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Abstract. In this paper, a direct analytic method is given for the so-
lution of the linear Fredholm integral and integro-differential equations
of the second kind, which is based on the span of the known function,
under the action of the operator defined by the kernel. The necessary
conditions for using this method are so weak that extends its applica-
bility. The solved examples show the strength of this method.
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1. Introduction

There are several methods for approximating the solutions of integral
and integro-differential equations [2, 6-12, 14, 17|, but there are few
direct methods for finding the solutions of such equations. The method
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for solution of the integral equations with separable kernels is one of
them [11]. Some other such methods are given by Babolian, Masouri
and Hatamzadeh in 2008 [3] and by Navbpour, Maalek Ghaini, Hosseini
and Mohyud-Din in 2011 [12].

The method presented in this paper is close to the method of unde-
termined coefficients for solving nonhomogeneous linear ODEs. We will
consider linear Fredholm integral equations of the second kind (FIE) of
the form:

b
u(z) = f(x) + )\/ kE(z,t)u(t)dt, a<axz<b (1)

in which & : [a,b] X [a,b] — R is square integrable, f : [a,b] — R is
a known function and X is a known parameter. Moreover the equations
are supposed to be unisolvable.

2. The Method

We will begin this section by the following theorem:

Theorem 2.1. Given any FIE in the form (1) and any integrable func-
tion uy (x), there is another FIE with the same kernel, k(x,t) that v(z) =
ui(x) — u(zx) is its solution and

b
fi(x) = ui(x) — )\/ k(z,t)uy(t)dt — f(z)
is its known part.

Proof. Consider a FIE in the form (1) with the unique solution u(z),
and let uj(z) be a known integrable function and put v(z) = ui(z) —
w(x). Then u(x) = uy(x) — v(z) and we have:

ur(z) — v(x) = f(2) + A [ k(x, 8)(ur () — o(t))dt

= (@) + A [ R, )ur () — A [0 Kz, t)o(t)dt.

So we obtain

b b
—v(z) = f(z) —uw(z) + )\/ k(x,t)ui(t)dt — )\/ k(x, t)v(t)dt,
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and so

b b
v(m):[(ul(a:)—A/ k(aﬁ,t)ul(t)dt)—f(l')]—i-)\/ k(x, t)o(t)dt. (2)

Now u(x) satisfies (1) if and only if v(x) satisfies (2) and u(z) = uy(z) —
v(x). So for any given equation of the form (1) and for any given inte-
grable function uj(x), we have an integral equation with the same kernel
of the form (2). O

Remark 2.2. We can also put v(z) = ui(x) + u(x) as v(x) = ui(x) —
u(zx) in theorem below and get the same result (not exactly).
As a consequence of Theorem 2.1 we obtain a method for constructing

the exact solution of (1).

Corollary 2.3. Suppose {u;j(z)}]_, is a given finite sequence of inte-
grable functions and u(x) is the solution of (1). Then

u(z) =Y (=1) (@), (3)

if and only if
n

b
F) = S (1) () — A / k(o s (t)dt). (4)

J=1

Proof. For a given {u;(z)}}_; we can use Theorem 2.1, n times and

construct a sequence of functions {v;(z)}}_; such that vi(z) = u1(z) —

u(x) and vj(x) = u;(z) —vj_1(x), 2 < j < n. Then we have
u(z) = ui(x) —vi(x) = up(z) — Jua(z) —vo(z)] = ... =
Y (=1 (@) + (= 1) o),

and
vn (@) = Y0 A (=1 fun—j(@) = A [} bz, un—j (£)dt]} + (—1)" f(2)+

A JD k(a, tyvn (t)dt.
(5)
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Now it is trivial that (5) has solution v,(z) = 0 if and only if (4) is
satisfied, and then (3) is also true. O

We can also consider linear Fredholm integro-differential equations of

the second kind (FIDE) of the form:

L{u)(z) = f(2) + X [ k(z, tyu(t)dt, a <z <b,

a
u(j)(a):bj, 0<jg<n—-1

(6)

such that L = Y I, a;D?, where D is the differentiation operator.
By a similar discussion we have the same result for Fredholm integro-
differential equations of the form (6).

Theorem 2.4. Given any Fredholm integro-differential equation in the
form (6) and any integrable function ui(x). There is another Fredholm
integro-differential equation with the same kernel k(x,t) and initial con-

ditions v\9) (a) = ugj)(a) —u)(a), that v(x) = uy(x) —u(z) is its solution

and ,
fi(z) = ui(x) — )\/ k(z,t)ui(t)dt — f(x)
1s its known part.

