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1 Introduction and Preliminaries

In the course of the study, the symbols N and R+ state in order of the
set of all positive natural numbers and the set of all non-negative real
numbers.

Let J ,K : L → L be self-mappings, where L is a non-void set. In
this case, the following sets stand for the set of fixed points of J and
the set of common fixed points of the mappings J and K, respectively:

Fix (J ) = {ξ ∈ Q : J ξ = ξ} ;
CFix (J ,K) = {ξ ∈ Q : J ξ = Kξ = ξ} .

Metric fixed point theory is a favorite research field for the time
being. The central constituent in this theory is the Banach contraction
principle (BCP), asserted by Banach in 1922 [10]. Many studies on
BCP are being done to evolve this theory. In order to find convenient
circumstances on mappings that assure the existence and uniqueness of
fixed points, researchers have made a great number of studies based on
BCP, either by modifying the contraction conditions with some auxiliary
functions, generalizing existing spaces, or using both.

Since the metric function, and hence the metric space structure,
forms the basis of the metric fixed point theory, many researchers have
extensively studied this function. A plethora of novel distance functions
has begun to appear in the literature. The b-metric function, which
first appeared in Bakhtin’s study [11] and then in Czerwik’s [17, 18],
is one of them and can even be contemplated as one of the principal
generalizations.

Definition 1.1. [17] Let L be a non-void set, and c ≥ 1 be a real-valued
constant. For all ξ, ℓ, t ∈ L, if the axioms

(σ1) σ (ξ, ℓ) = 0 ⇔ ξ = ℓ,

(σ2) σ (ξ, ℓ) = σ (ℓ, ξ) ,

(σ3) σ (ξ, ℓ) ≤ c [σ (ξ, t) + σ (t, ℓ)]

are provided, then the function σ : L×L → R+ is entitled as a b−metric
on L. Moreover, the pair (L, σ) represents a b−metric space which is
abbreviated with b−MS.
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Observe that b−metric and ordinary metric coincide, provided that
c = 1. Furthermore, except for the continuity, nearly all of the topo-
logical specifications of b −MS overlap the metric ones. Thereby, the
following lemma can be verified in a b−metric.

Lemma 1.2. [4] Let (L, σ, c ≥ 1) be a b − MS and {ξz} and {ℓz} be
convergent to ξ and ℓ, respectively. Then

1

c2
σ (ξ, ℓ) ≤ lim inf

z→∞
σ (ξz, ℓz) ≤ lim sup

z→∞
σ (ξz, ℓz) ≤ c2σ (ξ, ℓ) .

Especially, if ξ = ℓ, then lim
z→∞

σ (ξz, ℓz) = 0. Also, for t ∈ L, we attain

1

c
σ (ξ, t) ≤ lim inf

z→∞
σ (ξz, t) ≤ lim sup

z→∞
σ (ξz, t) ≤ cσ (ξ, t) .

To more figure out b−MS, see ([2], [8], [24]-[28]).
In 2010, Chistyakov put forward a novel metric function titled modu-

lar metric. In addition, various authors have introduced plenty of gener-
alized metric structures to the literature by handling the metric modular
concept.

Primarily, rest of the work, we will prefer the represent ϖℏ (ξ, ℓ)
instead ofϖ (ℏ, ξ, ℓ) for all ℏ > 0 and ξ, ℓ ∈ L, whereϖ : (0,∞)×L×L →
[0,∞] is a function, and L is a non-void set.

Definition 1.3. [13, 14] Let ϖ : (0,∞)×L×L → [0,∞] be a function
on non-void set L. Thereupon if the circumstances

(ϖ1) ϖℏ (ξ, ℓ) = 0 for all ℏ > 0 ⇔ ξ = ℓ,

(ϖ2) ϖℏ (ξ, ℓ) = ϖℏ (ℓ, ξ) for all ℏ > 0,

(ϖ3) ϖℏ+µ (ξ, ℓ) ≤ ϖℏ (ξ, t) +ϖµ (t, ℓ) for all ℏ, µ > 0,

are provided for all ξ, ℓ, t ∈ L, then, ϖ and (L, ϖ) are termed as a
modular metric and modular metric space (briefly MMS), respectively.
Furthermore, if ϖ has the property (ϖ1

′) given below instead of (ϖ1),
then ϖ is entitled a pseudomodular (metric) on L:

(ϖ1
′) ϖℏ (ξ, ξ) = 0 for all ℏ > 0.
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Also, to investigate more detail about modular metric structure, see
([1], [6], [12], [13], [14], [15], [19], [22], [23], [31]).

By combining modular metric and b−metric structures, Ege and
Alaca [20] have lately brought the concept of modular b-metric to the
literature.

Definition 1.4. [20] Let c ≥ 1 be a real-valued constant and L be a
non-empty set. If, for all ξ, ℓ, t ∈ L, the conditions

(κ1) κℏ (ξ, ℓ) = 0 for all ℏ > 0 ⇔ ξ = ℓ,

(κ2) κℏ (ξ, ℓ) = κℏ (ℓ, ξ) for all ℏ > 0,

(κ3) κℏ+µ (ξ, ℓ) ≤ c [κℏ (ξ, t) + κµ (t, ℓ)] for all ℏ, µ > 0,

are fulfilled, the map κ : (0,∞)×L×L → [0,∞] is labeled as a modular
b−metric, and the pair (L, κ) is a modular b−metric space which is
abbreviated with M♭MS.

In the illustration of M♭MS, it is an inherent consequence of attain-
ing the modular metric provided that c = 1. In what follows, there are
some examples of M♭MS.

Example 1.5. [20] Taking into account the set

lp =

(ξz) ⊂ R :
∞∑
z=1

|ξz|p <∞

 ; 0 < p < 1,

with ℏ ∈ (0,∞) and κℏ (ξ, ℓ) =
m(ξ,ℓ)

ℏ such that

m (ξ, ℓ) =

 ∞∑
z=1

|ξz − ℓz|p
 1

p

, ξ = ξz, ℓ = ℓz ∈ lp.

Thereby, (L, κ) is an M♭MS.

Example 1.6. [32] Let (L, ϖ) be anMMS. Take κℏ (ξ, ℓ) = (ϖℏ (ξ, ℓ))
s,

where s ≥ 1. For t ≥ 0, J (t) = ts is a convex function, and considering
Jensen’s inequality, we attain

(x+ z)s ≤ 2s−1 (xs + zs)

for all x, z ≥ 0. Thus, (L, κ) is an M♭MS with c = 2s−1.



GENERALIZED ALMOST SIMULATIVE ẐΘ
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The set Lκ =
{
ℓ ∈ L : ℓ

κ∼ ξ
}

is mentioned as a modular set on L

such that κ is a modular b−metric and
κ∼ is a binary relation that is

identified with ξ ∼ ℓ⇔ lim
ℏ→∞

κℏ (ξ, ℓ) = 0, where ξ, ℓ ∈ L.
Also, the sets

L∗
κ = {ξ ∈ L : ∃ℏ = ℏ (ξ) > 0 such that κℏ (ξ, ξ0) <∞} (ξ0 ∈ L)

are an M♭MS (around ξ0).
As follows, some topological features of an M♭MS are put forward.

Definition 1.7. [20] Let (L, κ) be an M♭MS and (ξz)z∈N be a sequence
in L∗

κ.

(i) the sequence (ξz)z∈N is κ−convergent to ξ ∈ L∗
κ ⇔ κℏ (ξz, ξ) → 0,

as z → ∞ for all ℏ > 0.

(ii) the sequence (ξz)z∈N in L∗
κ is a κ−Cauchy sequence provided that

lim
z,m→∞

κℏ (ξz, ξm) = 0 for all ℏ > 0.

(iii) if any κ−Cauchy sequence in L∗
κ κ−convergence to a point of L∗

κ,
then L∗

κ is termed as a κ−complete space.

Let ϑ : [0,∞) → [0,∞) be a function that fulfills the subsequent
features, and the set Ψ be the family of all such functions.

� ϑ is continuous and strictly increasing,

� ϑ (a) = 0 ⇔ a = 0.

We will present the concept of simulation functions, which we denote
as Sf.

Definition 1.8. Let Ω : [0,∞)× [0,∞) → R be a mapping fulfilling the
succeeding circumstances.

