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1 Introduction

There are forms in nature that, while complex, follow a certain order.
Mandelbrot first called these shapes fractal and called the geometry of
these shapes fractal geometry. Fractal word is derived from the Latin
word fractus, whose root is from the words fraction and fragment, which
means irregular or fragmented. In explaining his theory by choosing
the term fractal, Mandelbrot has, in fact, emphasized one of the main
characteristics of these geometric shapes, which arises from the nature
of their fragmentation. According to him, the universe and all natural
phenomena are a kind of fractal. The clouds are not spherical; the
mountains are not like cones; the sea shores are not circular; the bark
of the tree is not smooth; and the lightning does not move in a straight
line [20].

Clark and Schweizer pointed out that fractal geometry is one of the
four most important scientific concepts of the twentieth century, which
is equivalent to quantum mechanics, the theory of general relativity, and
the two-helix model in the structure of DNA [9].

Fractal models have been used in a variety of image processing and
pattern recognition applications. For example, several researchers have
used fractal techniques to describe image textures and different segment
types of images [8, 15, 21, 24].

Models of fractal were applied to study the scaling behavior of geo-
graphic features, and the knowledge generated by this type of research
can be used to determine the optimal resolution of pixels and polygons
used in remote sensing and GIS applications [3, 6, 15, 24].

The fractal Lipschitz condition is given on the Fα-calculus, which
applies for the nondifferentiable function in the sense of the standard
calculus. Picard iterative process in the Fα-calculus has an important
role in the numerical and approximate solution of fractal differential
equations. The fractal Picard iteration method is introduced for finding
the local solution of a fractal differential equation [10].

The Fourier transforms used in the field of frequency analysis, the
Laplace transforms generalizing the Fourier transform to the complex
domain, and the Sumudu transforms preserving Taylor coefficients, are
examples of integral transforms, which have applications in applied math-
ematics, physics, and engineering. Sumudu transforms preserve units
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and the scaling property of domains and transform linear differential
equations to algebraic ones [11].

Fractals are geometrical objects such that their fractal dimension
exceeds their topological dimension. Fractals as models can be found in
many applications in science and engineering. Analogous nonlocal frac-
tional derivatives on the real line and fractal nonlocal derivatives were
defined on fractal sets for modeling processes with memory effects such
as the elastic modulus of the fractal structure materials. The variance
of random walks on fractals, which has an important role in anomalous
diffusion processes, shows the fractional power law relationship [12].

Local fractional derivatives are needed in many physical problems.
The effort of defining local fractional calculus leads to a new measure of
fractals. In view of this new measure, the Cµ-Calculus was formulated
for totally disconnected fractal sets and nondifferentiable fractal curves.
The stability and asymptotic behavior of fractal differential equations
have an important role in various applications in science and engineering
[29].

Fractional calculus has an important role in modeling various fasci-
nating complex phenomena in the form of ordinary or partial differential
equations. Many researchers worked on developing the fractional calcu-
lus concept and investigating new ways to define fractional derivatives,
which range from Riemann–Liouville to new hybrid proportional-Caputo
fractional derivatives. They used an elementary fractional differential
equation to discover that their new operator is deeply connected with
the bivariate Mittag–Leffler function, which arises naturally from the
modeling of certain systems of the real world [2].

Many physical systems can store information on the state compo-
nent’s derivative, and these systems are referred to as neutral systems.
Many real-world systems and biological procedures exhibit some form
of dynamic actions, with continuous and discrete properties. these sys-
tems (such as market crashes, earthquakes, and epidemics) can experi-
ence some jump-type stochastic perturbations. Such systems have the
nonexistence of continuous sample paths. Consequently, stochastic pro-
cesses with jumps are well-matched to modeling such models [1].

The most essential tool for examining the epidemiological features of
viral diseases is the mathematical model. Regarding the dynamics of the
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illness, it may offer some insightful information. Several scholars have
undertaken various investigations using various studies concerning the
modeling and the dynamical study of the rotavirus disease’s transmission
[22].

