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1 Introduction

Recently, fractional differential equations have been used in engineer-
ing, mathematics, physics, and other applied disciplines. The existence
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of solutions to the ordinary and fractional differential equations with
various conditions has received much attention; see the monographs
[1, 2,3, 22, 23, 24] and the papers [21, 19, 13, 12, 8, 7]. Several results
of implicit fractional differential equations have been recently provided,
see [1, 20, 15], and the references therein.

In [10, 11], Czerwik introduced the concept of b-metric. Following
these early studies, numerous problems with differential equations in b-
metric spaces has been intensively researched; see [9, 5, 6, 14] as well as
the included references.

In [25], Zulfeqarr et al. proposed the novel notion of deformable frac-
tional derivative, employing the limit technique as in the usual deriva-
tive. It was termed ”deformable” due to its inherent ability of contin-
uously deforming function to derivative. Deformable derivatives can be
thought of as fractional order derivatives.

The authors of [16] investigated further properties of the new concept
of deformable derivative and used the results to study the following
Cauchy problem with non-local condition:

gx(t):f(tvx(t))7 le (07T]7
z(0) + g(x) = o,

where ©f is the deformable derivative of order & € (0,1),and g: C - R
is a continuous function. Their arguments are based on Krasnoselskii’s
fixed point theorem.

In [18], Meraj and Pandey studied the existence and uniqueness of
mild solution for the following initial value problem:

Dox(t) = Ax(t) + f(t,x(t)), teJ,
z(0) = o,

where A : D(A) € X — X is an infinitesimal generator of a Cp-
semigroup T'(¢)(t > 0) on a suitable space X,z € X, and J = [0,b],b >
0 is a constant. The results are obtained with the help of semigroup
theory, Banach fixed point theorem, and Schauder fixed point theorem.
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In [17], by using Weissinger’s and Krasnoselskii’s fixed point theo-
rems, Mebrat and N’Guérékata studied the existence of solutions for the
following problem:

0
OFX(0) = B(x(0)) + ¥(O.X(0) + [ X(0.5.x(5))ds. 0 <.
x(0) = Xxo,
where V: O x F — E,T:0 x © x E — E are continuous functions.

Motivated by the above-mentioned papers, first we study the exis-
tence and uniqueness of solutions for the implicit problem with nonlin-
ear fractional differential equation involving the deformable fractional
derivative:

(Dox) (0) = ¥ (0, x(0),95x(0)) ; 0 € ©:=[0,4], (1)

with the initial condition
x(0) = xo, (2)

where 0 < o < 1, D is the deformable fractional derivative defined in
[25], ¥ : © xR? — R is a given function to be specified later and xo € R.

Next, we discuss the existence of solutions for the following problem
of deformable implicit nonlocal fractional differential equations:

{( 3 (0) = ¥ (0,x(0), D6x(0)) 0 € O, -

x(0) + ¥ (x) = xo,

where 1 : C(0,R) — R is a continuous function.

2 Preliminaries

First, we give the definitions and the notations that we will use through-
out this paper. We denote by C(©, R) the Banach space of all continuous
functions from © into R with the following norm

X[l = sup{|x(0)]}
)
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Consider the space X} (0,x), (b € R, 1 < p < 00) of those complex-
valued Lebesgue measurable functions ¥ on [0, k] for which || || xp < 00,
where the norm is given by:

S AY:
1]l xr = ; @5 | A<p<oobeR).

Definition 2.1 (The deformable fractional derivative [16, 25]). Let W :
[0,4+00) — R be a given function, then the non-conformable fractional
derivative of ¥ of order « is defined by

(14+ep)V (0 +ca) —¥(0)

(24) (0) = liny - ,

where a + f =1 and «a € (0, 1]. If the deformable fractional derivative
of W of order « exists, then we simply say that ¥ is a-differentiable.