(Ω1) Ω (0, 0) = 0,

(Ω2) Ω (a, t) < t− a for all a, t > 0,

(Ω2
′) Ω (a, t) < ϑ (t)− ϑ (a) for all a, t > 0 and for some ϑ ∈ Ψ,
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V. PARVANEH

(Ω2
′′) Ω (a, t) < ϑ (t)− ϑ

(
cλa
)
for all a, t > 0, for some ϑ ∈ Ψ and for a

coefficient λ ≥ 1.

(Ω3) if {az}, {tz} are sequences in the interval (0,∞) such that lim
z→∞

az =

lim
z→∞

tz > 0, then

lim sup
z→∞

Ω (az, tz) < 0. (1)

(Ω3
′) if {az}, {tz} are sequences belong to (0,∞) such that lim

z→∞
az =

lim
z→∞

tz > 0 and az ≤ tz; thereby, the statement (1) is fulfilled.

Taking into account the function Ωi, we say that

� i = 1, 2, 3 ⇒ Sf with respect to Khojasteh et al., [29],

� i = 2, 3 ⇒ Sf w.r.t. Argoubi et al., [7],

� i = 1, 2, 3′ ⇒ Sf w.r.t. Roldan Lopez de Hierro et al., [33],

� i = 2′, 3 ⇒ Ψ−Sf w.r.t. Joonaghany et al., [21],

� i = 2′′, 3′ ⇒ Ψc−Sf w.r.t. of Zoto et al., [35].

We furnish some instances of Sf.

Example 1.9. Let Ωi : [0,∞) × [0,∞) → R, i = 1, 2, 3, 4, 5 be func-
tions.

(i) Ω1 (a, t) = ϑ (t) − ϕ (a) for all a, t ∈ [0,∞), where ϑ, ϕ : [0,∞) →
[0,∞) are two continuous functions such that ϑ (a) = ϕ (a) = 0 if
and only if a = 0 and ϑ (a) < a ≤ ϕ (a) for all a > 0.

(ii) Ω2 (a, t) = t − α(a,t)
β(a,t) for all a, t ∈ [0,∞), where α, β : [0,∞)2 →

(0,∞) are two continuous functions with respect to each variable
such that α (a, t) > β (a, t) for all a, t > 0.

(iii) Ω3 (a, t) = ϕ (t)ϑ (t)−ϑ (a), where ϕ : [0,∞) → [0,∞) is a function
such that lim sup

a→t
ϕ (a) < 1 for each t > 0.

(iv) Ω4 (a, t) = ϑ (t) − ϕ (t) − ϑ (a), where ϕ : [0,∞) → [0,∞) is a
function such that lim inf

a→t
ϕ (a) > 0 for each t > 0.
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(v) Ω5 (a, t) = ϕ (t)−ϑ
(
cλa
)
for all a, t ∈ (0,∞), where ϕ, ϑ : [0,∞) →

[0,∞) are continuous functions and ϑ is an increasing function such
that ϕ (t) < ϑ (t) for each t > 0 and a coefficient λ ≥ 1.

Then Ωi for i = 1, 2 are Sf given in [29]. Also, for i = 3, 4, Ωi are Sf
given in [21]. Lastly, Ω5 is an Sf presented in [35].

In the sequel, the family Ξ represents the set of all Sf in the sense
of Khojasteh et al. [29]. Moreover, by considering the axiom (Ω2), we
have Ω (a, a) < 0 for all a > 0.

Definition 1.10. [29] Let J : L → L be a map on a metric space (L,m)
and Ω ∈ Ξ. If

Ω (m (J ξ,J ℓ) ,m (ξ, ℓ)) ≥ 0 for all ξ, ℓ ∈ L,

is fulfilled, then J is termed as a Ξ-contraction with respect to Ω.

Further, contemplating Ω ∈ Ξ as Ω (a, t) = qt−a for all a, t ∈ [0,∞),
we achieve the Banach contraction.

Remark 1.11. Let J be a Ξ-contraction. Then, we have Ω (a, t) < 0
for all a ≥ t > 0 w.r.t. Ω ∈ Ξ and accordingly, m (J ξ,J ℓ) < m (ξ, ℓ) .
We acquire that every Ξ-contraction is a contractive mapping and, even-
tually, continuous.

In 2018, Cho [16] revised the specification of simulation functions
and termed the Z simulation function (briefly Z − Sf ), as indicated
below.

Definition 1.12. [16] Let ζ : [1,∞)×[1,∞) → R be a mapping fulfilling
the below statements.

(ζ1) ζ (1, 1) = 1;

(ζ2) ζ (a, t) < t/a , ∀ a, t > 1;

(ζ3) for all sequences {az} , {tz} ⊂ (1,∞) with az ≤ tz , ∀ z = 1, 2, 3, ...

lim
z→∞

az = lim
z→∞

tz > 1 ⇒ lim sup
z→∞

ζ (az, tz) < 1.
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Thereby, ζ is entitled as Z −Sf, and the set Z denotes the family of all
such mappings.

Also, note that ζ (a, a) < 1 , ∀ a > 1.

Example 1.13. [16] The functions ζ1, ζ2, ζ3 : [1,∞)× [1,∞) → R that
identified below, are belong to Z.

(1) ζ1 (a, t) = tλ
/
a , ∀ a, t ≥ 1, where λ ∈ (0, 1) ;

(2) ζ2 (a, t) = t/aϕ (t) , ∀ a, t ≥ 1, where ϕ is a non-decreasing and
lower semi-continuous self-mapping on [1,∞) such that ϕ−1 ({1}) =
1;

(3)

ζ3 (a, t) =


1, if (a, t) = (1, 1) ,
t
2a , if t < a,
tλ

a , otherwise,

∀ a, t ≥ 1, where λ ∈ (0, 1) .

In [26], Jleli and Samet introduced the class T = {γ : (0,∞) →
(1,∞)}, in which the functions in this class satisfy the following features:

(γ1) γ is non-decreasing;

(γ2) for each sequence {az} ⊂ (0,∞), lim
z→∞

γ (az) = 1 ⇔ lim
z→∞

az = 0+;

(γ3) there exist r ∈ (0, 1) and s ∈ (0,∞] such that lim
a→0+

γ(a)
ar = s.

Additionally, they proved the following theorem in the framework of
generalized metric spaces. Some researchers call this space Branciari
metric space, while others call it rectangular metric space.

Theorem 1.14. Let J : L → L be a given map on a complete general-
ized metric space (L,m). Presume that a function γ ∈ T and a constant
k ∈ (0, 1) exist such that

m (J ξ,J ℓ) ̸= 0 ⇒ γ (m (J ξ,J ℓ)) ≤ [γ (m (ξ, ℓ))]k

for all ξ, ℓ ∈ L. Thereupon, the set Fix (J ) has a unique element.
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Next, Liu [30] realized that the condition (γ3) could be relieved to
(γ3

′) which is identified as follows:

(γ3
′) γ is continuous.

Let Θ = {γ : (0,∞) → (1,∞) : γ holds (γ1) , (γ2) and (γ3
′)}.

Example 1.15. For all χ > 0; the following functions

� γ1 (χ) = eχ,

� γ2 (χ) = e
√
χ,

� γ3 (χ) = e
√
χeχ ,

� γ4 (χ) = coshχ,

� γ5 (χ) = 1 + ln (1 + χ),

� γ6 (χ) = eχe
χ
,

belong to the class Θ.

2 Main Results

As can be understood from the definition, it is clear that the metric
modular does not have to be finite. Considering this fact, it is needful
to converse about the ensuing supplementary situations to ensure the
existence and uniqueness of fixed points of contraction mappings on
MMSs and M♭MSs.

(S1) κℏ (ξ,J ξ) <∞ for all ℏ > 0 and ξ ∈ L∗
κ,

(S2) κℏ (ξ, ℓ) <∞ for all ℏ > 0 and ξ, ℓ ∈ L∗
κ.

We serve up some auxiliary functions to be employed in the following
discussion.

The symbol ∆G is used to indicate the set of all functions G :
[0,∞)4 → [0,∞) that own the continuity such that

(G1) G is non-decreasing with respect to each variable;
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(G2) G (a, a, a, a) ≤ a for all a ∈ [0,∞).

