − ν)χτu1×νu2 ,

∀τ ∈ [l1, u1] ,ν ∈ [l2, u2] ,u ∈ [l1, τ ], v ∈ [τ, u1], α1 ∈ [l2, ν], α2 ∈ [ν, u2].

Proof. Setting n = 2, τ1 = γ1 = γ2 = τ and ν1 = ρ1 = ρ2 = ν in
Theorem 2.3, the required inequality is obtained. □

Corollary 2.5. Let ψ : Θ → R be a 2-D integrable bounded mapping.
Then, the following inequality holds:∣∣∣∣∫ u2

l2

∫ u1

l1

ψ(s, t) dsdt − (u1 − l1)(u2 − l2)ψ(
l1 + u1

2
,
l2 + u2

2
)

∣∣∣∣ ≤ (u1−l1)(u2−l2) Ω.

where Ω = χ[l1,u1]×[l2,u2]

(
ψ, |u1−l1|2 + |u2−l2|

2 )
)
.

Proof. If we take τ = l1+u1
2 and ν = l2+u2

2 in Corollary (2.4), the
required inequality is obtained. □
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3 Main Results

3.1 The sequence of successive approximations

Here, consider the Eq. (1) where µ > 0 and w, ψ and Φ are continuous
functions. Assume the function Λ is continuous. Therefore, it is uni-
formly continuous with respect to (s, t). Hence, there exists the positive
constant K such that

K = max
l1≤s,τ≤u1
l2≤t,ν≤u2

∣∣Λ(s, t, τ, ν)∣∣.
Consider ∆ = {ψ : [l1, u1] × [l2, u2] → R;ψ is continuous} and let
(∆, d) be the space of 2-D continuous functions with the metric

d(ψ, ϕ) =
∥∥ψ − ϕ

∥∥ = sup
l1≤s≤u1
l2≤t≤u2

∣∣ψ(s, t)− ϕ(s, t)
∣∣.

Now, we study the existence and uniqueness of the solution of Eq. (1)
using the successive approximations method. To do this, we consider
the operator T : ∆ → ∆ as

T (w)(s, t) = ψ(s, t) + µ

∫ u2

l2

∫ u1

l1

Λ(s, t, τ, ν) Φ(w(τ, ν)) dτdν,

for all (s, t) ∈ [l1, u1]× [l2, u2], and for all ψ ∈ ∆.

Theorem 3.1. Let Λ(s, t, τ, ν) be continuous for l1 ≤ s, τ ≤ u1, l2 ≤
t, ν ≤ u2 and ψ ∈ ∆. Moreover, suppose that there exists σ > 0, such
that

|Φ(ψ1)− Φ(ψ2)| ≤ σ|ψ1 − ψ2|, ∀ψ1, ψ2 ∈ ∆. (2)

IfM = σµK(u1−l1)(u2−l2) < 1, Eq. (1) has a unique solution w∗ ∈ ∆.
Also, the following successive approximations method gives this unique
solution.

w0(s, t) = ψ(s, t),

wr = T (wr−1), r ≥ 1, (3)
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where the sequence {wr}r≥1 converges to w∗. In addition, the priori and
the posteriori error estimates are as follows:

∥∥w∗ − wr∥ ≤ M r

1−M
∥w0 − w1∥, (4)

∥∥w∗ − wr∥ ≤ M r+1

σ(1−M)
K0, (5)

where

K0 = sup
l1≤s≤u1
l2≤t≤u2

|Φ(ψ(s, t))|.

Proof. For any w ∈ ∆ we have

χΘ(T (w), ξ) ≤ sup
(si,ti)∈Θ, i=1,2

{∣∣ψ(s1, t1)− ψ(s2, t2)
∣∣ :

√
(s2 − s1)2 + (t2 − t1)2 ≤ ξ

}
+ sup

(si,ti)∈Θ, i=1,2

{
| µ

∫ u2

l2

∫ u1

l1

Λ(s1, t1, τ, ν) Φ(w(τ, ν)) dτdν

− µ

∫ u2

l2

∫ u1

l1

Λ(s2, t2, τ, ν) Φ(w(τ, ν)) dτdν |:
√

(s2 − s1)2 + (t2 − t1)2 ≤ ξ

}
≤ χΘ(ψ, ξ) + µ

∫ u2

l2

∫ u1

l1

χst
(
Λ, ξ)| Φ(w(τ, ν))| dτdν.

