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Abstract.In this paper, we consider homogeneous Finsler spaces with
generalized m-Kropina metric. First, we find the formula for the Ricci
curvature of a homogeneous Finsler space with aforesaid metric. Fur-
ther, we derive the formula of the Ricci curvature for generalized m-
Kropina metric having vanishing S-curvature. Finally, we derive the
formula for the projective Ricci curvature of generalized m-Kropina
Finsler metric.
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1 Introduction

Finsler geometry is just Riemannian geometry without quadratic restric-
tion [8]. An important and interesting class of Finsler metrics is the class
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of (α, β)-metrics which has many applications in biology, physics and in-
formation geometry [1, 2, 3]. These metrics in Finsler geometry were
first introduced by Matsumoto [17] in 1972. Some important examples
of (α, β)-metric are Randers metric, Kropina metric, Matsumoto metric,
square metric, generalized Kropina metric, etc. An (α, β)-metric on a
Finsler manifold can be written in the form

F = αϕ

(
β

α

)
,

where α :=
√

aij(x)yiyj is a Riemannian metric and β := bi(x)y
i is a

one-form on a connected smooth manifold M . In particular, a Finsler
metric in the form

F =
αm+1

βm
(m ̸= 0,−1)

is called generalized m-Kropina metric.
The main purpose of the present paper is to study the Ricci curvature of
homogeneous Finsler spaces with generalized m-Kropina metric. Homo-
geneous Finsler spaces are an important class of Finsler spaces influenced
by group theory. A Finsler space (M,F ) in which a group of isometries
I(M,F ) acts transitively on M is said to be homogenous. A homoge-
neous Finsler manifold M can be considered in the form M = G/H,
where G is Lie group of isometries acting transitively on M and H
is isotropy subgroup. The origin of homogeneous Riemannian spaces
can be traced back to the Myers-Steenrod theorem in 1939 [18], which
says that a group of isometries of a connected Riemannian manifold
admits a differentiable structure that forms a Lie transformation group
of the manifold. This theorem was groundbreaking since it broadened
the application of Lie theory to all homogeneous Riemannian manifolds.
Homogeneous spaces are a natural generalization of symmetric spaces,
and they maintain many of their remarkable properties. Later, Deng
and Hou [10] generalized the Myers-Steenrod theorem to the Finslerian
case. This finding opens the door to applying Lie theory to the study
of Finsler geometry. One of the central problems in Finsler spaces is
to study curvatures such as flag curvature, Ricci curvature, S-curvature
and mean Berwald curvature. In the recent past, many authors have
worked on curvatures and other geometrical properties [11, 13, 15, 19].
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The Ricci curvature plays an important role in Riemann-Finsler geom-
etry. It provides control over the growth rate of volume of a metric ball
in a manifold. Ricci curvature of a Finsler space (M,F ) can be written
as

Ric(x, y) = (n− 1)λ(x, y)F 2,

where λ(x, y) is a scalar function on tangent space TM, called Einstein
scalar. Einstein metric is a Finsler metric whose Einstein scalar func-
tion λ(x, y) depends only on x. Bao and Robles [5] have shown that
every Randers metric of dimension (n ≥ 3) is Ricci constant. Zhou [25]
first constructed the formula of the Riemannian curvature and Ricci
curvature for (α, β)-metrics. Later, Cheng et al. [7] found some errors
in those formulas given by Zhou and provided the correct formulas of
Ricci curvature. They also proved that if ϕ(s) is a polynomial in s,
then the (α, β)-metric is Einstein if and only if it is Ricci flat. Zhang
and Shen [24] investigated Ricci curvature on Einstein Kropina metric.
Yan and Deng [23] have studied homogeneous Einstein (α, β)-metric and
obtained a formula for the Ricci curvature of a homogeneous Einstein
(α, β)-metric. Deng and Liu [12] have shown that a homogeneous square
Einstein Finsler metric is either Riemannian or flat.

As the S-curvature and the Ricci curvature are deeply related, it is obvi-
ous to consider the geometric quantities defined by Ricci curvature and
S-curvature. Shen [20] showed that the local behaviour of the Busemann-
Hausdorff measure of small metric balls around a point is determined
by the S-curvature and the Ricci curvature. In this connection, Shen
[21] also introduced the concept of projective Ricci curvature in Finsler
geometry. The projective Ricci curvature of geodesic spray G is defined
as

PRicG = Ric+ (n− 1)S̃|ly
l + (n− 1)S̃2,

where S̃ =
1

n+ 1
S is projective S-curvature, G̃ = G +

2S

n+ 1
Y is pro-

jective geodesic spray and Y = yi
∂

∂yi
is a vertical radial field on TM .