Example 2.1. The followings are some instances of the function G,
which are included in the set ∆G.

(G1) G (a1, a2, a3, a4) = max {a1, a2, a3, a4} ;

(G2) G (a1, a2, a3, a4) = max {a1 + a2, a2 + a3, a1 + a3, a3 + a4} ;

(G3) G (a1, a2, a3, a4) = [max {a1a2, a2a3, a1a3, a3a4}]
1
2 ;

(G4) G (a1, a2, a3, a4) = [max {a1q, a2q, a3q, a4q}]
1
q , q > 0;

(G5) G (a1, a2, a3, a4) = a1;

(G6) G (a1, a2, a3, a4) =
a2+a3

2 ;

(G7) G (a1, a2, a3, a4) = a1 + a2 + a3 + a4;

(G8) G (a1, a2, a3, a4) = p1a1 + p2a2 + p3a3 + p4a4, with 0 < p1 + p2 +
p3 + p4 < 1.

Let Ψ∗ be denoted as the set of all φ self-mappings on [1,+∞) such
that φ (a) = 1 ⇔ a = 1, which possesses strictly increasing and
continuity properties.

We present a new class of functions that serve the family of Sf.

Definition 2.2. Let Ẑ be the class of all mappings η : [1,∞)2 → R.
Let a function φ ∈ Ψ∗ and a coefficient λ ≥ 1 exist such that

(η1) η (1, 1) = 1;

(η2) η (a, t) <
φ(t)
φ(a) , ∀ a, t > 1;

(η2
′) η (a, t) < φ(t)

φ(cλa)
, ∀ a, t > 1;

(η3) for all sequences {az} , {tz} ⊂ (1,∞) with az ≤ tz , ∀ z = 1, 2, 3, ...

lim
z→∞

az = lim
z→∞

tz > 1 ⇒ lim sup
z→∞

η (az, tz) < 1.
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If the function η satisfies (η2)-(η3), η is termed generalized Ψ∗ − Sf.
Also, if η provides only the conditions (η′2)-(η3), then η is called a

generalized Ψ∗c− Sf.
If we choose φ (a) = a for all a t ≥ 1 and the features (η1)-(η2)-(η3)

are satisfied, then η is a generalized Z−simulation function in the sense
of Cho [16].

Example 2.3. Let ηa, ηb, ηc, ηd : [1,∞)2 → R be functions defined as
indicated below:

(e1) ηa (a, t) =
αφ(t)
φ(ca) , ∀ a, t ≥ 1;α ∈ (0, 1) ;

(e2) ηb (a, t) = φ(t)

φ(cλa)ϕ(t)
, ∀ a, t ≥ 1 and a coefficient λ ≥ 1, where

ϕ is a non-decreasing and lower semi-continuous self-mapping on
[1,∞) such that ϕ−1 ({1}) = 1;

(e3) ηc (a, t) = ϕ(t)

φ(cλa)
, ∀ a, t ≥ 1 and a coefficient λ ≥ 1, where ϕ :

[1,∞) → [1,∞) is a continuous function such that ϕ (t) < φ (t) for
all t > 0.

(e4)

ηd (a, t) =


1, if (a, t) = (1, 1) ,
φ(t)
kφ(a) , if t < a,
[φ(t)]p

φ(a) , otherwise,

∀ a, t ≥ 1, where k ≥ 1 and p ∈ (0, 1) .

Then, ηa, ηb, ηc, ηd are generalized Ψ∗c−Sf. For c = 1, the above exam-
ples are generalized Ψ∗ − Sf.

We now prepare to submit our principal theorem in this section. The
definition required for this is as follows.

Definition 2.4. Let κ be a modular b−metric on a set L and J ,K :
L∗
κ → L∗

κ be two self-mappings. J and K are called generalized almost
simulative ẐΘ

Ψ∗−contraction mappings if a generalized Ψ∗c − Sf and a
constant ρ ≥ 0 as well as, a γ ∈ Θ and G ∈ ∆G exist such that

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)
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M. ÖZTÜRK, F. GOLKARMANESH, A. BÜYÜKKAYA AND
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implies

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, [γ (G (ξ, ℓ) + ρN (ξ, ℓ))]k

)
≥ 1, (2)

where

G (ξ, ℓ) =

(
κℏ (ξ, ℓ) , κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ) ,

κ2ℏ (ξ,Kℓ) + κ2ℏ (ℓ,J ξ)
2c

)
and

N (ξ, ℓ) = min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ) , κℏ (ξ,Kℓ) , κℏ (ℓ,J ξ)} ,

for all distinct ξ, ℓ ∈ L∗
κ, k ∈ (0, 1) and for all ℏ > 0.

Theorem 2.5. Let L∗
κ be a κ−complete M♭MS with constant c ≥ 1

and let J and K be generalized almost simulative ẐΘ
Ψ∗−contraction map-

pings. If the condition (S1) is fulfilled, then u ∈ L∗
κ exists such that

u ∈ CFix (J ,K). If, in addition, the condition (S2) is fulfilled, then
CFix (J ,K) = {u}.

Proof. Let ξ0 ∈ L∗
κ be an initial element, and we can construct a

sequence {ξz} by:

ξ2z+1 = J ξ2z and ξ2z+2 = Kξ2z+1, for all z ∈ N.

If there is some z0 ∈ N such that ξz0 = ξz0+1, then z0 becomes a common
fixed point of J and K. Herewith, we presume that ξk ̸= ξk+1 for all
k ∈ N, and we have κℏ (ξk, ξk+1) > 0 for all ℏ > 0.

Now, we will divide the proof into four steps to make sense more
straightforward.

Step (1): We claim that lim
k→∞

κℏ (ξk, ξk+1) = 0 for all ℏ > 0.

Thus, at first, we must show that

κℏ (ξk+1, ξk+2) < κℏ (ξk, ξk+1) , for all k ∈ N. (3)

We presume that k = 2z for some z ∈ N. So, we obtain

1
2c min {κℏ (ξ2z,J ξ2z) , κℏ (ξ2z+1,Kξ2z+1)}

= 1
2c min {κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z+1, ξ2z+2)}

≤ κℏ (ξ2z, ξ2z+1) .
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By using (2) and (η2
′), we get

1 ≤ η
(
γ
(
c4κℏ (J ξ2z,Kξ2z+1)

)
, (γ [G (ξ2z, ξ2z+1) + ρN (ξ2z, ξ2z+1)])

k
)

<
φ((γ[G(ξ2z,ξ2z+1)+ρN (ξ2z,ξ2z+1)])

k)
φ(cλγ(c4κℏ(ξ2z+1,ξ2z+2)))

,

that is,

φ
(
cλγ

(
c4κℏ (ξ2z+1, ξ2z+2)

))
< φ

(
(γ [G (ξ2z, ξ2z+1) + ρN (ξ2z, ξ2z+1)])

k
)
.

Due to features of the function φ and contemplating k ∈ (0, 1), the
above inequality yields

cλγ
(
c4κℏ (ξ2z+1, ξ2z+2)

)
< (γ [G (ξ2z, ξ2z+1) + ρN (ξ2z, ξ2z+1)])

k

< γ [G (ξ2z, ξ2z+1) + ρN (ξ2z, ξ2z+1)].

As γ ∈ Θ, we derive that

c4+λκℏ (ξ2z+1, ξ2z+2) < G (ξ2z, ξ2z+1) + ρN (ξ2z, ξ2z+1) , (4)

where

G (ξ2z, ξ2z+1) =

 κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z,J ξ2z) , κℏ (ξ2z+1,Kξ2z+1) ,

κ2ℏ(ξ2z,Kξ2z+1)+κ2ℏ(ξ2z+1,J ξ2z)
2c



=

 κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z+1, ξ2z+2) ,

κ2ℏ(ξ2z,ξ2z+2)
2c

 .