Taking limit from the last inequality as ξ → 0, using item (g) in The-
orem 2.2 and Lebesgue’s monotone convergence theorem, we will have
χΘ(T (w), ξ) → 0. This implies that T maps ∆ into itself.
Furthermore, it can be shown that the operator T is a contraction map.
Let w,w′ ∈ ∆. Now, according to the definition of the operator T , we
can write

|T (w)(s, t)− T (w′)(s, t)| = µ

∣∣∣∣∫ u2

l2

∫ u1

l1

Λ(s, t, τ, ν)[Φ(w(τ, ν))− Φ(w′(τ, ν))] dτdν

∣∣∣∣
≤ µ

∫ u2

l2

∫ u1

l1

|Λ(s, t, τ, ν)||Φ(w(τ, ν))− Φ(w′(τ, ν))| dτdν

≤ σµK(u1 − l1)(u2 − l2) ∥ w − w′ ∥,

for all (s, t) ∈ Θ. Thus,

∥ T (w)− T (w′) ∥≤M ∥ w − w′ ∥ .
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Since M < 1, it can be concluded the operator T is contraction on
Banach space (∆, ∥ . ∥). Now, using the Banach’s fixed point principle,
the existence of a unique solution w∗ ∈ ∆ for the integral equation (1)
is proved. Also, the estimates (4) and (5) are obtained using the same
Banach’s fixed point principle. □
Note: Theorem 3.1 is a sufficient condition for the existence of an unique
solution of Eq. (1).
Now, we introduce a numerical method to solve Eq. (1). We consider
Eq. (1) with continuous kernel Λ(s, t, τ, ν) defined on Θ×Θ and uniform
partitions

Dτ : l1 = s0 < s1 < s2 < ... < sn−1 < sn = u1,

Dν : l2 = t0 < t1 < t2 < ... < tn−1 < tn = u2,

with si = l1 + ih, tj = l2 + jh′, where h = u1−l1
n , h′ = u2−l2

n . Now,
we present the following iterative procedure for solving Eq. (1) in point
(s, t),

w̄0(s, t) = ψ(s, t),

w̄r(s, t) = ψ(s, t) + µhh′
n−1∑
i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(w̄r−1(si +

h

2
, tj +

h′

2
)).

(6)

This procedure is obtained using the quadrature formula for computing
the corresponding double integral.

3.2 Convergence

The current section is devoted to finding an error estimate between the
exact and approximate solution of Eq. (1).

Theorem 3.2. Under the assumptions of Theorem 3.1, the iterative
process (6) converges to w∗. Furthermore, the following error estimate
can be obtained:

∥w∗ − w̄r∥

≤ Mr+1

σ(1−M)
K0

+
3M

8(1−M)

(
χ[l1,u1]×[l2,u2](ψ, h+ h′) +

M

σK
ηχst(Λ, h+ h′) +

1

σK
υχτν(Λ, h+ h′)

)
,
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where

χτν
(
Λ, ξ) = sup

{∣∣Λ(s1, t1, τ, ν)− Λ(s2, t2, τ, ν)
∣∣ ; (si, ti) ∈ [l1, u1]× [l2, u2],

i = 1, 2,
√

(s2 − s1)2 + (t2 − t1)2 ≤ ξ
}
,

χst
(
Λ, ξ) = sup

{∣∣Λ(s, t, τ1, ν1)− Λ(s, t, τ2, ν2)
∣∣ ; (τi, νi) ∈ [l1, u1]× [l2, u2],

i = 1, 2,
√
(τ2 − τ1)2 + (ν2 − ν1)2 ≤ ξ

}
,

and

Kr = sup
(s,t)∈[l1,u1]×[l2,u2]

|Φ(w̄r(s, t))|, Γr = sup
(s,t)∈[l1,u1]×[l2,u2]

|Φ(wr(s, t))|,

υ = max
i=0,1,...,r−1

{Ki}, η = max
i=0,1,...,r−2

{Γi}. (7)