Proof. Let uj(z) be a known integrable function and v(z) = wui(z) —
u(z). For integral part of (6) we have:

MY k(e tyun ()t = N [P E(z, ¢) (u(t) + o(t))dt = A [P k(z, t)u(t)di+
A J2 k(e tyo(t)dt = Liu)(z) — f(x) + A [ k(z, t)o(t)dt = Liuy — o] (z)—
flz)+ )\fab k(x,t)v(t)dt = L[ui](z) — Lv](z) — f(x) + )\fabk(x,t)v(t)dt,
So we obtain

Llv)(z) = (Lfw](x) = A [ k(z, our (D)dt) = f(@) + X [ k(z, to(t)dt,

v (a) :ugj)(a)—u(j)(a), 0<j<n—-1

(7)
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Now v(z) is the solution of integro-differential equation (7) if and only
if u(z) is the solution of integro-differential equation (6). O

Corollary 2.5. Suppose {uj(a:)};”:l is a given sequence of integrable
functions and u(x) is the unique solution of (6). Then

u(z) = Y (=1) (@),

j=1
if and only if
£@) = Y17 ug(o) = [ ko 0],
j=1 a

and

uD(a) =" (-1 (@), 0<i<(n-1).

J=1

Proof. By Theorem 2.4, proof is trivial. [

3. Structure of the Method

Let [Kul(z) = fab k(z,t)u(t)dt. To solve integral equations by this method,
first we choose a suitable sequence of functions {u,(x)}rcs, where J is an
index set, as basis functions and then find the new sequence of functions

wy(z) = [(I — AK)u,|(z),r € J.

Then we choose a finite subset wi(z), wa(z), -, wp(x) of {w,(x)},rcs
and corresponding functions u(z),us(z), -, un(z) for some positive
integer m. Now by Corollary 2.3 we have

m

fla) =) (1Y ejuy(), (8)

if and only if
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where c¢j,7 = 1,2,--- ,m are constants.
Also for solving the integro-differential equation (6), if we put

zi(r) = [(L = AK)ui](2),i = 1,2,---,m L= a;DI,
7=0

for some positive integer m, then by Corollary 2.5 we have
m .
f(z) = Z(—l)ﬂ_lcjzj(:c), (10)

=1

<

if and only if

bi=u(a) =7 (-1 eul?(@),  0<i<n-1.

Note that in some problems, u(x) is the solution of equation (6) and
also u(z) is a solution of L[y](xz) = 0. So we have

F(@) = [(L = Aul(x) = Llu)(z) — AK[u] () = —AK[u](z).

Let {uy, -+ ,umn} be a set of basis functions and
f(z) = =AY (~1) e Kuj)(x).
j=1

If v(z) = Z;ﬁ:l(—l)jcjuj(a:) satisfies the initial conditions (11) then
v(x) is the solution of (6). If not, we need to adding some new functions
to the set of basis functions which these functions are the solutions of
equation, L[y|(z) = 0 (see examples (4.6) and (4.7)).

We will state more details in examples in the next section.

4. Examples

In this section we demonstrate the strength of our method by using it
to solve some examples. To explain the method we will start with some
simple examples.
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Example 4.1. Consider the equation appearing in [16],
1
u(x) = cosh(z) + (sinh(1))z + et —1— / (x — t)u(t)dt, (12)
0

with the exact solution u(x) = cosh(x).
The sequence of functions u,(z) = ™, r € R—{0} seems to be suitable,
and we have

(1 = A Y] (2) = up(x) — /0 (2 — Bup (1)t = € — /0 (z — t)ertdt

e L€ 1 1
- S e R - {0}.
e L) B r {0}

Now, we must choose those r’s which are necessary for generating the
function

—x 6_1
+ m——x+e‘1 —1.

f(z) = cosh(z) +zsinh(1)+e 1 —1= % + 67 5

|

So r’s must be such that, w,(z)’s expand e* and e™*

r=4=41. For r =1 and »r = —1 we have

, and this gives

wi(z) = [(I = AK)ui](z) = (I — K)e* =e* +xz(e—1) — 1,
and
w_1(z) =[I-AK)u_1](z) = ([ -K)e *=e®—z(e 1 —1)+2e 1 -1,

respectively. Rename w_;(x) by wa(z) and u_;(z) by uz(z). So accord-
ing to (8) we choose ¢; and ¢y such that

f(z) = awi(z) — cowa(z) = 1[(I — AK)ui)(z) — ea[( — AK)uz](x),

i.e.