From (κ3), note that κ2ℏ (ξ2z, ξ2z+2) ≤ c [κℏ (ξ2z, ξ2z+1) + κℏ (ξ2z+1, ξ2z+2)].
So, we gain

G (ξ2z, ξ2z+1) =

 κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z+1, ξ2z+2) ,

κℏ(ξ2z,ξ2z+1)+κℏ(ξ2z+1,ξ2z+2)
2

 .
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If we assume κℏ (ξ2z, ξ2z+1) ≤ κℏ (ξ2z+1, ξ2z+2), we deduce that

G (ξ2z, ξ2z+1) =

 κℏ (ξ2z+1, ξ2z+2) , κℏ (ξ2z+1, ξ2z+2) ,

κℏ (ξ2z+1, ξ2z+2) , κℏ (ξ2z+1, ξ2z+2)


≤ κℏ (ξ2z+1, ξ2z+2) , (byG ∈ ∆G) .

(5)

Nevertheless, we have

N (ξ2z, ξ2z+1) = min


κℏ (ξ2z,J ξ2z) , κℏ (ξ2z+1,Kξ2z+1) ,

κℏ (ξ2z,Kξ2z+1) , κℏ (ξ2z+1,J ξ2z)


= min


κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z+1, ξ2z+2) ,

κℏ (ξ2z, ξ2z+2) , 0

 = 0.

(6)

Consequently, by using (5) and (6), inequality (4) becomes

c4+λκℏ (ξ2z+1, ξ2z+2) < κℏ (ξ2z+1, ξ2z+2) .

This is a contradiction since c, λ ≥ 1. Then, our assumption is false, i.e.,
the expression (3) is verified while k is an even number. Similarly, it can
be shown that (3) is held while k is an odd number. So, the sequence
{κℏ (ξz, ξz+1)}z≥1 is non-decreasing and bounded below with 0. Hence
there is a real number a ≥ 0 such that lim

z→∞
κℏ (ξz, ξz+1) = a for all ℏ > 0.

Now we confirm that a = 0. On the contrary, we claim a > 0. To see
this, it is enough to mention the below two cases:

Case (1): Assume that c > 1.

As the expression (3) holds, we conclude that

G (ξ2z, ξ2z+1)

= (κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z, ξ2z+1) , κℏ (ξ2z, ξ2z+1))

≤ κℏ (ξ2z, ξ2z+1) , (by G ∈ ∆G) .
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So, by keeping in mind (4) and (6), we obtain

c4+λκℏ (ξ2z+1, ξ2z+2) < κℏ (ξ2z, ξ2z+1) .

If the limit is taken for z → ∞ in the above inequality, a contradiction
in the form of c4+λa < a is encountered.

Case (2): Presume that c = 1. Using the expression (2), we achieve

1 ≤ η
(
γ (κℏ (J ξ2z,Kξ2z+1)) , (γ [G (ξ2z, ξ2z+1) + ρN (ξ2z, ξ2z+1)])

k
)
.

Similar to (5) and (6), we get

1 ≤ η
(
γ (κℏ (ξ2z+1, ξ2z+2)) , (γ [κℏ (ξ2z, ξ2z+1)])

k
)

(7)

and so, from both (η2
′) and φ is strictly increasing, we have

γ (κℏ (ξz+1, ξz+2)) < [γ (κℏ (ξz, ξz+1))]
k. (8)

Let az = γ (κℏ (ξz+1, ξz+2)) and tz = [γ (κℏ (ξz, ξz+1))]
k for all z ∈ N.

Now, since lim
z→∞

κℏ (ξz, ξz+1) = a > 0, then it follows from (γ2) that

lim
z→∞

γ (κℏ (ξz, ξz+1)) ̸= 1 and so lim
z→∞

γ (κℏ (ξz, ξz+1)) > 1.

Accordingly, from (8), we obtain

az = γ (κℏ (ξz+1, ξz+2)) < [γ (κℏ (ξz, ξz+1))]
k = tz

< [γ (κℏ (ξz, ξz+1))] .

Hence, considering as z → ∞ in the above, we attain γ (r) ≤ lim
z→∞

tz ≤
γ (r). This implies that lim

z→∞
az = lim

z→∞
tz = γ (r) > 1. Hence, from (η3),

we deduce that lim sup
z→∞

η(az, tz) < 1. Nevertheless, it is a contradiction

due to (7).

Consequently, in both cases, we have a contradiction. For this reason
we procure that a = 0, that is, for all ℏ > 0,

lim
z→∞

κℏ (ξz, ξz+1) = 0. (9)
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Step (2): We assert that {ξz} is a κ−Cauchy sequence. It is enough
to verify {ξ2z} is a κ−Cauchy sequence. As opposed to our assertion,
presume that {ξ2z} is not a κ−Cauchy sequence. An ε > 0 exists such
that two sequences

{
ξ2mq

}
and

{
ξ2zq
}
of positive integers fulfilling zq >

mq > q can be formed. In this instance, zq exists as the smallest index
for which

κℏ
(
ξ2mq , ξ2zq

)
≥ ε and κℏ

(
ξ2mq , ξ2zq−2

)
< ε, for all ℏ > 0. (10)

Now, without the loss of the generality from (10) and the modular in-
equality, we get

ε ≤ κ2ℏ
(
ξ2mq , ξ2zq

)
≤ cκℏ

(
ξ2mq , ξ2zq+1

)
+ cκℏ

(
ξ2zq+1, ξ2zq

)
.

Letting q → ∞ and using (9) in the above, we obtain

lim sup
q→∞

κℏ
(
ξ2zq+1, ξ2mq

)
≥ ε

c
. (11)

Similarly, we have

κℏ
(
ξ2mq−1, ξ2zq

)
≤ cκ ℏ

2

(
ξ2mq−1, ξ2mq

)
+ c2κ ℏ

4

(
ξ2mq , ξ2zq−2

)
+c3κ ℏ

8

(
ξ2zq−2, ξ2zq−1

)
+ c3κ ℏ

8

(
ξ2zq−1, ξ2zq

)
.

If the limit superior for q → ∞ in the above inequality is taken, then

lim sup
q→∞

κℏ
(
ξ2mq−1, ξ2zq

)
≤ c2ε. (12)

Moreover, like in the above, we achieve

κℏ
(
ξ2q , ξ2q

)
≤ cκ ℏ

2

(
ξ2q , ξ2q−2

)
+ c2κ ℏ

4

(
ξ2q−2, ξ2q−1

)
+c2κ ℏ

4

(
ξ2q−1, ξ2q

)
.

So, by using (9), letting q → ∞, we procure

lim sup
q→∞

κℏ
(
ξ2mq−1, ξ2zq+1

)
≤ c2ε. (13)
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In conclusion, similar to the above calculations, it can be shown that

lim sup
q→∞

κℏ
(
ξ2mq+1, ξ2zq+1

)
≤ c2ε. (14)

Besides, we suggest that for sufficiently large q ∈ N, if zq > mq > q, then

1

2c
min

{
κℏ
(
ξ2zq ,J ξ2zq

)
, κℏ

(
ξ2mq−1,Kξ2mq−1

)}
≤ κℏ

(
ξ2zq , ξ2mq−1

)
.

(15)
In fact, owing to zq > mq and {κℏ (ξz, ξz+1)}z≥1 is non-decreasing, we

acquire

κℏ
(
ξ2zq ,J ξ2zq

)
= κℏ

(
ξ2zq , ξ2zq+1

)
≤ κℏ

(
ξ2mq+1, ξ2mq

)
≤ κℏ

(
ξ2mq , ξ2mq−1

)
= κℏ

(
ξ2mq−1,Kξ2mq−1

)
.

Thereupon, the left-hand side of inequality (15) is

1

2c
κℏ
(
ξ2zq ,J ξ2zq

)
=

1

2c
κℏ
(
ξ2zq , ξ2zq+1

)
.

For sufficiently large q ∈ N, it is necessary to indicate that if zq > mq > q,
then

κℏ
(
ξ2zq , ξ2zq+1

)
≤ κℏ

(
ξ2zq , ξ2mq−1

)
.

In accordance with (9), a natural number q1 exists such that for any
q > q1,

κℏ
(
ξ2zq , ξ2zq+1

)
<

ε

2c
.

There exists q2 ∈ N such that for any q > q2,

κℏ
(
ξ2mq−1, ξ2mq

)
<

ε

2c
.

Therefore, for any q > max {q1, q2} and zq > mq > q, we have

ε ≤ κℏ
(
ξ2zq , ξ2mq

)
≤ cκℏ

(
ξ2zq , ξ2mq−1

)
+ cκℏ

(
ξ2mq−1, ξ2mq

)
≤ cκℏ

(
ξ2zq , ξ2mq−1

)
+ c ε2c .