Proof. Consider Eq. (6). Using Corollary 2.5 and item (f) in Theorem
2.2, we get

|w1(s, t)− w̄1(s, t)|

=
∣∣µ ∫ u2

l2

∫ u1

l1

Λ(s, t, τ, ν)Φ(w0(τ, ν))dτdν

− µhh′
n−1∑
i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(w̄0(si +

h

2
, tj +

h′

2
))
∣∣

=
∣∣µ n−1∑

i=0

n−1∑
j=0

∫ si+1

si

∫ tj+1

tj

Λ(s, t, τ, ν)Φ(ψ(τ, ν)) dτdν

− µhh′
n−1∑
i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(ψ(si +

h

2
, tj +

h′

2
))
∣∣

≤ µ

n−1∑
i=0

n−1∑
j=0

∣∣ ∫ si+1

si

∫ tj+1

tj

Λ(s, t, τ, ν)Φ(ψ(τ, ν)) dτdν

− (si+1 − si)(tj+1 − tj)Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(ψ(si +

h

2
, tj +

h′

2
))
∣∣,
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for all (s, t) ∈ [l1, u1]× [l2, u2]. From the last equation, we conclude that

|w1(s, t)− w̄1(s, t)| ≤ µhh′
n−1∑
i=0

n−1∑
j=0

(
χ[si,si+1]×[tj ,tj+1]ΛΦ(ψ),

h

2
+
h′

2

)
≤ 3µ(u1 − l1)(u2 − l2)

8

(
χ[si,si+1]×[tj ,tj+1]ΛΦ(ψ), hh

′)
)

=
3M

8σK
χ[si,si+1]×[tj ,tj+1](ΛΦ(ψ), hh

′).

Since
√

(α1 − α2)2 + (β1 − β2)2 ≤ h + h′ for any (α1, β1), (α2, β2) ∈
[si, si+1]× [tj , tj+1], we can conclude that

∣∣Λ(s, t, α1, β1) Φ(ψ(α1, β1))− Λ(s, t, α2, β2) Φ(ψ(α2, β2))
∣∣

≤
∣∣Λ(s, t, α1, β1) Φ(ψ(α1, β1))− Λ(s, t, α1, β1) Φ(ψ(α2, β2))

∣∣
+
∣∣Λ(s, t, α1, β1) Φ(ψ(α2, β2))− Λ(s, t, α2, β2) Φ(ψ(α2, β2))

∣∣
≤

∣∣Λ(s, t, α1, β1)
∣∣∣∣Φ(ψ(α1, β1))− Φ(ψ(α2, β2))

∣∣
+
∣∣Λ(s, t, α1, β1)− Λ(s, t, α2, β2)

∣∣∣∣Φ(ψ(α2, β2))
∣∣

≤ Kχ[si,si+1]×[tj ,tj+1](Φ(ψ), h+ h′) +K0χτν(Λ, h+ h′).

Now, we take the supremum of the last inequality and obtain

χ[si,si+1]×[tj ,tj+1](ΛΦ(ψ), h+ h′)

≤ Kχ[si,si+1]×[tj ,tj+1](Φ(ψ), h+ h′) +K0χτν(Λ, h+ h′),

and as a result we have

∥∥w1−w̄1

∥∥ ≤ 3M

8σ
χ[l1,u1]×[l2,u2](Φ(ψ), h+h

′)+
3M

8σK
K0χτν(Λ, h+h

′). (8)
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Now, for r = 2 with straightforward computing and using (2), we have

∣∣w2(s, t)− w̄2(s, t)
∣∣

=
∣∣µ ∫ u2

l2

∫ u1

l1

Λ(s, t, τ, ν) Φ(w1(τ, ν)) dτdν

− µhh′
n−1∑
i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(w̄1(si +

h

2
, tj +

h′

2
))
∣∣

≤
∣∣µ ∫ u2

l2

∫ u1

l1

Λ(s, t, τ, ν) Φ(w1(τ, ν)) dτdν

− µhh′
n−1∑
i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(w1(si +

h

2
, tj +

h′

2
))
∣∣

+
∣∣µhh′ n−1∑

i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(w1(si +

h

2
, tj +

h′

2
))

− µhh′
n−1∑
i=0

n−1∑
j=0

Λ(s, t, si +
h

2
, tj +

h′

2
)Φ(w̄1(si +

h

2
, tj +

h′

2
))
∣∣

≤ 3M

8σ
χ[l1,u1]×[l2,u2](Φ(w1), hh

′) + µ(u1 − l1)(u2 − l2)Kα1∥w1 − w̄1∥.

So, we have the following result:

∥∥w2 − w̄2

∥∥ ≤ 3M

8σ
χ[l1,u1]×[l2,u2](Φ(w1), h+ h′) +

3M

8σK
K1χτν(Λ, h+ h′)

+M
∥∥w1 − w̄1

∥∥.
By induction for r ≥ 3, using (2), (3) and (6), we see that

∣∣wr(s, t)− w̄r(s, t)
∣∣ ≤ 3M

8σ
χ[l1,u1]×[l2,u2](Φ(wr−1), h+ h′)

+
3M

8σK
Kr−1χτν(Λ, h+ h′) +M∥w1 − w̄1∥.