—x —1

+-x——ax4el-1= awi(x) — cowa(z) =

et e
2 2

T

[\ e

ale® +xle—1)—1] —cole™ —x(e7t = 1)+ 271 — 1],
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which gives ¢; = —cy = 3 and so by (9) we have
1 1 _
u(x) = cquy(x) — coug(z) = Qe‘r + ¢ ¥ = cosh(x).

The exact solution of (12).

Example 4.2. Consider the integro-differential equation appearing in
[16],

1
u'(z) =xe® + ¥ —x +/ zu(t)dt,  u(0)=1.
0

So A =1, and for finding the solution u(z) we apply the operator D — K
on suitable functions to span the known function f(z) = xze® + e* — x.
It seems that the functions v,,,(z) = ™€, m = 0,1,--- ,r € R are
suitable for generating the other part of the known function, (ze® + e*),

and we have

1
Zrm(x) = (D—K)(z™e™) = (mxm_lﬂ—m:m)em—m(ftme”—@tm_lert+~ S
r r

1
rm—s—l z

m!
(=)™

ert)ﬁ:() _ (mxm—l_i_wm)er:c_ (Tmer—me_1€T+- ot

(=)™mle" — (=1)"ml!), r#0.

For r = 0 we have, vg ,, = 2™,
200(x) = [(D — K)vop)(z) = —=

and

X

1
m(7) = [(D—K)vgm)(x) = ma™ = | at™dt = ma™ 1 ———
20.m(z) = [( Jvo.m)(z) = ma /0 T max ]

,  m#0.

For m > 3, the degree of zp,,(x) is grater than 2. So to span the
polynomial part of the known function, we only need m = 0, 1,2, and
moreover,

21(z)=(D—-K)z=1- gandzoyg(m) = (D - K)z* = gw



A DIRECT ANALYTIC METHOD FOR SOLUTION ... 67

But, for expanding (ze” 4 €*) by 2. (z)’s
(r,m)=1(0,0),(0,1),(0,2),(1,0), (1,1).
Now, according to (10) we have

ze® +e¥ —x = c120,0(x) — c220,1(x) + c3202(x) — caz10(x) + c521,1(x)

=ci(—z) — (1= %)+ e3(22) — ca(e” — z(e — 1)) + c5(2e” + * — ).

(13)
According to (11) we should have
u(z) = c1v0,0(z) — cavo,1(x) + cavp 2(x) — cavip(x) + c5v1,1(2)
—¢1 — cox + 322 — cu€” + cxxe”, (14)
and
1 =u(0)=c1 —cy4.
Now from (13) and (15) we obtain that
C1 = 1762 = 0763 = 5’64 = 0565 = ]-7
and so
3 2 T
u(x) = 1+3x + ze”,
is the exact solution of the integro-differential equation.
Example 4.3. Consider the integral equation appearing in [1],
1 1
u(z) = —6(21‘3 — 9z +2) + / |z — tju(t)dt. (16)
0

We see that the known function is a polynomial and the kernel is poly-
nomial in parts of interval [0, 1]. So to solve the problem, we use the
polynomial functions as follows.

Putting u,(x) = 2,7 € NU {0}, we have

wy(x) = [(I = AK)u,)(x) = (I = AK)a" = 2" — [ |z — t|t"dt = 2" —

JS @ —t)trdt — [ (t — x)t"dt = mﬂ“ +at - s (17)



68 H. R. NAVABPOUR AND F. M. MAALEK GHAINI

The known function is a polynomial of degree 3. So by (17),r =0,r =1
are sufficient, and

wo(z) = —2 + 1z — %,wl(m) = —éxg + %x - é
So we put
u(z) = c12° — ot
and
f(x) = —é(2x3—9x—|—2) = cwp—Cow) = cl(—x2+m—%)—02(—%m3+2x—é).
Thus we obtain ¢; = 0 and ¢ = —1 and so

u(x) =z,

which is the exact solution of (16).
Now we can solve a special integral equation via our new method, which
is not easily solvable by old methods.