Partial differential equations are among the best mathematical tools
for analyzing spatiotemporal processes. These nonlinear equations deal
with nonlinearity and dispersive effects at the same time and are one
of the simplest forms of evolution equations. These nonlinear equations
are widely used for the description of dynamics of localized stationary
along with pulsating waves envelops. These nonlinear equations are
known as universal equations because they explain how waves move
through many physical systems. These equations are crucial tools for
comprehending the physical analogies and variations in the nonlinear
behavior of dispersive waves [25].

The fractional heat equation is one of the most well-known fractional
partial differential equations that describe the physical phenomenon. In
recent years, solving the fractional heat equation magnetized the atten-
tion of mathematicians because of its importance [23].

There are two categories of fractals (self-similar and self-affine). In
self-similar fractals, the component shape bears a striking resemblance
to the overall shape. This component grows in a constant proportion in
all directions and forms the whole. Nevertheless, in a self-affine fractal,
the component shape does not grow at a constant rate in all directions
[19, 20].

To understand fractal geometry, we must find a way to show the
complexity of the shape in numbers. This number is the same as the
fractal dimension [5].

According to fractal application and fractal phenomena, different
methods have been proposed to calculate the fractal dimension, includ-
ing the box-counting method [4], the Higuchi method [13], the Fourier
power spectrummethod [19, 20], and the generalized box-counting method
[17].

Wu et al. [32] proposed a method based on fractal production (box-
counting) and box determination with a mathematical definition to elim-
inate box scale deviation. The known fractals (Koch curve and Sierpin-
ski triangle) were analyzed to confirm this method, which is close to the
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actual value of the fractal dimension.

So et al. [27] presented a box-counting algorithm in combination with
a new sampling method and a fractional box-counting method. To solve
the margin problem that occurs for images with any size, the fraction
box-counting method allows the number of frames to be real instead of
integers. This method is applied to known fractal images (Koch curve
and Sierpinski triangle) with an exact fractal dimension that is close to
their true value.

In the power spectrum method, the algorithm used to analyze self-
affine fractals is more accurate than the following methods:
1) Fractal Picard Iteration [10],
2) Sumudu Transforms [11],
3) Fractal nonlocal derivatives [12],
4) Fractal differential equations [29],
5) Caputo fractional derivatives [2],
6) Stochastic Processes such as market crashes, earthquakes, and epi-
demics [1],
7) Fractional heat equation [23].

Exact fractals are a type of self-similar fractals with a special form of
self-affine fractals. Recently, algorithms have been developed to calcu-
late the dimension of such fractals by the box-counting method. Let ex-
act fractals be only artificial phenomena in mathematics, and we mostly
deal with fractals in nature. In this article, using wavelets and the
power spectrum method, we will calculate the dimension of such frac-
tals by presenting an algorithm. Then, to check the effectiveness of this
algorithm, we calculate the exact dimension of fractals. As we know,
the exact dimension of these fractals can be theoretically calculated in
mathematics. In this algorithm, Daubechies and Symlet wavelets with
orders of 3 to 8 have been used.

To improve the answer and calculate the fractal dimension more
accurately by this algorithm, we use the window function called the
Kaiser window. The structure of the article is set as follows. In Section
2, the power spectrum and wavelet methods are introduced to obtain
the fractal dimension. In Section 3, we introduce two types of exact
fractals (Koch curve and Sierpinski triangle). The introduction of the
Kaiser window for its use in the fractal dimension calculation algorithm
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is mentioned in Section 4. In Section 5, we compare the numerical results
obtained by the power spectrum and wavelet method with the box-
counting method. In the end, in Section 6, conclusions and suggestions
for future work are presented.