(9)
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From (9), we obtain

∥∥wr − w̄r

∥∥ ≤ 3M

8σ

(
χ[l1,u1]×[l2,u2](Φ(wr−1), h+ h′) +Mχ[l1,u1]×[l2,u2](Φ(wr−2), h+ h′)

+ ...+Mr−1χ[l1,u1]×[l2,u2](Φ(ψ), h+ h′)

)
+

3M

8σK
χτν(Λ, h+ h′)

(
Kr−1 +MKr−2 +M2Kr−3 + ...+Mr−1K0

)
.

(10)

On the other hand, we have∣∣Φ(wr(s1, t1))− Φ(wr(s2, t2))
∣∣

≤ σ
∣∣wr(s1, t1)− wr(s2, t2)

∣∣
≤ σ|ψ(s1, t1)− ψ(s2, t2)|

+ σ
∣∣µ∫ u2

l2

∫ u1

l1

Λ(s1, t1, τ, ν) Φ(wr−1(τ, ν)) dτdν

− µ

∫ u2

l2

∫ u1

l1

Λ(s2, t2, τ, ν) Φ(wr−1(τ, ν)) dτdν
∣∣

≤ σ
∣∣ψ(s1, t1)− ψ(s2, t2)

∣∣
+ σµ

∫ u2

l2

∫ u1

l1

∣∣Λ(s1, t1, τ, ν)− Λ(s2, t2, τ, ν)
∣∣∣∣Φ(wr−1(τ, ν))

∣∣ dτdν
≤ σ

∣∣ψ(s1, t1)− ψ(s2, t2)
∣∣+ M

K
χst(Λ, h+ h′)Γr−1.

Hence, we will have

χ[l1,u1]×[l2,u2](Φ(wr), h+h
′) ≤ σχ[l1,u1]×[l2,u2](ψ, h+h

′)+
M

K
χst(Λ, h+h

′)Γr−1.

(11)
By inequalities (10) and (11), we see that

∥wr − w̄r∥ ≤ 3M

8

(
1 +M +M2 + ...+Mr−1

)
χ[l1,u1]×[l2,u2](ψ, h+ h′)

+
3M

8σK
χst(Λ, h+ h′)

(
MΓr−2 +M2Γr−3 + ...+Mr−1Γ0

)
+

3M

8σK
χτν(Λ, h+ h′)

(
Kr−1 +MKr−2 +M2Kr−3 + ...+Mr−1K0

)
.
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By (7), we obtain

∥wr − w̄r∥ ≤ 3M

8

(
1−M r

1−M

)
χ[l1,u1]×[l2,u2](ψ, h+ h′)

+
3M

8σK
χst(Λ, h+ h′)(

M(1−M r−1)

1−M
η)

+
3M

8σK
χτν(Λ, h+ h′)(

(1−M r)

1−M
υ).

Therefore, since M < 1 we have

∥wr − w̄r∥ ≤ 3M

8(1−M)

(
χ[l1,u1]×[l2,u2](ψ, h+ h′)

+
M

σK
ηχst(Λ, h+ h′) +

1

σK
υχτν(Λ, h+ h′)

)
. (12)

By inequalities (5) and (12), we deduce that

∥w∗ − w̄r∥ ≤ ∥w∗ − wr∥+ ∥wr − w̄r∥

≤ M r+1

σ(1−M)
K0 +

3M

8(1−M)

(
χ[l1,u1]×[l2,u2](ψ, h+ h′)

+
M

σK
ηχst(Λ, h+ h′) +

1

σK
υχτν(Λ, h+ h′)

)
.

□

Remark 3.3. Since M < 1, it can be obviously concluded that

lim
r→∞
h,h′→0

∥∥w∗ − w̄r
∥∥ = 0,

that indicates the present method is convergent.