Definition 2.2 (The a-fractional integral |
a continuous function ¥, let

, 17]). For a € (0,1] and

[
(JE) (6) = —e =0 / AT (r)dr.
0

a

Lemma 2.3 ([16, 17]). If o,aq € (0,1] such that «+ 5 =1, ¥ and ®
are two a-differentiable functions at a point 0 and m,n are two given
numbers, then the improved conformable fractional derivative satisfies
the following properties:

e DF(N) = B, for any constant \;

e O (mV¥ + nd®) =mDF(¥) +nDF(P);
e D(TD) = 2D (V) + aVP';

o T TNV = Jorw.

Lemma 2.4 (]
have:

, 17]). If a € (0,1], f is continuous function, then we

o (T2 DGD)) (6) = U(0) — e = 'V (0);
e DY (JLY)(0) =(h).
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Lemma 2.5. Let ® € LY(©) and 0 < a < 1. Then the initial value
problem

(DGx) (0) = @(0); 6 € © :=[0, 5],
- (4)
x(0) = xo,
has a unique solution defined by
_ 1 - 0
x(0) = XOGTBQ + aeaﬁe/ egT(I)(T)dT. (5)
0

Proof. Applying the a-fractional integral of order « to both sides the
equation

(D5 x) (0) = 2(0),
and by using Lemma 2.4 and if 8 € O, we get

«

0
(0) = x(0)e 20 = 1ef9/0 AT (r)dr. (6)

From the initial conditions, we get

_ 1 — 0
X(0) = xoe =’ + aefG/ eaT®(r)dr (7)
0
Conversely, we can easily show by Lemma 2.3 that if x verifies equation
(5) then it satisfied the problem (4). O

Definition 2.6 ([]). Let H be a set and € > 1 be a given real number.
A distance function ¢ : H x H — RY is called a b-metric if the following
conditions hold for all &1, &,&3 € H:

(1) 0(&1,&2) = 0 if and only if §; = &,
(2) 6(&1,82) = 0(&2,&1),
(3) 0(&1,&2) <eld(&1,83) +6(&3,82)]-
Then, the pair (#,d,¢) is called a b-metric space with parameter e.

Consider = the set of continuous and increasing function  : RY —
R% satisfying the property: (ex) < e¥(x) < ex, for e > 1 and
1¥(0) = 0. We denote by Z the family of all nondecreasing functions
n:R% — [0, %) for some & > 1.
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Definition 2.7 ([5]). Let (H,d,¢) be a b-metric space, & : H — H is
said to be a generalized w-1-Geraghty mapping whenever there exists
w:H xH — RY such that

w(ér, E)P(°d(6(61), 6(&2)) < (W (3(€1,62))¥(8(61 &2),

for &1,& € H, where n € =.

Definition 2.8 ([5]). Let # be a non empty set, & : H — H and
w: H xH — R} be given mappings. The operator & is orbital w-
admissible if for x € H, we have

w(x, 8(x)) > 1= w(&(x),&*(x)) > 1.

Theorem 2.9 ([5]). Let (H,0) be a complete b-metric space and N :
H — H be a generalized w-1p-Geraghty mapping where

(a) N is w-admissible;
(b) there exists xo € H where w(xo,N(x0)) > 1;

(C) If (Xn)neN C H with x, — x and W(XnaXnJrl) > 1, then w(XnaX) >
1

Y

Then N admit a fixed point. Further, if
(d) for all fized points x,x" of W, either
wix,x) =1 or w(x',x) > 1,

Then N admit a unique fixed point.

3 Existence of Solutions for the First Problem

Let (C(0©),9,2) be the complete b-metric space with ¢ = 2, where 0 :
C(©) x C(0) — R%, is given by:

506S) = (x = 9)?loo 1= sup NOERIG]E

In this section, we establish some existence results for problem (1)-

2).
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Definition 3.1. By a solution of problem (1)-(2), we mean a continuous
function y € C(0) given by

_ 1 - 0
x@):mmfe+aefeé<£ﬂMﬂdn (8)

where ® € C(0) such that ®(0) = ¥(0, x(0), P(6)).
The hypotheses:

(H1) There exist 71 : C(©) x C(O) — R and v2 : © — (0, 1) where for
X, S, X1, 31 € C(O) and 6 € O, we have