2 Power and Wavelet Spectrum Methods

In this section, the power spectrum and wavelet method are introduced.
The powers of each Fourier component are called the power spectral
density (power spectrum). They are usually calculated by using a tech-
nique called the fast Fourier transform[14, 28]. For self-affine signals
(self-affine signals are a rescaled version of a small part of the signal
that has the same statistical distribution as the larger part), the power
spectrum density S(f) is proportional to the frequency f , as shown in
equation (1). In the following equation, the value of the power spectrum
coefficient (α) can be obtained as a linear regression slope applied to the
power spectrum in the logarithmic coordinate system [14, 20, 26, 30]:

S(f) ∼ f−α → α =
− logS(f)

log f
. (1)

After calculating the power spectral coefficient from equation (1), to
obtain the fractal dimension [19, 26], one can use the following equation:

D =
5− α

2
= 2−H, (2)

where H is called the Hurst parameter, which defines the fractal
structure.

In the power spectrum method, wavelets can be used to replace the
analyzed data in Fourier analysis. Wavelets are a group of mathematical
functions that are used to decompose a signal into its frequency compo-
nents, the resolution of each component being equal to its scale. Wavelet
transform is the decomposition of a function based on wavelet functions.
Compared to the Fourier transform, it can be said that the wavelet has
a very good localization characteristic. That is, the wavelet not only
determines the amount of frequencies in the signal but also determines
when those frequencies occur in the signal [33].
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3 Introduction of Two Exact Fractals and Their
Dimensions Calculations

In this section, we first introduce the box-counting method for calculat-
ing the fractal dimension and then introduce the exact fractals.
In the box-counting method, the covering effect of a curve (the feature
of filling the space with a curve) is investigated with a set of area ele-
ments. In this way, with the given sizes of the elements of the area of a
box, how many boxes are needed to cover the curve completely? Finally,
when the size of the elements of the area tends to zero, the total area of
the area covered by the area of the boxes will converge to the size of the
curve. Therefore, the following equation is used to calculate the fractal
dimension:

D = lim
r→0

logN

log 1
r

. (3)

In equation (3), r represents the number of boxes, and N(r) equals
the number of boxes used to divide the curve into specific sizes [4].

Now we introduce the two exact fractals and analyze their dimen-
sions.

3.1 Koch curve

The Koch curve is generated with the help of a line segment and applying
an algorithm, as can be seen in Figure 1. We consider a line segment
of length one. The generator (k = 1) is made of 4 parts, and each part
is 1/3 the length of the initiator, whose length is 1. The second-order
(k = 2) Koch curve replaces each of the four generating segments with
the same shape, so it has 16 small segments, and each segment is 1/9
unit in length. That is, the total length of the quadratic curve is 4/3.

We can calculate dimension D by looking at how the number of units,
N , changes with the magnification factor r. In this case, we see that the
number of parts in the generator N is 4 and that the magnification factor
is 3 because each part of the generator is 1/3 unit in length. The same
relationship exists between each of the curve orders (different k).

Therefore, according to relation (3), we can say [18, 20]D = log(4)/ log(1/3) =
1.26.
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Figure 1: Koch curve

3.2 Sierpinski triangle

In the Sierpinski triangle (Figure 2), the shape consists of three similar
components. If we represent the original shape with A and the small
components with a, we have

A = 3× a. (4)

On the other hand, the length of each small component is half of the
original shape. So the magnification scale in this figure is 1/2. We have

a = A(
1

2
)d, (5)

where d is the dimension. By substituting (5) in (4), we have [18]

A = 3×A(
1

2
)d,

1 = 3× 1

2d
,

2d = 3 → d =
log 3

log 2
= 1.5850. (6)
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Figure 2: Sierpinski Triangle

4 Kaiser Window

In this section, we introduce the Kaiser window.

The window function is a mathematical function having zero values
outside the selected interval. When another function is multiplied by a
window function, the out-of-range product also becomes zero. All that
remains is the overlapping section. ”view through the window,” the use
of window function, power spectrum analysis, and filter design can be
mentioned [16, 31, 33].