It is easy to prove that if two Finsler metrics are projected pointwise on
a manifold with a fixed volume form, then their projective Ricci curva-
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tures are equal, i.e., the projective Ricci curvature of Finsler metrics on
a manifold is projectively invariant with respect to a fixed volume form.
Cheng, et. al. [6] investigated the formula of the projective Ricci curva-
ture and characterized projectively Ricci-flat Randers metrics. Gabrani,
et. al. [14] studied Finsler metrics with isotropic, weak and flat projec-
tively Ricci curvature.

This paper is organize as follows:
The second section contains an overview of some basic definitions and
results about Ricci curvature of Finsler manifolds. In section 3, we give
an explicit formula for Ricci curvature of a homogeneous Finsler space
with generalized m-Kropina metric. In the fourth section, we find a
necessary and sufficient condition for a homogeneous Finsler space with
generalized Kropina metric having vanishing S-curvature. Further, we
find the formula for Ricci curvature of aforesaid metric with vanishing
S-curvature. In section 5, we obtain the formula for the projective Ricci
curvature of generalized m-Kropina metric and as a natural applica-
tion, we characterize projectively Ricci-flat aforesaid metric defined by
a Riemannian metric and constant length Killing 1-form.

2 Preliminaries

In this section, we give some basic definitions and results required for
further study.

Definition 2.1. [4] A Finsler metric on an n-dimensional manifold M is
a C∞ function on slit tangent bundle TM\{0} which has the following
properties:

� F is positively one-homogeneous, i.e., F (x, λy) = λF (x, y) ∀ λ > 0,

� For each y ∈ TxM , the Hessian metric gij =

[
1

2
F 2
yiyj

]
is positive-

definite.

If F is a Finsler metric on a smooth manifold M , then the pair (M,F )
is called Finsler space.
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Lemma 2.2. [4] Let F = αϕ(s); s =
β

α
, where α =

√
aij(x)yiyj is

a Riemannian metric, β = bi(x)y
i is a one-form and ϕ is a smooth

function on an open interval (−b0, b0). Then F is a Finsler metric if
and if it has the following properties:

ϕ(s) > 0, ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0 ∀ |s| < b ≤ b0.

Definition 2.3. [20] Let (M,F ) be an n-dimensional Finsler space and
Gi be the geodesic spray coefficients defined as

Gi =
gip

4

[(
F 2
)
xkyp

yk −
(
F 2
)
xp

]
, i = 1, 2, ..., n.

Also, Riemannian curvature is a linear map Ry : TxM −→ TxM for
non-zero y ∈ TxM defined by

Ry(w) = Ri
j(y)w

j ∂

∂xi
, w = wi ∂

∂xi
,

where

Ri
j(y) = 2

∂Gi

∂xj
− ∂2Gi

∂xl∂yj
yl + 2Gl ∂2G2

∂yl∂yj
− ∂Gi

∂yl
∂Gl

∂yj
.

Definition 2.4. [5] Let M be an n-dimensional Finsler manifold with
Finsler metric F . Ricci curvature of M is the trace of Riemannian
curvature, i.e., the map Ric : TM −→ R defined as

Ric(y) = tr(Ry) ∀ y ∈ TxM,

where x ∈ M,y( ̸= 0) ∈ TxM .

Definition 2.5. [9] Let (M,F ) be a Finsler space of dimension n. A
Finsler metric F is called an Einstein metric if it satisfies

Ric = (n− 1)λF 2,

where λ = λ(x) is a scalar function.
In particular, F is called Ricci constant if scalar function λ is a constant,
and Ricci-flat if λ = 0.
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For an (α, β)-metric F = αϕ(s), s =
β

α
on a Finsler manifold M , let

rik =
1

2
(bi;k + bk;i), sik =

1

2
(bi;k − bk;i), rik = aiprpk,

sik = aipspk, rk = bprpk = bkr
k
i , sk = bpspk = bks

k
i ,

r = rikb
ibk = biri, r00 = riky

iyk, ri0 = riky
k,

si0 = siky
k, r0 = riy

i, s0 = siy
i,

qij = riks
k
j , tij = siks

k
j , qj = biqij = rks

k
j ,

where aik = (aik)
−1, bi = aikbk and “ ; ”denotes the covariant derivative

with respect to Levi-Civita connection on Riemannian metric α.