Example 4.4. Consider the integral equation:

() = A /O el (y)dy. (18)

which is a homogeneous singular integral equation [15, 16].
If we choose the sequence {u,(z)} = {e"*},r € R then we have

)\/ k(x,y)u,(y)dt = )\/ e~ lPvlerydy = /\/ e TV dy+
0 0 0

oe A A A
+(z—y) ry _ - re —x 1 1
)\/x e e"Vdy (7‘—|—1 r—l)e 1"—1—16 r£E—=1Lr<l1,
and then
rT —2A re A —z TQ +2A -1 re A —z
[(I-AK)u,](x) =€ ¢ +r+1e = ( 1 Je +T+1e )

So according to (8) we must choose those r’s which are necessary for
generating f(x) = 0. So 7’s must be such that the coefficients of e™’s

become zero, which gives 72 + 2\ — 1 = 0, with the roots

r=vV1—2\ ro=—VI—-2\
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Moreover for 11 = v/1 — 2\ and r9 = —v/1 — 2\ we have
ul(a;) _ ex\/172)\ 'LLQ(JZ) — ef:c\/172)\

respectively. Now

U(.’L‘) = C1u1 (.’L‘) - CQ’UQ({L‘) = C]_ex\/m _ 626*1'@

Y

and according to (8) we have
0=f(z) = c1(I = AK)uy(x) — co(I — AK)ua(z) = 1 (I — AK)e®V1~2A

J— A A
—eo(I = AK)e™™VIm2A = o 2 Ty T T
2( ) Voo 1-Vi-2x
which implies that
A . A
—C C
Vi 1—-vi-2a

Thus for any real § we have ¢; = B(1 + /1 —2\) and o = [(1 —
V1 —2X). So according to (9),

is the exact solution of (18).

Example 4.5. Consider the integral equation appearing in [1],

81 —2) / 1 k(z, tyu(t)dt

u(z) = (1- %)simm: +(2- E)COS(E‘T) + 2 0
(19)

w2 2

el —t), x<t
k(x’t)_{t(l—x), t<axz ’

If we choose the sequences u,(z) = cos(rz) and vs(x) = sin(sx), r,s €
R — {0}, then we have

1
wy(z) = [(I-AK)u,](x) = (I-AK)cos(rz) = cos(rm)—/o k(z,t)cos(rt)dt =



70 H. R. NAVABPOUR AND F. M. MAALEK GHAINI

T 1
cos(rz) — /0 t(1 —x)cos(rt)dt — / x(1—1t)cos(rt)dt = (1 — r—t)cosrw—

T%(:Ucosr +1—xz). Also,

xT

1
zs(x) = (I-AK)vs(z) = sinsx—/o k(z,t)sin(st)dt = (1—8%)3insx—l—8—25m(3).

First of all, by comparison between w,(x) and zs(z) with

we must have s = 7 and 7 = 7. So
u(x) = cicos(rz) — casin(sz) = clcos(gx) — cgsin(mx),

if and only if

c1 [(1—%)608(%&?)— %(xcos(g)—i—l—x)] —col(1— %)sin(ﬂ'x)ﬂ—;sm(w)],

which gives ¢; = 2,¢o = —1. Then
. T
u(z) = sin(mwx) + 2cos(§x),

is the exact solution of (19).

Note that a part of f(x) is a polynomial, so in general we must use
the sequence {z"}>°,
{vs(x)} were necessary.

but for this problem two sequences {u,(x)} and

The following example shows that considering solution of L{u|(z) = 0 is
essential.

Example 4.6. Consider the integro-differential equation

W —u=1-e+ [u(t)dt, u(0)=1,u(0)=1.
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The known function and the kernel of equation are polynomial of degree
zero, so the set of functions uy, (z) = z™,n = 0,1, - - - seems to be suitable,
and we have

wn(2) = [(L = AK )un)(z) = [D* = I — K](a") =

n(n —1)z" 2 — 2" —

wo(z) = [(L = AK)(1) = =2, wi(x) = [(L - AK)(2) = —z — .

By comparison between wy,(z) and f(x) = 1 — e, only wy(x) can span
f(x), so only up(x) = 1 must span u(x). But by considering initial
conditions, we find that ug(x) = 1 can not span u(z). Therefore we
consider the linear independent functions {e*,e~*}, the solutions of 0 =
Llu] = u” — u as the basis functions and hence

21(@) = [(L - AK)](e") = [D? — T — K](e") = 1 — ¢,
2(z) = [(L - AK)](e™®)=[D* -1 - K](e*) =e ! — 1.

Now we have

l—e = f(z) = crwo(x)—coz1 () +ez3za(z) = 1 (—2)—ca(1—€)+ez(e 1 —1),
u(x) = c1 — coe® + cze” ",
1 =u(0) =c1 —c2 + c3,

1=14'(0) = —cy — cs.
So obviously ¢; = ¢c3 =0, co = —1 and then
u(x) = e”,
is the exact solution of equation.