The series used in the signal processing is symmetrical about the
axis (t = 0). The Fourier transform of an even or symmetric signal is
even, so the frequency content of the windows is symmetric about the
axis (w = 0). The main peak of the Fourier transform of the windows is
located at the frequency (w = 0), which decays to zero with oscillations.
To increase the frequency of resolution, the power value of the series
should be concentrated near (w = 0) [33].

A suitable window in the frequency domain has a narrow main peak
and no sub-peaks (frequency leakage), and it drops off quickly at high
frequencies. If a good frequency of resolution is required, then a rectan-
gular window should be chosen. However, this enhancement of frequency
resolution causes frequency leakage, which requires windows with sub-
peak areas that descend at a high rate to reduce the leakage [33].
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The Kaiser window is optimal in terms of having the highest power
value in the main lobe for a given sidelobe amplitude [16].

Figure 3: Kaiser Function

The general form of the Kaiser Window function is as follows:

w(β, n) =

 I0{β[1−( 2n
N−1

)2]
1
2 }

I0(β)
, −N−1

2 ≤ n ≤ N−1
2 ,

0, otherwise.
(7)

In equation (7), N is the window length, and I0(x) is the modified
Bessel function for the first type of zero arrangement, defined as follows:

I0(x) =
x∑

k=0

[
x
2
(k)

k!

]2

.

Also, the beta parameter (β) determines the shape of the window,
which controls the balance between the width of the main lobe and the
amplitude of the side lobes [16].

5 Numerical Results and Conclusions

In this section, we want to discuss the results obtained from the exact
fractal dimension using the power spectrum method and compare the
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results with the box-counting method.
In [32], the presented method is based on the analysis of points gen-

erated by mathematical expression and defining the length of the sides
of the boxes instead of pixels. It helps a lot to break the pixel limitation
and brings the result closer to the theoretical results.

In [27], the method is based on the combination of a new sampling
method and a fractional box-counting method. To solve the problem
of wasted pixels, the fractional box-counting method allows the number
of boxes to be real rather than an integer. The results related to the
estimation of the fractal dimension of the Koch curve and the Sierpinski
triangle by the box-counting method in [27, 32] and comparing it with
the theoretical value are given in Table 1.

Table 1: Comparison of the estimation of the fractal dimension of the
Koch curve and the Sierpinski triangle

Dexact=The value of the fractal dimension of the Koch curve and
the Sierpinski triangle based on the theoretical method, respectively,
1.261859 and 1.584962

Theoretical
fractal di-
mension
value

Numeric
fractal di-
mension
value

Error rate Reference

Sierpinski Triangle
Dexact =
1.584962

Dnumerical =
1.584995

0.0021% [32]

Dexact =
1.585

Dnumerical =
1.266430

0.126% [27]

Koch Curve
Dexact =
1.261859

Dnumerical =
1.266430

0.3622% [32]

Dexact =
1.262

Dnumerical =
1.267

0.3962% [27]

Now, using the power spectrum method mentioned in Section 2,
we calculate the dimension of two exact fractals. In this method, by
using the wavelet transformation applied in exact fractals, we obtain
the power graph in terms of frequency. Then we calculate the slope of
its logarithmic graph line, using equation (2) for the fractal dimension
of the curve. Since, in the power spectrum method, the main part of the
algorithm in calculating the fractal dimension is the calculation of the
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power of the given series (the series of generating points of the fractal
curve), we use the optimality property of the Kaiser window function in
calculating the power of a series. In this regard, we can reduce the error
rate and bring the answer closer to the true value of the exact fractal
dimension.

Table 2: Fractals Type

Slope=α Fractal type Value of H

α < −3 Bias −

−3 < α < −1 Differentiated fractional Gaussian
noise

H =
(α+ 3)

2

−1 < α < +1 Fractional Gaussian noise H =
(α+ 1)

2
α = 0 Brownian motion H = 0.5

1 < α < 3 Fractional Brownian motion H =
(α− 1)

2

3 < α < 5 Integrated fractional Brownian mo-
tion

H =
(α− 3)

2

α > 5 Bias −

The data in Table 2 are used to determine the type of fractal and
the value of the Hurst parameter of the Koch curve and the Sierpinski
triangle [7].