So, one concludes that

ε

2c
≤ κℏ

(
ξ2zq , ξ2mq−1

)
.
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Hence, we deduce that for any q > max {q1, q2} and zq > mq > q,

κℏ
(
ξ2zq , ξ2zq+1

)
≤ ε

2c
≤ κℏ

(
ξ2zq , ξ2mq−1

)
that is, expression (15) is proved. So, from (2), it implies that

η

(
γ
(
c4κℏ

(
J ξ2q ,Kξ2q−1

))
,(

γ
[
G
(
ξ2q , ξ2q−1

)
+ ρN

(
ξ2q , ξ2q−1

)])k
)

≥ 1.

By using (η2
′) and taking into account the properties of φ and γ with

k ∈ (0, 1), we obtain

c4+λκℏ
(
J ξ2zq ,Kξ2mq−1

)
< G

(
ξ2zq , ξ2mq−1

)
+ ρN

(
ξ2zq , ξ2mq−1

)
, (16)

where

G
(
ξ2zq , ξ2mq−1

)

=

 κℏ
(
ξ2zq , ξ2mq−1

)
, κℏ

(
ξ2zq ,J ξ2zq

)
, κℏ

(
ξ2mq−1,Kξ2mq−1

)
,

κ2ℏ(ξ2zq ,Kξ2mq−1)+κ2ℏ(ξ2mq−1,J ξ2zq)
2c



=

 κℏ
(
ξ2zq , ξ2mq−1

)
, κℏ

(
ξ2zq , ξ2zq+1

)
, κℏ

(
ξ2mq−1, ξ2mq

)
,

κ2ℏ(ξ2zq ,ξ2mq)+κ2ℏ(ξ2mq−1,ξ2zq+1)
2c

 .

By taking the limit superior as q → ∞ in above and using (9), (12),(13),
and (14), we derive the following:

lim sup
q→∞

G
(
ξ2zq , ξ2mq−1

)
≤
(
c2ε, 0, 0,

cε+ c2ε

2c

)
≤ c2ε. (17)

Also,

N
(
ξ2zq , ξ2mq−1

)
= min


κℏ
(
ξ2zq ,J ξ2zq

)
, κℏ

(
ξ2mq−1,Kξ2mq−1

)
,

κℏ
(
ξ2zq ,Kξ2mq−1

)
κℏ
(
ξ2mq−1,J ξ2zq

)


= min


κℏ
(
ξ2zq , ξ2zq+1

)
, κℏ

(
ξ2mq−1, ξ2mq

)
,

κℏ
(
ξ2zq , ξ2mq

)
, κℏ

(
ξ2mq−1, ξ2zq+1

)

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thus we have
lim sup
q→∞

N
(
ξ2zq , ξ2mq−1

)
= 0. (18)

Consequently, if we take the limit as q → ∞, and considering (11), (17),
and (18), inequality (16) becomes c4+λ εc < c2ε + ρ0. This is a contra-
diction; {ξ2z} is a κ−Cauchy sequence. Thereby, {ξz} is a κ−Cauchy
sequence in L∗

κ. Because L∗
κ is a κ−complete M♭MS, u ∈ L∗

κ exists
such that

lim
z→∞

ξz = u. (19)

Step (3): In this step, we will prove that u ∈ CFix (J ,K).
First, we shall demonstrate that u ∈ Fix (K). Conversely, this state-

ment is not true. We assert that for all z ≥ 0, at least one of the following
inequalities is true:

1

2c
κℏ (ξ2z, ξ2z+1) ≤ κℏ (ξ2z, u) , (20)

or
1

2c
κℏ (ξ2z+1, ξ2z+2) ≤ κℏ (ξ2z, u) . (21)

Unlike, let for some z0 ≥ 0, both of them are not provided. Hence, we
say that

κℏ (ξ2z0 , ξ2z0+1) ≤ cκℏ (ξ2z0 , u) + cκℏ (u, ξ2z0+1)

< 1
2κℏ (ξ2z0 , ξ2z0+1) +

1
2κℏ (ξ2z0+1, ξ2z0+2)

< 1
2κℏ (ξ2z0 , ξ2z0+1) +

1
2κℏ (ξ2z0 , ξ2z0+1)

= κℏ (ξ2z0 , ξ2z0+1) ,

such that it is a contradiction. Whence the assertion is true. From this
point, the following two subcases can be considered.

Subcase (3.1): The inequality (20) is valid for infinitely many z ≥ 0.
In this instance, for infinitely many z ≥ 0, we attain

1
2c min {κℏ (ξ2z,J ξ2z) , κℏ (u,Ku)} = 1

2c min {κℏ (ξ2z, ξ2z+1) , κℏ (u,Ku)}

≤ κℏ (ξ2z, u)
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which yields that

η
(
γ
(
c4κℏ (J ξ2z,Ku)

)
, (γ [G (ξ2z, u) + ρN (ξ2z, u)])

k
)
≥ 1.

By using (η2
′) and keep in mind that φ ∈ Ψ∗ and γ ∈ Θ with k ∈ (0, 1),

then we conclude that

c4+λκℏ (ξ2z+1,Ku,) < G (ξ2z, u) + ρN (ξ2z, u) , (22)

where

G (ξ2z, u) = G

 κℏ (ξ2z, u) , κℏ (ξ2z,J ξ2z) , κℏ (u,Ku) ,

κ2ℏ(ξ2z,Ku)+κ2ℏ(u,J ξ2z)
2c



≤ G

 κℏ (ξ2z, u) , κℏ (ξ2z, ξ2z+1) , κℏ (u,Ku) ,

c[κℏ(ξ2z,ξ2z+)+κℏ(ξ2z+1,Ku)]+κ2ℏ(u,ξ2z+1)
2c

 ,

and
lim sup
z→∞

G (u, ξ2z+1) = G
(
0, 0, κℏ (u,J u) , κℏ(u,Ku)2

)
≤ κℏ (u,Ku) .

(23)

Also,

N (ξ2z, u)

= min {κℏ (ξ2z,J ξ2z) , κℏ (u,Ku) , κℏ (ξ2z,Ku) , κℏ (u,J ξ2z)}

= min {κℏ (x2z, x2z+1) , κℏ (u,Ku) , κℏ (ξ2z,Ku) , κℏ (u, ξ2z+1)}

and so

lim sup
z→∞

N (ξ2z, u) = min {0, κℏ (u,J u) , κℏ (u,J u) , 0, 0} = 0. (24)

Next, by (23) and (24), if we take the limit superior as z → ∞ in
(22), then it gives a contradiction since c4+λκℏ (u,J u) < κℏ (u,J u) .
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Eventually, we have u ∈ Fix (K). Pursuing the similar method above,
u ∈ Fix (J ) is obvious.

Subcase (3.2): The expression (20) exclusively fulfills for finitely many
z ≥ 0.

Thereupon, one can find z0 ≥ 0 such that (21) holds for any n ≥ z0.
In the same way, as in Subcase (3.1), it follows that (21) also causes a
contradiction unless u ∈ Fix (J ) or u ∈ Fix (K).

So, in both subcases, we achieve that u ∈ CFix (J ,K).
Step (4):We claim that the set of CFix (J ,K) has a unique element.

Suppose, on the contrary. Then, there is a point r belongs to L∗
κ by r ̸= u

such that r ∈ CFix (J ,K). Since

0 =
1

2c
min {κℏ (u,J u) , κℏ (r,Kr)} ≤ κℏ (u, r) ,

it implies that

η
(
γ
(
c4κℏ (J u,Kr)

)
, (γ [G (u, r) + ρN (u, r)])k

)
≥ 1, (25)

where

G (u, r) = G
(
κℏ (u, r) , κℏ (u,J u) , κℏ (r,Kr) , κ2ℏ(u,Kr)+κ2ℏ(r,J u)2c

)
≤ κℏ (u, r)

(26)
and also,

N (u, r) = min {κℏ (u,J u) , κℏ (r,Kr) , κℏ (u,Kr) , κℏ (r,J u)}

= min {0, 0, κℏ (u, r) , κℏ (u, r)} = 0.
(27)

Now, by using (η2
′) and the properties of φ and γ with k ∈ (0, 1),

inequality (25) turns into

c4+λκℏ (u, r) < G (u, r) + ρN (u, r) .