(W (0, x, ) = ¥(0, x1,31)| <7106 )X = Slloo +72(0)[Ix1 — S1lles

with

2
1 -8y b s 71X, ) 2
—_ « aTid < - 00)-
Set [t I < (- 9l)

o0

(Hs) There exist 1 € = and Ay € C(0) and a function 3 : C(0) x
C(0) — R, where

B

N 1 =By 0 =
v3 [ Ao(0), —€ea ea"®(1)dr ) >0
o 0
where ® € C(0O) such that ®(0) = ¥ (0, \o(0), ®(0)).
(H3) For each 6 € ©, and x, S € C(O), we have:
v3(x(6),3(0)) = 0
implies
_ 0 _ 0
V3 (160[39/ egTCI)(T)dT, 1eaﬂ9/ 627@/(T)d7) >0,
Q@ 0 o 0
where ®, @' € C'(©) such that
D(0) = (6, x(0), 2(9))

and
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(Hy) If (Xn)peny C C(O) with x;, — x and 73(Xn» Xnt1) = 1, then
(Hs) For all fixed solutions x, x’ of (1)-(2), either

v3(x(0),x'(8)) >0,

v3(x'(0), x(8)) > 0.

Theorem 3.2. Assume that the hypotheses (Hy)-(Hy4) hold. Then the
problem (1)-(2) has at least one solution. And, if (Hs) holds, then the
solution is unique.

Proof. Let £: C(0©) — C(O) be the operator given by:

89 1 sy (% 5,
(Kx)(0) = xoe=? + e 9/0 eAT(r)dr, (9)

where ® € C'(0) such that ®(0) = ¥(0, xg, P(0)).
The function w : C(0) x C(©) — R is given by:

{ wix,X') =1 if 33(x(0),x'(0)) >0, 6 €O,
wx,x') =0; eles.

First, we demonstrate that /C is a generalized w-1-Geraghty operator:
For any x, X’ € C(0).Then, for each 6 € ©, we obtain

B 0
(R0(0) = ()0 < e [ e jo(m) = ()10
where @, &' € C(0) such that
D(0) = (0. x(0). B(0)) and ¥'(6) = V(0. x(0), ¥'(6).
From (H;) we have

/ 1
10X X 5
1@ — ¥/floo < 2D 0 ayyd

STt
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where 2" = supyeg |72(8)].
Next, we have

/ = o B <X7X/) N2
(00(0) = (O] < e [ et B - 32 Lao.
Thus

wloea, | (C2)(0) — (K54) 0)

2
1 _ 0 /
’659/ egnl(x,x)dﬁH
[0 0 1—’}’2*

< 1 = X)?[loow (X X)

< 10 = X2 lloo® (1 0x = X)?llo0)-

o0

Hence

wix, X)W (22K (x), K(X) < n(@ (80 X)) (x, X)),

where ) € 2, ¥ € 2, with n() = %9, and ¥ (0) = 6. So, K is generalized
w-1)-Geraghty operator.

Let x, X’ € C(©) such that
w(x,zx’) > 1.
Thus, for each 6 € ©, we have
¥(x(0),X'(6)) = 0.
This implies from (H3) that
13(Kx(0), KX'(6)) = 0,

which gives
w(K(x),K(x')) = 1.

Hence, K is a w-admissible. _
Now, by (Hz), there exist A\g € C(0) such that

W(XO, N(Xo)) > 1.
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Thus, by (Hy), if (Xn)nGN C H with A\, = X and w(Ay, Apy1) > 1, then

w(An, A) > 1.

By Theorem 2.9, we conclude that K has a fixed point x which is a
solution of (1)-(2).

Further, (Hs) implies that if x and x’ are fixed points of K, then
either

Y30, xX') >0 or y3(x',x) > 0.
Thus
wix,X)>1 or wix',x) >1,

Then, (1)-(2) has a unique solution. [

4 Existence of Solutions for the Second Prob-
lem

In this section, we establish some existence results for problem (3).
Let us introduce the following hypotheses:
(Hg) There exist constant ¢ > 0 such that
[$() = P(I)] < sllx = Slloo;
for each x, ¥ € C(O).