In presenting the numerical results, the length of the Kaiser window
of Daubechies and Symlet wavelets of orders 3 to 8 in the Koch curve for
k (the number of self-similar steps) equal to 3 to 12 was analyzed and
investigated. In this analysis, it can be seen that with the increase of k,
the length of the Kaiser window (m) increases. The reason for increasing
the length of the Kaiser window is the use of the applied wavelets with
different orders. In the power spectrum method, it can be seen that we
approach the real value of the fractal dimension of the Koch curve with
high accuracy in the following cases:

1. Third-order Daubechies for k equal to 6, 11, and 12.

2. Fourth-order Daubechies for k equal to 6, 7, 10, and 12.
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3. Fifth-order Daubechies for k equal to 7, 11, and 12.

4. Seventh-order Daubechies for k equal to 8.

5. Eighth-order Daubechies for k equal to 7 and 8.

6. Third-order Symlet for k equal to 6, 11, and 12.

7. Fifth-order Symlet for k equal to 7, 11, and 12.

8. Sixth- and Eighth-orders Symlet for k equal to 6, 7, and 11.

By using the power spectrum method according to the wavelet used
in the calculation algorithm, the data and output of the results related
to the Koch curve are given in Tables 3–10 and Figure 4.

Table 3: Third-order Daubechies and Symlet

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

6 700 1.2619 0.00325%

7 1900 1.2621 0.01918%

8 6373 1.2620 0.01117%

9 25023 1.2618 0.00467%

10 110020 1.2616 0.02052%

11 465030 1.2618 0.00467%

12 1800030 1.2618 0.00467%
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Table 4: Fourth-order Daubechies

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

6 506 1.2619 0.00325%

7 1703 1.2619 0.00325%

8 5968 1.2616 0.02052%

9 25033 1.2620 0.01117%

10 110010 1.2618 0.00467%

11 460045 1.2617 0.0126%

12 1800150 1.2618 0.00467%

Table 5: Fifth-order Daubechies

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

7 1766 1.2619 0.00325%

8 6151 1.2615 0.02845%

9 25848 1.2617 0.0126%

10 114655 1.2617 0.0126%

11 479360 1.2618 0.00467%

12 1788999 1.2618 0.00467%
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Table 6: Seventh-order Daubechies

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

7 1739 1.2622 0.02702%

8 6086 1.2618 0.00467%

9 25541 1.2620 0.01117%

10 113310 1.2620 0.01117%

11 474090 1.2617 0.0126%

12 1774250 1.2621 0.01909%

Table 7: Eighth-order Daubechies

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

7 1741 1.2619 0.003254%

8 6131 1.2618 0.00467%

9 25985 1.2620 0.01117%

10 110020 1.2616 0.02052%

11 460030 1.2618 0.00467%

12 1800250 1.2617 0.0126%
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Table 8: Fifth-order Symlet

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

6 678 1.2620 0.00325%

7 1781 1.2619 0.00325%

8 6360 1.2617 0.0126%

9 27090 1.2617 0.0126%

10 125511 1.2617 0.0126%

11 542030 1.2618 0.00467%

12 1938250 1.2618 0.00467%

Table 9: Sixth-order Symlet

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

6 777 1.2619 0.00325%

7 1742 1.2619 0.00325%

8 6226 1.2615 0.02845%

9 25025 1.2617 0.0126%

10 110030 1.2616 0.02052%

11 460030 1.2618 0.00467%

12 1877300 1.2616 0.02052%
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Table 10: Eighth-order Symlet