Finally, from (26) and (27), we deduce that c4+λκℏ (u, r) < κℏ (u, r),
which causes a contradiction, that is, our assertion is false. Hence, u = r
and CFix (J ,K) = {u}. □
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3 Consequences

This section illustrates the applicability and validity of our main theorem
and supports it with several conclusions, which permits us to cover some
obtained findings in the literature.

Initially, if we remove the restriction

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ) ,

then the subsequent consequence can be acquired immediately from The-
orem 2.5.

Corollary 3.1. Let L∗
κ be a κ−complete M♭MS with constant c ≥ 1

and J ,K : L∗
κ → L∗

κ be two self-mappings. Let a generalized Ψ∗c − Sf
and a constant ρ ≥ 0 as well as, a γ ∈ Θ, a G ∈ ∆G and k ∈ (0, 1) exist
such that for all distinct ξ, ℓ ∈ L∗

κ, and for all ℏ > 0

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, [γ (G (ξ, ℓ) + ρN (ξ, ℓ))]k

)
≥ 1, (28)

where G (ξ, ℓ) and N (ξ, ℓ) are defined as in Theorem 2.5. If condi-
tion (S1) is satisfied, then the set CFix (J ,K) has at least one element.
Also, together with the condition (S2), the set CFix (J ,K) has a unique
element.

If J = K in Theorem 2.5, the following consequence and its proof
are evident.

Corollary 3.2. Let L∗
κ be a κ−complete M♭MS with constant c ≥ 1

and J : L∗
κ → L∗

κ be a self-mapping. Let a generalized Ψ∗c − Sf and a
constant ρ ≥ 0 as well as, a γ ∈ Θ, a G ∈ ∆G and k ∈ (0, 1) exist such
that for all distinct ξ, ℓ ∈ L∗

κ, and for all ℏ > 0

1

2c
κℏ (ξ,J ξ) ≤ κℏ (ξ, ℓ)

implies

η
(
γ
(
c4κℏ (J ξ,J ℓ)

)
, [γ (G (ξ, ℓ) + ρN (ξ, ℓ))]k

)
≥ 1, (29)
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where

G (ξ, ℓ) =

 κℏ (ξ, ℓ) , κℏ (ξ,J ξ) , κℏ (ℓ,J ℓ) ,

κ2ℏ(ξ,J ℓ)+κ2ℏ(ℓ,J ξ)
2c


and

N (ξ, ℓ) = min {κℏ (ξ,J ξ) , κℏ (ℓ,J ℓ) , κℏ (ξ,J ℓ) , κℏ (ℓ,J ξ)} .

Thereby, under condition (S1), the set Fix (J ) has at least one element.
If the condition (S2) is met in addition to (S1), the set Fix (J ) consists
of a unique element.

Corollary 3.3. Let L∗
κ be a κ−complete M♭MS with constant c ≥ 1

and J ,K : L∗
κ → L∗

κ be two self- mappings. Let a generalized Ψ∗c − Sf
and a constant ρ ≥ 0 as well as, a γ ∈ Θ, a G ∈ ∆G and k ∈ (0, 1) exist
such that for all distinct ξ, ℓ ∈ L∗

κ, and for all ℏ > 0,

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, [γ (G (ξ, ℓ) + ρN (ξ, ℓ))]k

)
≥ 1, (30)

where

G (ξ, ℓ) = max


κℏ (ξ, ℓ) , κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ) ,

κ2ℏ(ξ,Kℓ)+κ2ℏ(ℓ,Kξ)
2c


and N (ξ, ℓ) is defined as in Theorem 2.5. Under condition (S1), the
set CFix (J ,K) admits at least one element, and together with (S2), the
element of CFix (J ,K) is unique.

Proof. If we prefer G ∈ ∆G as G (a1, a2, a3, a4) = max {a1, a2, a3, a4},
then it follows from Theorem 2.5. □

As in Corollary 3.3, if we choose G ∈ ∆G as G (a1, a2, a3, a4) =
a1, then the subsequent consequence can be attained as an immediate
outcome of Theorem 2.5.
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Corollary 3.4. Let L∗
κ be a κ−complete M♭MS with constant c ≥ 1

and J ,K : L∗
κ → L∗

κ be two self-mappings. Let a generalized Ψ∗c − Sf,
a constant ρ ≥ 0, a γ ∈ Θ and k ∈ (0, 1) exist such that for all distinct
ξ, ℓ ∈ L∗

κ, and for all ℏ > 0,

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, [γ (κℏ (ξ, ℓ) + ρN (ξ, ℓ))]k

)
≥ 1, (31)

where N (ξ, ℓ) is defined as in Theorem 2.5. With conditions (S1) and
(S2), the set CFix (J ,K) admits a unique element.

Next, we give some new corollaries dependent on the choice of gen-
eralized Ψ∗c− Sf.

Before continuing with the conclusions in this section, first, we ac-
quaint a novel notion that we called Suzuki type (φ, γ)−contraction in
the setting of an M♭MS, as indicated below.

Definition 3.5. Let J and K be two self-mappings on L∗
κ. The map-

pings J and K are called Suzuki type (φ, γ)−contraction mappings if
φ ∈ Ψ∗, γ ∈ Θ and k ∈ (0, 1) exist such that for all λ ∈ (0, 1)

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

φ
(
cγ
(
c4κℏ (J ξ,Kℓ)

))
≤ λφ

(
[γ (κℏ (ξ, ℓ))]

k
)
, (32)

for all distinct ξ, ℓ ∈ L∗
κ and for all ℏ > 0.

Corollary 3.6. Let J and K be Suzuki type (φ, γ)−contraction map-
pings on L∗

κ, which is a κ−complete M♭MS with the constant c ≥ 1.

If condition (S1) is satisfied, there is at least one element in the set
CFix (J ,K). Besides, together with (S2), CFix (J ,K) consists of only
one element.
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Proof. If we choose η (t, v) = λφ(v)
φ(ct) , for all t, v > 1; λ ∈ (0, 1) as well

as G ∈ ∆G with G (a1, a2, a3, a4) = a1 and ρ = 0, then it follows from
Theorem 2.5. □
The subsequent corollary is a generalization of the Suzuki type (φ, γ)-
contraction mapping, which is also a consequence of Theorem 2.5.

Corollary 3.7. Let J and K be two self-mappings on L∗
κ, which is

a κ−complete M♭MS with constant c ≥ 1. Presume that there exist
φ ∈ Ψ∗, G ∈ ∆G, γ ∈ Θ and k ∈ (0, 1) such that

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

φ
(
cγ
(
c4κℏ (J ξ,Kℓ)

))
≤ λφ

(
[γ (G (ξ, ℓ))]k

)
, (33)

where

G (ξ, ℓ) = max


κℏ (ξ, ℓ) , κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ) ,

κ2ℏ(ξ,Kℓ)+κ2ℏ(ℓ,Kξ)
2c


and λ ∈ (0, 1), for all distinct ξ, ℓ ∈ L∗

κ and for all ℏ > 0.
If conditions (S1) and (S2) are satisfied, the set CFix (J ,K) exactly

has a unique element.

Proof. As with the proof of Corollary 3.6, the proof is comprehensible
if G (a1, a2, a3, a4) = max {a1, a2, a3, a4} is settled on specifically. □

We also signify the Suzuki type (φ, ϕ, γ)−contraction mapping, which
is a finding of Theorem 2.5, as noted below.

Definition 3.8. Let κ be a modular b−metric on (L, κ), and J ,K :
L∗
κ → L∗

κ be two self-mappings. J and K are called Suzuki type
(φ, ϕ, γ)−contraction mappings if φ ∈ Ψ∗, γ ∈ Θ and k ∈ (0, 1) ex-
ist such that for all distinct ξ, ℓ ∈ L∗

κ and for all ℏ > 0,

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

φ
(
cλγ

(
c4κℏ (J ξ,Kℓ)

))
≤ ϕ

(
[γ (κℏ (ξ, ℓ))]

k
)
, (34)



26
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where ϕ : [1,∞) → [1,∞) is a continuous mapping satisfying ϕ (t) <
φ (t) for all t > 0.