Example 4.7. Consider the integro-differential equation appearing in
[8] and [17],

W'(x) —u(z) = f(z) + [y sin(dra + 2ntyu(t)dt, w(0)=1,  (20)



72 H. R. NAVABPOUR AND F. M. MAALEK GHAINI
with
f(z) = (6 — 1)cos(2mz) — (27 + 3)sin(2wx) — %[sin(élﬂa:) + 3cos(4mz)].
To solve this equation we choose two sequences of functions
ur(x) = cos(rz), reR—{0}
vs(z) = sin(sz), se€ R —{0},
and obtain

wy(z) = [(D—I-K)u,|(x) = (D—I—-K)cos(rx) = —rsin(rx)—cos(rz)—

1
1
/0 sin(4mz+2mt)cos(rt)dt = —rsin(rz)—cos(rm)+mcos(4wx+r)—
Lcos(él x—r)+] ! — ! |eos(4mx) r# +2
202r —r) T 202 —1) 2027+ 1) s i

Also we have

waor(x) = (D — I — AK)ugor(z) = (D — I — AK)cos(2mx)

= —27sin(2nz) —cos(2mx) — Lsinl4n).

and

zs(x) = (D—I-AK)vs(x) = (D—I—-)AK)sin(sx) = scos(sx)—sin(sx)—

1
/ sin(4drx+27t)sin(st)dt = scos(sx)—sin(sx)— sin(drz—s)+
0

22w — s)
——sin(dme )+ [ Jsin(tna), s £ %2
————sin(4rr + s - sin(4mx .
2027 + 5) 202 —s)  2(2m + s) 0
Moreover we have z4o, = £29, and zor(x) = (D — I — K)var ()
= (D — I — K)sin(2rz) = 2mcos(2nx)
—sin(2rz) — Scos(4rz).
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The special function that must be considered separately is yi(z) = e*,
which is the solution of the homogeneous ordinary differential equation
y —y = 0. So we put
pi(x) = (D — 1 - K)y](z)
=(D—-1-K)e"
=— fol sin(drx + 2mt)eldt
[sin(4mx) — 2ﬂcoé(4ﬂw)].

= 1+47r2

Now by comparison between f(z), w,(x), zs(x) and p;(x), the functions
that can span f(z) as a linear combination are

war(z) = (D — I — K)cos(2rz) = —2mwsin(2rx) — cos(2rz) — §sin(4mz),

wyr(x) = (D — I — K)cos(4drx) = —4nsin(4drx) — cos(4dmx),

zox(z) = (D — I — K)sin(2rz) = 2mcos(2mz) — sin(2nx) — Lcos(4rz),
Zan(x) = (D -1 — K)sm(47r:c) = 4rcos(4mx) — sin(4drx),
pi(x)=(D—1-K)e®* = 1+4ﬂ2 [sin(4mx) — 2mcos(4mz)].

So, corresponding functions which can span u(z) are:

Now from (9) we have

f(@) = crwar(2) — cowan(2) + 3227 () — cazan (@) + cspr(z)  (21)

if and only if

u(z) = c109r (1) —Covar () +c322n (2) —cazan (€) +c5y1 (2), u(0) = 1. (22)
By using (21) and «(0) =1 in (22) we have
f(z) = (6m — 1)cos(2mz) — (27 + 3)sin(2mz) — L[sin(47z) + 3cos(4nz)]
= ¢1[—2msin(27mz) — cos(2mx) — sin(dnx)] — co[—4msin(4nz) — cos(4mz)]
+63[27Tcos(27ra:) — sin(2mz) — $cos(4rz)] — csldmeos(dmz) — sin(4rz))]
+cs 1+4 & [sin(4drx) — 2wcos(4mz)],
1=u(0) =¢1 —ca+cs5.




74 H. R. NAVABPOUR AND F. M. MAALEK GHAINI

By equality the coefficients we obtain the linear system of equations:

—2me; —c3 = —(2m + 3)
—c1 + 27we3 = 6w — 1

1 l—e _
—5C1 +4mer + ey + Tri2Cs = —

1 2n(l—e
cy — 53 —4mey — 1;_4”2)05 = —

ci—c+c3=1

[V [CUF N

which has the unique solution
Ccl1 = 1,03 :3,62 — C4 = Cj =0.
So the exact solution of integro-differential equation is given by

u(z) = cos(2mx) + 3sin(2nw).

5. Conclusion

In this paper we have proposed a new method for solution of linear FIE’s
and FIDE’s of the second kind. This method is not a general method
for solving these equations. Moreover, this method can simply find the
solutions of the equations with known functions and kernels, which can
be polynomials or exponential functions or sin(rz) or cos(rz), r € R or
products of such functions. We also hope to be able to use this method for
solving other kinds of linear integral and integro-differential equations
(such as Volterra-Fredholm integral and integro-differential equations).
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