The number
of self-similar
steps k

Kaiser win-
dow m

Numeric frac-
tal dimension
value D

Error E

6 738 1.2619 0.00325%

7 1868 1.2619 0.00325%

8 6190 1.2620 0.01117%

9 25005 1.2622 0.02702%

10 110030 1.2617 0.0126%

11 460030 1.2618 0.00467%

12 1800350 1.2616 0.02052%

Figure 4: Logarithmic diagram of the fractal dimension of the Koch
curve

By applying the power spectrum method and using the type of
wavelet used in the algorithm, the data and results related to the Sier-
pinski triangle are written in Tables 11–12 and Figures 5–6.
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Table 11: Data of the Sierpinski triangle for Daubechies Wavelet

Dexact = 1.584962

Wavelet Power
spec-
trum
coeffi-
cient α

Hurst
H

Numeric
fractal
dimension
value
D

Kaiser
window
m

Error
E

Third-order
Daubechies

−0.16734 0.4163 1.5837 44600 0.08%

Fourth-order
Daubechies

−0.17001 0.4150 1.5850 43599 0.0024%

Fifth-order
Daubechies

−0.17023 0.4149 1.5851 45014 0.0087%

Sixth-order
Daubechies

−0.16858 0.4157 1.5843 42599 0.04%

Seventh-
order
Daubechies

−0.16219 0.4189 1.5811 35903 0.2%

Eighth-order
Daubechies

−0.17362 0.4132 1.5868 49000 0.1%
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Table 12: Data of the Sierpinski triangle for Symlet Wavelet

Dexact = 1.584962
Wavelet Power

spectrum
coeffi-
cient α

Hurst
H

Numeric
fractal di-
mension
value
D

Kaiser
window
m

Error
E

Third-order
Symlet

−0.16998 0.4150 1.5850 44597 0.0024%

Fourth-order
Symlet

−0.17001 0.4150 1.5850 43599 0.0024%

Fifth-order
Symlet

−0.1693 0.4154 1.5846 43000 0.02%

Sixth-order
Symlet

−0.17045 0.4148 1.5852 49603 0.01%

Seventh-order
Symlet

−0.17286 0.4136 1.5864 47604 0.09%

Eighth-order
Symlet

−0.16993 0.4150 1.5850 48000 0.0024%
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Figure 5: Fourth-order Daubechies in the analysis of the fractal di-
mension of the Sierpinski triangle

Figure 6: Eighth-order Symlet in the analysis of the fractal dimension
of the Sierpinski triangle

The range of dimension changes in the power spectrum method us-
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ing wavelets in the Koch curve is (1.2622, 1.2615), while the value of
the fractal dimension of the Koch curve in [32] and [27] is 1.266430
and 1.2670, respectively. Regarding Sierpinski’s triangle, the range of
changes is (1.5858, 1.5811), and the values obtained in [32] and [27]
are 1.5854995 and 1.5830, respectively. According to Tables 11 and 12,
it can be seen the real value of the fractal dimension of the Sierpinski
triangle with higher accuracy than the results obtained in [27, 32], in
the fourth-order Daubechies wavelet, third-order Symlet, fourth-order
Symlet, and eighth-order Symlet approaches.

6 Conclusion

In this article, exact fractals were analyzed by applying the power spec-
trum method and using wavelets. In this method and the proposed
algorithm, we used the Kaiser window filter. It was observed that the
results obtained after applying the Kaiser window are closer to the real
value of the exact fractal dimension. To better understand the accuracy
of this method, we compared the results with the box-counting method,
which was recently reviewed in [27, 32] on two types of accurate frac-
tals. These results showed that using the power spectrum and wavelet
method with the help of the Kaiser window has higher accuracy. In
future work, we suggest using the power spectrum method and the pro-
posed algorithm in this article to investigate the fractal dimension of the
solution of chaotic systems.
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calculus, Applied Mathematics and Computation, 350 (2019), 386–
401.

[12] A. K. Golmankhaneh and C. Tunç, Stochastic differential equations
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