Corollary 3.9. Let J and K be Suzuki type (φ, ϕ, γ)−contraction map-
pings on L∗

κ, which is a κ−complete M♭MS with constant c ≥ 1. If (S1)
and (S2) are met, CFix (J ,K) definitely admits a unique element.

Proof. If we choose η (t, v) = ϕ(v)

φ(cλt)
, for all t, v > 1 as well as G ∈ ∆G

with

G (a1, a2, a3, a4) = a1

and ρ = 0, then it follows from Theorem 2.5. □

Corollary 3.10. Let J and K be two self-mappings on L∗
κ, which is

a κ−complete M♭MS with coefficient c ≥ 1. Presume that φ ∈ Ψ∗,
G ∈ ∆G, γ ∈ Θ and k ∈ (0, 1) exist such that for all distinct ξ, ℓ ∈ L∗

κ

and for all ℏ > 0,

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

φ
(
cλγ

(
c4κℏ (J ξ,Kℓ)

))
≤ ϕ

(
[γ (G (ξ, ℓ))]k

)
, (35)

where

G (ξ, ℓ) = max


κℏ (ξ, ℓ) , κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ) ,

κ2ℏ(ξ,Kℓ)+κ2ℏ(ℓ,Kξ)
2c


and ϕ : [1,∞) → [1,∞) is a continuous mapping, which has the property
ϕ (t) < φ (t) for all t > 0. Thereupon, by considering conditions (S1)
and (S2), the set CFix (J ,K) holds exactly a unique element.

Proof. Using the analog method of the proof of Corollary 3.9, it is
adequate to choose G ∈ ∆G as G (a1, a2, a3, a4) = max {a1, a2, a3, a4}.
Thus the proof is evident. □

The following theorem indicates that Corollary 3.4 can be satisfied
as an outcome of Theorem 2.5 without the constant k.
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Theorem 3.11. Let L∗
κ be a κ−complete M♭MS with coefficient c ≥ 1

and J ,K : L∗
κ → L∗

κ be two self-mappings. Presume that η ∈ Ψ∗, γ ∈ Θ
and a constant ρ ≥ 0 exist such that for all distinct ξ, ℓ ∈ L∗

κ and for all
ℏ > 0

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ)

implies

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, γ [κℏ (ξ, ℓ) + ρN (ξ, ℓ)]

)
≥ 1, (36)

where N (ξ, ℓ) is defined as in Theorem 2.5.
Thereby, the set CFix (J ,K) precisely admits only one element to-

gether with conditions (S1) and (S2).

Proof. We shall show that Theorem 3.11 can be achieved from Corollary
3.4. Owing to the fact that φ ∈ Ψ∗ in expression (31), we get

φ
(
γ
(
c4κℏ (J ξ,Kℓ)

))
≤ φ

(
[γ (κℏ (ξ, ℓ) + ρN (ξ, ℓ))]k

)
,

which yields

φ
(
γ
(
c4κℏ (J ξ,Kℓ)

))
≤ φ (γ (κℏ (ξ, ℓ) + ρN (ξ, ℓ)))

because k ∈ (0, 1).
Under the same conditions, the above inequality can also be acquired

from the expression (36). Therefore, Theorem 3.11 is demonstrated by
applying a method similar to the proof of Corollary 3.4. □

Now, we put forward an example that fulfills the statement of The-
orem 3.11 under specific states.

Example 3.12. Let L = [0, 1] and regard the modular b−metric by

κℏ(ξ, ℓ) =
|ξ − ℓ|2

ℏ
,

for all distinct ξ, ℓ ∈ L∗
κ, and for all ℏ > 0. Observe that (L∗

κ, κ) is a
κ−complete M♭MS with the constant c = 2. Also, let the mappings
J ,K : L∗

κ → L∗
κ be defined by

J ξ = ξ

4
and Kℓ = 2ℓ.
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Now, we propose to prove the contractivity conditions

1

2c
min {κℏ (ξ,J ξ) , κℏ (ℓ,Kℓ)} ≤ κℏ (ξ, ℓ) (37)

implies

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, γ [κℏ (ξ, ℓ) + ρN (ξ, ℓ)]

)
≥ 1, (38)

where

N (ξ, ℓ) = min {κℏ (ξ,J ξ) , κℏ (ℓ,J ℓ) , κℏ (ξ,J ℓ) , κℏ (ℓ,J ξ)} ,

via η (a, t) = ψ(t)λ

ψ(a) , ∀ a, t > 1, λ ∈ (0, 1) and ψ ∈ Ψ∗ with ψ (a) = a
2 ,

holds for all distinct ξ, ℓ ∈ L∗
κ and for all ℏ > 0.

Notice that η belongs to the class of generalized Ψ∗−Sf (also Ψ∗c−
Sf).

Also, we define the function γ : (0,∞) → (1,∞) by γ (a) = ea.

Hence, we will first attest that expression (37) is satisfied. Then, we
have

κℏ (ξ,J ξ) =
|ξ − J ξ|2

ℏ
=

∣∣∣ξ − ξ
4

∣∣∣2
ℏ

=
9ξ2

16ℏ
and

κℏ (ℓ,Kℓ) =
|ℓ−Kℓ|2

ℏ
=

|ℓ− 2ℓ|2

ℏ
=
ℓ2

ℏ
.

Subsequently, expression (37) yields

1

4
min

{
9ξ2

16ℏ
,
ℓ2

ℏ

}
= min

{
9ξ2

64ℏ
,
ℓ2

4ℏ

}
≤ |ξ − ℓ|2

ℏ
. (39)

Without ignoring the general case, we esteem that ξ > ℓ ≥ 0.

Case (1): Let min
{

9ξ2

64ℏ ,
ℓ2

4ℏ

}
= ℓ2

4ℏ . So, from (39), we obtain that

ℓ2

4ℏ
≤ (ξ − ℓ)2

ℏ
⇔ ℓ

2
≤ |ξ − ℓ| = ξ − ℓ ⇔ ℓ ≤ 2

3
ξ < ξ,

which is true as ℓ < ξ.
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Ψ∗−CONTRACTION... 29

Case (2): Let min
{

9ξ2

64ℏ ,
ℓ2

4ℏ

}
= 9ξ2

64ℏ . Then, by (39), we conclude that

9ξ2

64ℏ
≤ (ξ − ℓ)2

ℏ
⇔ 3ξ

8
≤ |ξ − ℓ| = ξ − ℓ ⇔ ℓ ≤ 5

8
ξ < ξ,

which holds because ℓ < ξ.
Consequently, in any case, expression (37) is valid for all distinct

ξ, ℓ ∈ L∗
κ and for all ℏ > 0.

Next, we will prove that expression (38) is satisfied. Using the above
choices for the mappings J , K and modular b−metric, we attain

κℏ (J ξ,Kℓ) =
|J ξ −Kℓ|2

ℏ
=

∣∣∣ ξ4 − 2ℓ
∣∣∣2

ℏ
=

(ξ − 8ℓ)2

16ℏ
,

and

N (ξ, ℓ) = min {κℏ (ξ,J ξ) , κℏ (ℓ,J ℓ) , κℏ (ξ,J ℓ) , κℏ (ℓ,J ξ)}

= min

{
|ξ− ξ

4 |
2

ℏ , |ℓ−2ℓ|2
ℏ , |ξ−2ℓ|2

ℏ ,
|ℓ− ξ

4 |
2

ℏ

}

= min
{

9ξ2

16ℏ ,
ℓ2

ℏ ,
|ξ−2ℓ|2

ℏ , |4ℓ−ξ|
2

16ℏ

}
= min

{
ℓ2

ℏ ,
|4ℓ−ξ|2
16ℏ

}
.

(40)

Case (3): We assume that ξ < 4ℓ, and so, we get |4ℓ− ξ| = 4ℓ− ξ. Using
(40), we conclude that

min

{
ℓ2

ℏ
,
|4ℓ− ξ|2

16ℏ

}
=

(4ℓ− ξ)2

16ℏ
.