Definition 2.6. [14] For a Finsler manifold (M,F ) of dimension n,
if rij = 0, then the 1-form beta is said to be a Killing form on the
Riemannian manifold (M,α). If the 1-form β is a Killing form and has
a constant length with respect to α, then it is said to have a constant
length Killing 1-form, i.e., rij = 0, sj = 0.

Theorem 2.7. [7] Let M be a Finsler manifold with an (α, β)-metric.
Then Ricci curvature of F is given by Ric = αRic+RT j

j , where

RT j
j =

1

α2

[
(n− 1)ξ1 + ξ2

]
r200 +

1

α

{[
(n− 1)ξ3 + ξ4

]
r00s0 +

[
(n− 1)ξ5

+ ξ6

]
r00r0 +

[
(n− 1)ξ7 + ξ8

]
r00;0

}
+
[
(n− 1)ξ9 + ξ10

]
s20 − ξ11

(
r200

− rr00
)
+
[
(n− 1)ξ12 + ξ13

]
r0s0 + ξ14

[
r00;jb

j − r0j;0b
j + r00r

j
j

− r0jr
j
0

]
+
[
(n− 1)ξ15 + ξ16

]
r0js

j
0 +

[
(n− 1)ξ17 + ξ18

]
s0;0 + ξ19s0j

sj0 + α

{
ξ20rs0 +

[
(n− 1)ξ21 + ξ22

]
sjs

j
0

}
+ α

[
ξ23
(
2rjs

j
0 + 3rj0sj

− 2rjjs0 − 2s0;jb
j + sj;0b

j
)
+ ξ24s

j
0;j

]
+ α2

(
ξ25sjs

j + ξ26s
i
js

j
i

)
,

(1)
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where

ξ1 = 2ΦΘs(B − s2)−Θs − 2sΘΦ+Θ2,

ξ2 = −(Φ2
s − 2ΦΦss)(B − s2)2 − (Φss + 6sΦΦs)(B − s2) + 2sΦs,

ξ3 = −4(QsΘΦs + 2QΦΘs)(B − s2)− 4QΘ(Θ− sΦ) + 2(2QΘs +QsΘ),

ξ4 = 4
(
Φ2
s −QsΦΦs − 2QΦ2Φss −QssΦ

2
)
(B − s2)2 + 2(2QΦss + 2QssΦ

+QsΦs− 2QΦ2 + 2sQsΦ
2 − ΦsB + 10sQΦΦs)(B − s2)− 10sQΦs

+ 2Φ(Q− sQs)− 4Φs−Qss,

ξ5 = −2ΘB + 4ΦΘ,

ξ6 = −2(ΦsB − 2ΦΦs)(B − s2)− 2Φs,

ξ7 = −Θ,

ξ8 = −Φs(B − s2),

ξ9 = 8QΦ
(
QΘs +QsΘ

)
(B − s2) + 4Q

(
ΘB −Qs +QΘ2 −QΘs

)
,

ξ10 =
[
2QΦ

(
QsΦs +QΦss +QssΦ

)
−Q2Φ2

s −Q2
sΦ

2
]
(B − s2)2

+ 4
[
QsΦB −Q(QΦss +QsΦs) +QΦsB − Φ(2QQss −Q2

s)

− 4sQΦ(QsΦ+QsΦs)
]
(B − s2)− 4Q2Φ(2 + s2Φ)

+ 2Q(Qss + 2sΦB) + 4(2 + 3sQ)(QΦs +QsΦ)Φs−Q2
s,

ξ11 = 4Φ2 + 4ΦB,

ξ12 = −4Q(2ΦΘ−ΘB),

ξ13 = 4
[
QΦsB +QsΦB − 2Φ(QΦs −QsΦ)

]
(B − s2) + 8sQΦ2 + 4QΦs

− 4(1− sQ)ΦB,

ξ14 = 2Φ,

ξ15 = 4QΘ,

ξ16 = 4(Qϕs −QsΦ)(B − s2)− 2ϕ(1 + 2sQ) + 2Qs,

ξ17 = 2QΘ,

ξ18 = 2(QsΦ+Qϕs)(B − s2)−Qs + 2sQΦ,

ξ19 = −2Q2 + 2(1 + sQ)Qs,

ξ20 = −8Q(Φ2 +ΦB),

ξ21 = −4Q2Θ,

ξ22 = −4Q2Φs(B − s2) + 2QΦ,
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ξ23 = 2QΦ,

ξ24 = 2Q,

ξ25 = −4Q2Φ,

ξ26 = −Q2,

Q =
ϕ′

ϕ− sϕ′ ,Θ =
ϕϕ′ − sϕϕ′′ − sϕ′ϕ′

2ϕ[ϕ− sϕ′ + (B − s2)ϕ′′]
,Φ =

ϕ′′

2[ϕ− sϕ′ + (B − s2)ϕ′′]
.