(H7) There exist M : C(0) x C(©) — R% and N : © — (0, 1) such that
for each x, 3, x1,31 € C(O) and 6 € ©

‘\IJ(H, X5 %) - \I](ev X1 %1)| < H(Xa %)HX_ %HOO +N(6)HX1 - %1“00

with
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(Hg) There exist 1) € = and \g € C(0) and a function 43 : C(©) x
C(©) — R, such that

_ _ _ 1 — 0
- (Ao(e),—@z;(xo) feat 4 e«fe/ eiﬂp(f)m) >0
0

«
where ® € C(0O) such that ®(0) = ¥(0, \o(0), ®(0)).
(Hg) For each 6 € ©, and x, S € C(O), we have:

implies

1 -8

73 <—¢(X) +—e /9627‘1)(7)617, —¥(Q)

« 0

1 5. [0
+eaﬁ9/ eZT@’(T)dT) >0,
« 0

where @, ®" € C'(0O) such that
®(0) = W (0,x(6), 2(0))

and
®'(0) = W(0,3(0), D'(9)).

Theorem 4.1. Assume that the hypotheses (Hy) and (Hg)-(Hg) hold.
Then the problem (3) has at least one solution. And, if (Hs) holds, then
the solution is unique.

Proof. Let K': C(0©) — C(O) be the operator given by:

«

0
(K)(6) = (xo — D) 20 + Le0 /0 ATO(r)dr,  (10)

where ® € C'(0) such that ®(0) = ¥ (0, xg, P(0)).

Clearly, the fixed points of the operator K’ are solution of the problem
(3). By repeating the same process of Theorem 3.2, we can easily show
all the conditions of Theorem 4.1 are satisfied by K'. O
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5 An Example

Consider the following problem which is an example of our problem

(1)-(2):
% _ 1+sin(|€(9)]) 1
{(gog) = ek e)) ()
£(0) = 0.
Set i
B(0,£,9) = 1 + sin(|¢]) 1

A1 +[E) 40+ 3D

where § € © :=[0,1], £,3 € R.
Let (C(0),6,2) be the complete b-metric space with e = 2, such that
§:C(0) x C(©) = R7, is defined by:

8(6,9) = 1€ = 3)?[low = Sup [£(0) = (O)*.

For any £,€ € C(0©), 3,3 € Rand 0 € O. If |£(0)] < |3(0)|, then

[W(0,¢,€) —2(0,3,9))
1—1—8111(\{(0_]) B 1+ sin(|(0 )_])
AL+ [E@) +1EO)) 401+ [SO) +[3(0)])
| 16) - 300)
4
S%Hé’(@)\—\ O+ \Sln(lé( )|) — sin([S(0)])]
+ 11§ sin(IS(O)]) — [S(9)] sin(I€(O)])]
. 160~ 50)
< [€(8) = 3(0)] + [ sin(l€(9)]) — sin([3(0)])]
| 160 -30)|

+[S(0)] sin([S(0)]) — [3(0)]sin([€(0)])]
= [€(6)) = S(O) + (1 +[S(O)]) [sin(|£(0)]) — sin(|3(6)

)|
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< [€(6) = S(O)] + 51+ [36))
an (LEOLZRON) |, (1501 + SO

X
2 2

G

I€ —

< @+ 8]l — Sl + 1= o

The case when |3(0)| < |£(6)], we get

3 1€ — Sl

[W(0,6,6) = ¥(0,9,9)] < 2+ [[€lloo) 1€ = Slloe + =—;

Hence

1€ — Sl
)

(0,6 =U (6,3, 9)| < min{2+[[€floo, 24 SllocHIE =S oo+

Thus, hypothesis (H;) is satisfied with

(& 3) = min{2 + [|€]loc, 2+ [[Soo }

and

and 0 : C(0) x C(0) — R with §(£,3) = ||€ — /e

Hypothesis (Hsg) is satisfied with 7zy(0) = &y. Also, (H3) holds from the
definition of the function . Since all requirements of Theorem 3.2 are
verified, then we conclude the existence and the uniqueness of solutions
for problem (11).
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