3.3 The stability analysis

Numerical stability is a desirable property of numerical algorithms. An
algorithm is called numerically stable if small changes in the initial data
create correspondingly small changes in the final results.
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Definition 3.4. Let w̄0, z̄0 ∈ C(I) be two initial values such that ∥
w̄0 − z̄0 ∥< ε, for arbitrary small ε > 0. A necessary and sufficient con-
dition for the algorithm of successive approximation used to the integral
equation (1) to be numerically stable with respect to the first iteration is
that there exist the constants β1, β2, β3 > 0 that are independent of h, h′

and two continuous functions f1, f2 : (0, u1 − l1 + u2 − l2] → [0,∞) with
limh→0 f1(h) = 0 and limh→0 f2(h) = 0 such that:

∥ w̄r − z̄r ∥< β1ε+ β2f1(h) + β3f2(h), r ∈ N ∪ {0},

where h = h+ h′.

Theorem 3.5. Under the assumptions of Theorem (3.2), the procedure
(6) is numerically stable with respect to the choice of the first iteration.

Proof. Let denote wr = T (wr−1), w0 = ψ and zr = T (zr−1), z0 = g. To
study the numerical stability of this method, we reproduce the proof of
Theorem 3.2 with the following non-negative constants

K ′
r = sup

(s,t)∈[l1,u1]×[l2,u2]
|Φ(z̄r(s, t))|,

Γ′
r = sup

(s,t)∈[l1,u1]×[l2,u2]
|Φ(zr(s, t))|,

υ′ = max
i=0,1,...,r−1

{K ′
i},

η′ = max
i=0,1,...,r−2

{Γ′
i}.

Note that

∥ wr − zr ∥ =∥ T (wr−1)− T (wr−1) ∥

≤ ε+M ∥ wr−1 − zr−1 ∥≤ · · · ≤ (1 +M + ...+Mk)ε ≤ 1

1−M
ε.

Using (12), it follows that

∥ w̄r − z̄r ∥ ≤∥ w̄r − wr ∥ + ∥ wr − zr ∥ + ∥ zr − z̄r ∥

≤ 1

1−M
ε+

f1(h)

1−M
+

f2(h)

1−M
.

where

β1 =
1

1−M
, β2 = β3 =

8M

8(1−M)
,
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and

f1(h) =
3M

8(1−M)

(
χ[l1,u1]×[l2,u2](ψ, h+ h′) +

M

σK
ηχst(Λ, h+ h′)

+
1

σK
υχτν(Λ, h+ h′)

)
,

f2(h) =
3M

8(1−M)

(
χ[l1,u1]×[l2,u2](g, h+ h′) +

M

σK
η′χst(Λ, h+ h′)

+
1

σK
υ′χτν(Λ, h+ h′)

)
,

with h = h+ h′. □

Remark 3.6. Since M < 1, it can be obviously concluded that

lim
f1(h),f2(h)→0,r→+∞

∥ w̄r − z̄r ∥= 0,

that indicates the iterative procedure (6) is numerically stable.

4 The Iterative Algorithm

In this section, the steps of the implementation of the proposed method
for solving (1) are listed as follows:

Step 1: Take ε > 0. Set r = 1. Set w̄0(sk, tl) = ψ(sk, tl) for k = (0 : n),
l = (0 : n).

Step 2: Comput w̄r(sk, tl) by (6), for k = 0 to n and l = 0 to n.

Step 3: Compute E =| w̄r(sk, tl)− w̄r−1(sk, tl) |.

Step 4: If E < ε. Print w̄r(sk, tl), r, k, l, and Stop. Otherwise, set
r = r + 1 and go to Step 2.

The notation k = (0 : n) denotes the integer values of the k vary from 0
to n.
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5 Numerical Examples

In the current section, the implementation of the proposed method is
tested on two examples to show the accuracy of the method and the
correctness of the theoretical results. All computations are performed
using Maple 17 software on a laptop with the Intel Core i5-3210M CPU
processor and 4GB RAM. The following notations are introduced for
analyzing the error of the method:

� The error:

∥en∥∞ := max{| w∗(sk, tl)− w̄r(sk, tl) | k, l = 1, 2, ..., n}.

� The ratio of the successive values of ∥en∥∞ as n is doubled [3]:

Ratio =
∥w∗ − w

(n)
r ∥∞

∥w∗ − w
(2n)
r ∥∞

,

� The estimate of the convergence rate [3]:

σn = log2

(
∥w∗ − w

(n)
r ∥∞

∥w∗ − w
(2n)
r ∥∞

)
.

Consider w∗ and w̄r as the exact solution and approximate solution of
the Eq. (1), respectively. Also, NI = r is the number of iterations. In
the following examples, the tolerance to stop the iterations is ε = 10−15.