Thereby, the expression (38) provides

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, γ (κℏ (ξ, ℓ) + ρN (ξ, ℓ))

)
= ψ(γ(κℏ(ξ,ℓ)+ρN (ξ,ℓ)))λ

ψ(γ(c4κℏ(J ξ,Kℓ))) = 21−λ e
[κℏ(ξ,ℓ)+ρN (ξ,ℓ)]λ

ec
4κℏ(J ξ,Kℓ)

= 21−λ e

[
(ξ−ℓ)2

ℏ +ρ
(4ℓ−ξ)2

16ℏ

]
λ

e2
4 (ξ−8ℓ)2

16ℏ

= 21−λe

[
(ξ−ℓ)2

ℏ +ρ
(4ℓ−ξ)2

16ℏ

]
λ− (ξ−8ℓ)2

ℏ ≥ 1,
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where ρ ≥ 24 and λ = 1
2 ∈ (0, 1) . Thus, the desired state is achieved.

Case (4): We presume that 4ℓ < ξ, i.e., |4ℓ− ξ| = ξ − 4ℓ. In this case, if
we choose ξ = 8ℓ, then we get

ℓ2

ℏ
=

|4ℓ− ξ|2

16ℏ
.

Therefore, we discuss the following subcases.

Subcase (4.1): If ξ > 8ℓ, by (40), we have

min

{
ℓ2

ℏ
,
|4ℓ− ξ|2

16ℏ

}
=
ℓ2

ℏ
.

Then, similar to the above, we get

η
(
γ
(
c4κℏ (J ξ,Kℓ)

)
, γ (κℏ (ξ, ℓ) + ρN (ξ, ℓ))

)
= ψ(γ(κℏ(ξ,ℓ)+ρN (ξ,ℓ)))λ

ψ(γ(c4κℏ(J ξ,Kℓ))) = 21−λ e
[κℏ(ξ,ℓ)+ρN (ξ,ℓ)]λ

ec
4κℏ(J ξ,Kℓ)

= 21−λ e

[
(ξ−ℓ)2

ℏ +ρ ℓ2

ℏ

]
λ

e2
4 (ξ−8ℓ)2

16ℏ

= 21−λe

[
(ξ−ℓ)2

ℏ +ρ ℓ2

ℏ

]
λ− (ξ−8ℓ)2

ℏ ≥ 1.

Subcase (4.2): If ξ < 8ℓ, by (40), we have

min

{
ℓ2

ℏ
,
|4ℓ− ξ|2

16ℏ

}
=

(4ℓ− ξ)2

16ℏ
.

This case has been proved to be satisfied in Case (3).
Consequently, the mappings J and K satisfy the hypotheses of The-

orem 3.11 associated with the function η (a, t) = ψ(t)λ

ψ(a) , ∀ a, t > 1, λ ∈
(0, 1) and ψ ∈ Ψ∗ with ψ (a) = a

2 .

4 An Application to Integral Equations

Initially, a novel consequence has been put forward that can be enforced
to the nonlinear integral equations.



GENERALIZED ALMOST SIMULATIVE ẐΘ
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Corollary 4.1. Let L∗
κ be a κ−complete M♭MS with constant c ≥ 1 and

J : L∗
κ → L∗

κ be a self-mapping. Suppose that the ensuing circumstances
be provided:

i. A generalized Ψ∗−Sf, a constant ρ ≥ 0, and γ ∈ Θ exist such that
for all distinct ξ, ℓ ∈ L∗

κ, k ∈ (0, 1) and for all ℏ > 0

η
(
γ
(
c4κℏ (J ξ,J ℓ)

)
, [γ (κℏ (ξ, ℓ))]

k
)
≥ 1; (41)

ii. (S1) and (S2) are provided.

In this case, the set Fix (J ) enjoys a unique element in L∗
κ.

Proof. Without Suzuki restriction, if we choose G ∈ ∆G as

G (a1, a2, a3, a4) = a1,

ρ = 0, and J = K in Theorem 2.5, the requested result is acquired. □
We shall verify an existence theorem for the solution of the ensuing

nonlinear integral equation via Corollary 4.1.

ξ (a) =

n̂∫
m̂

E (a, t, ξ (t)) dt, (42)

where m̂, n̂ ∈ R by m̂ < n̂, ξ ∈ C [m̂, n̂] (the set of all continuous
functions from [m̂, n̂] into R) and E : [m̂, n̂]× [m̂, n̂]× R → R are given
mappings. We endow L∗

κ = C [m̂, n̂] with

κℏ (x, y) =
|x (a)− y (a)|p

ℏ
, (p > 1),

for all x, y ∈ L∗
κ and for all ℏ > 0. Precisely, (L∗

κ, κ) is a κ−complete
modular b−metric space with the constant c = 2p−1.

Additionally, let f : L∗
κ → L∗

κ be defined by

f (ξ (a)) =

n̂∫
m̂

E (a, t, ξ (t)) dt

for all ξ ∈ L∗
κ and a ∈ [m̂, n̂] . Accordingly, the existence of a solution to

(42) is equivalent to the existence of a fixed point of the function f .
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Theorem 4.2. Contemplate the nonlinear integral equation (42). Let
the ensuing circumstances be met:

i. E : [m̂, n̂] × [m̂, n̂] × R → R is continuous and non-decreasing in
the third order,

ii. there exists p > 1 satisfying the following condition: for each a, t ∈
[m̂, n̂] and ξ, ℓ ∈ L∗

κ with ξ (w) ≤ ℓ (w) for all w ∈ [m̂, n̂], we have

|E (a, t, ξ (t))− E (a, t, ℓ (t))| ≤ Λ (a, t) |ξ (t)− ℓ (t)| , (43)

where Λ : [m̂, n̂]× [m̂, n̂] → [0,∞) is a continuous function defined
by

sup
a∈[m̂,n̂]

 n̂∫
m̂

Λ(a, t)pdt

 ≤ k

24p−4
, (k ∈ (0, 1)) . (44)

Thereby, the nonlinear integral equation (42) enjoys a solution.

Proof. For all a ∈ [m̂, n̂], by (43) and (44), we derive

e2
4p−4κℏ(f(ξ(a)),f(ℓ(a)))

p
= e2

4p−4p
|f(ξ(a))−f(ℓ(a))|

ℏ
p

= e
24p−4.p. 1ℏ

∣∣∣∣∣ n̂∫̂m E(a,t,ξ(t))dt−
n̂∫̂
m

E(a,t,ℓ(t))dt

∣∣∣∣∣
p

≤ e
24p−4.p. 1ℏ

∣∣∣∣∣ n̂∫̂m [E(a,t,ξ(t))−E(a,t,ℓ(t))]dt

∣∣∣∣∣
p

≤ e
24p−4.p. 1ℏ

(
n̂∫̂
m

|E(a,t,ξ(t))−E(a,t,ℓ(t))|dt
)p

≤ e
24p−4.p. 1ℏ

(
n̂∫̂
m

Λ(a,t)|ξ(t)−ℓ(t)|dt
)p

≤ e
24p−4.p.

(
n̂∫̂
m

Λ(a,t)pdt

)
|ξ(t)−ℓ(t)|p

ℏ

≤ e2
4p−4.p k

24p−4 κℏ(ξ(a),ℓ(a)) =
[(
eκℏ(ξ(a),ℓ(a))

)k]p
.
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Now, let η be a Ψ∗−Sf with η (x, y) = φ(y)
φ(x) , (∀ x, y > 1) , where φ ∈ Ψ∗

such that φ (q) = qp, (q > 1) . We define γ ∈ Θ by γ (α) = eα, (α > 0).
This suggests that

φ
(
γ
(
24p−4κℏ (f (ξ (a)) , f (ℓ (a)))

))
=
(
γ
(
24p−4κℏ (f (ξ (a)) , f (ℓ (a)))

))p
= e2

4p−4κℏ(f(ξ(a))−f(ℓ(a)))p

≤
[(
eκℏ(ξ(a),ℓ(a))

)k]p
=
(
[γ (κℏ (ξ, ℓ))]

k
)p

= φ
(
[γ (κℏ (ξ, ℓ))]

k
)
.

With this last equation, we deduce that all circumstances of Corollary
4.1 are met. Herewith, a unique ξ ∈ L∗

κ exists such that ξ ∈ Fix (f),
which conveys that ξ is the unique solution for the integral equation
(42). □
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