Example 5.1. As the first example, the following 2-D non-linear Fred-
holm integral equation is considered

w(s, t) = ψ(s, t) +

∫ 1

0

∫ 1

0

√
ν(t− s)√

1− τ
√
1− ν

(w(τ, ν))2 dτdν, (13)

where (s, t) ∈ [0, 1]× [0, 1] and

ψ(s, t) =
923

504
(s− t)π + s2 + t.

The exact solution of (13) is w(s, t) = s2 + t. We obtain the absolute
errors for the grid points (sk, tl), for k = l = 1, ..., 5. Numerical results
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Table 1: Numerical results for some values of n in Example 5.1.

s = t Exact ek,l, n = 10 ek,l, n = 20 ek,l, n = 40 ek,l, n = 80

0.1 0.11 7.0909× 10−7 1.7928× 10−7 4.4948× 10−8 1.1244× 10−8

0.3 0.39 6.1274× 10−6 1.5492× 10−6 3.8840× 10−7 9.7169× 10−8

0.5 0.75 1.5635× 10−5 3.9532× 10−6 9.9109× 10−7 2.4794× 10−7

0.7 1.19 2.6708× 10−5 6.7530× 10−6 1.6929× 10−6 4.2354× 10−7

0.9 1.71 3.5882× 10−5 9.0726× 10−6 2.2745× 10−6 5.6902× 10−7

∥en∥∞ − 3.8504× 10−5 9.7357× 10−6 2.4407× 10−6 6.1061× 10−7

Ratio − - 3.9549 3.9888 3.9971
σn − - 1.9836 1.9959 1.9989
NI − 7 7 7 7

0

1

0.8
1

2

0.6
0.8

s

0.4 0.6

t

e
k,

l

#10 -7

0.4
0.2

4

0.2
0 0

6

Figure 1: The absolute error graph of ek,l(s, t) for n = 80 for Example
5.1.

(error between exact and approximate value of w̄(s, t)) for n = 10, 20, 40
and 80 are given in Table 1. Also, Fig. 1 displays the absolute error
graph of ek,l(s, t) for n = 80. The obtained results show that the algo-
rithm is convergent. With a simple check, we can see that by doubling
the values of n, the errors ∥en∥∞ are decreasing by factor of approxi-
mately 4.
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Table 2: Numerical results for some values of n in Example 5.2.

s = t Exact ek,l, n = 10 ek,l, n = 20 ek,l, n = 40 ek,l, n = 80

0.1 1.02 5.2098× 10−8 1.3923× 10−8 3.5396× 10−9 8.8863× 10−10

0.3 1.18 1.6767× 10−6 4.4680× 10−7 1.1350× 10−7 2.8489× 10−8

0.5 1.50 9.0128× 10−6 2.3966× 10−6 6.0849× 10−7 1.5271× 10−7

0.7 1.98 2.8161× 10−5 7.4765× 10−6 1.8975× 10−6 4.7617× 10−7

0.9 2.62 6.7145× 10−5 1.7803× 10−5 4.5171× 10−6 1.1334× 10−6

∥en∥∞ − 9.7107× 10−5 2.5734× 10−5 6.5283× 10−6 1.6380× 10−6

Ratio − - 3.7734 3.9419 3.9855
σn − - 1.9158 1.9788 1.9947
NI − 5 5 5 5

Example 5.2. The following 2-D non-linear Fredholm integral equation
is considered as the next example

w(s, t) = ψ(s, t) +

∫ 1

0

∫ 1

0

√
ν(t2 + s+ 1)

5τ
3
2
√
1− ν

(w(τ, ν))3 dτdν, (14)

where (s, t) ∈ [0, 1]× [0, 1] and

ψ(s, t) = 2st+ 1− 11

8
π(s− t)(s2 + t+ 1),

with the exact solution w(s, t) = 2st+1. Table 2 illustrates the numerical
results for this example. The absolute error graph of ek,l(s, t) for n = 80
is displayed in Fig. 2.

6 Conclusions

In this work, an attempt was made to present an iterative numerical
technique based on the combination of the successive approximations
method and the midpoint formula for the numerical solution of two-
dimensional nonlinear Fredholm integral equations of the second kind.
Using uniform and partial modulus of continuity, the convergence was
proved and the error was estimated in Theorem 3.2. Also, the numerical
stability with respect to the choice of the first iteration was studied in
Theorem 3.5. Moreover, the accuracy of the method and the correctness
of the theoretical results were shown by some examples.
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Figure 2: The absolute error graph of ek,l(s, t) for n = 80 for Example
5.2.
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