Lemma 2.8. [6] Let F = αϕ

(
β

α

)
be an (α, β)-metric on a Finsler

manifold M . Then the geodesic coefficient Gi of F is defined by

Gi = Ḡi + αQsi0 +Θ(−2αQs0 + r00)
yi

α
+Φ(−2αQs0 + r00)b

i, (2)

where Ḡi is geodesic coefficient of α.

3 Ricci Curvature of a Homogeneous Finsler
Space with Generalized m-Kropina Metric

Let G/H be a homogeneous Finsler manifold with decomposition g =
h + m and u be a G-invariant vector field of length c corresponding to

1-form β. Consider

{
u1, u2, u3, ..., un =

u

c

}
be an orthonormal basis of

m w.r.t. ⟨ , ⟩. The Christoffel symbol Γp
ik and the structure constants

Cj
ik of g are defined by

∇ ∂

∂xi

∂

∂xk
= Γp

ik

∂

∂xp
, Cj

ik = ⟨uj , [ui, uk]⟩,

respectively. Let ⟨X, [ui, uk]⟩ is denoted by C0
ik. We require the following

lemma for further use:

Lemma 3.1. [11] At the origin eH, for the structure constant Cj
ik =

⟨[ui, uk]m, uj⟩ of Lie algebra g and

f(i, k) =

{
1, i < k,
0, i ≥ k,
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where ui, uj , uk, up, uq ∈ m, we have the following values:

Γp
ik = f(i, k)Cp

ik + ⟨∇ûi
ûk, ûp⟩, ⟨∇ûi

ûk, ûj⟩ = −1

2

(
Ci
kp + Ck

ip + Cp
ik

)
,

⟨∇ûi
ûk, ûj⟩ûq =

1

2

(
Ci
qpC

p
kj + Ck

qpC
p
ij + Cj

qpC
p
ik + Cp

kjC
p
qi + Cp

ijC
p
qk + Cp

ikC
p
qj

)
,

bk = cδnk, sik =
c

2
Cn
ik, si =

c2

2
Cn
ni, rik = − c

2
(Ck

ni + Ci
nk),

sik;j =
c

2
Cp
kiC

n
jp +

c

4
Cn
ip

(
Cp
qk + Cq

kp + Ck
qp

)
+

c

4
Cn
pk

(
Cp
qi + Cq

ip + Ci
qp

)
,

bi;k;q = c
(
− Γi

np⟨∇ûq ûk, ûp⟩ − Γp
nk⟨∇ûq ûi, ûp⟩+ Cp

qn⟨∇ûp ûk, ûi⟩
+ ûq⟨∇ûn ûk, ûi⟩

)
,

si;k = c
(
sni;k +

a

2
Cn
piΓ

p
nk

)
, rik;q = sik;q + bk;i;q.

Using the above lemma, we calculate the quantities used in theorem
2.7 at the origin as follows:

r00 = − c

2
(C0

n0 + C0
n0) = −cC0

n0, sk = csnk, s0 = csn0 =
c2

2
Cn
n0,

rk = blrlk = aljrlk = crnk, r0 = crn0 −
c2

2

(
Cn
n0 + C0

nn

)
= −c2

2
Cn
n0,

r = rikb
ibk = crn = −c3

2

(
Cn
nn + Cn

nn

)
= 0, r00;0 = cC0

k0

(
C0
nk + Ck

n0

)
,

rjj = apjrjp = − c

2
ajp
(
Cp
nj + Cj

np

)
= − c

2

(
Cj
nj + Cj

nj

)
= −cCj

nj ,

r0jr
j
0 = r0jrj0 =

c2

4

(
C0
nj + Cj

n0

)(
Cj
n0 + C0

nj

)
=

c2

4

(
C0
nj + Cj

n0

)2
,

r00;jb
j = r00;nb

n = cr00;n =
c2

2

(
C0
qn + Cq

0n

)(
C0
nq + Cq

0n + Cn
0q

)
,

r0j;0b
j = r0n;0b

n = cr0n;0 =
c2

2

[
C0
q0Cn

nq +
1

2

(
Cq
0n + C0

qn + Cn
q0

)(
Cq
n0 + C0

nq

)]
,

r0js
j
0 = r0jsj0 = −c2

4
Cn
j0

(
Cj
n0 + C0

nj

)
,

rjs
j
0 = crnjsk0 = −c3

4
Cn
j0

(
C0
nj + Cj

n0

)
,

s0;0 = csn0;0 +
c2

2
Γq
n0C

n
q0 =

c2

2
C0
0pCn

np, sojs
j
0 = sojsj0 = −c2

4

(
Cn
0j

)2
,
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sjs
j
0 = sjs0j =

c3

4
Cn
j0Cn

nj , sjr
j
0 = sjrj0 =

c3

4
Cn
jn

(
C0
nj + Cj

n0

)
,

sjs
j =

c4

4

(
Cn
nj

)2
, sj0;j = sj0;j =

c

2

[
Cj
jqC

n
q0 +

1

2
Cn
jq

(
Cj
0q + Cq

0j + C0
jq

)]
,

s0;jb
j = cs0;n =

c3

4
Cn
nq

(
C0
nq + Cq

0n + Cn
0q

)
,

sj;0b
j = csn;0 = −c3

4
Cn
qn

(
C0
nq + Cq

n0 + Cn
0q

)
,

sj0;j = ajisi0;j = sj0;j =
c

4

[
Cn
jq

(
Cj
0q + Cq

0j + C0
jq

)
+ 2Cj

jqC
n
q0

]
,

sjs
j = sjsj =

c4

4

(
Cn
nj

)2
, sijs

j
i = sjisij = −c4

4

(
Cn
ij

)2
.

Using the above equations, (1) can be rewritten as:

RT j
j =

c2

α2(z)

(
C0
0n

)2[
(n− 1)ξ1 + ξ2

]
+

c3

2α(z)
Cn
n0C0

0n

[
(n− 1)

(
ξ3 − ξ5

)
+ ξ4 − ξ6

]
+

c

α(z)
C0
j0

(
C0
nj + Cj

n0

)[
(n− 1)ξ7 + ξ8

]
+

c4

4

(
Cn
n0

)2
[
(n− 1)

(
ξ9 − ξ12

)
+ ξ10 − ξ11 − ξ13

]
+

c2

4

[
4Cj

jnC
0
0n + 2C0

0jC
j
nj +

(
C0
jn

+ Cj
0n

)(
Cn
0j + 2C0

nj + 2Ck
0n

)]
ξ14 +

c2

4
Cn
0j

(
C0
nj + Cj

n0

)[
(n− 1)ξ15 + ξ16

]
+

c2C0
0jCn

nj

2

[
(n− 1)ξ17 + ξ18

]
− c2

4

(
Cn
j0

)2
ξ19 +

c3

4
α(z)

(
Cn
njCn

j0

)2
[
(n− 1)ξ21 + ξ22

]
+

c3

4
α(z)

[
4Cn

n0C
j
nj + Cn

jn

(
Cn
j0 + 4C0

nj

)]
ξ23 +

c

4
α(z)[

C0
jqCn

jq + 2Cj
jqC

n
q0

]
ξ24 +

c2

4
α2(z)

[
c2
(
Cn
nj

)2
ξ25 −

(
Cn
ij

)2
ξ26

]
.

(3)

Next, we have

Q = − m

(m+ 1)s
, Qs =

m

(m+ 1)s2
, Qss = − 2m

(m+ 1)s3
,

Θ = − ms

s2 + (B − s2)m
, Φ =

m

2
[
s2 + (B − s2)m

] ,
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Θs =
m
[
s2 − (B + s2)m

][
s2 + (B − s2)m

]2 , ΘB =
m2s[

s2 + (B − s2)m
]2 ,

Φs =
m(m− 1)s[

s2 + (B − s2)m
]2 , ΦB =

−m2

2
[
s2 + (B − s2)m

]2 ,

Φss =
m(m− 1)

[
3(m− 1)s2 +Bm

][
s2 + (B − s2)m

]3 , ΦsB = − −2m2(m− 1)s[
s2 + (B − s2)m

]3 .
Now, we calculate ξ1 to ξ26 for generalized m-Kropina metric as follows:

ξ1 =
m2
[
s2 − (B + s2)m

][
s2 + (B − s2)m

]3 (B − s2)−
m
[
s2 − (B + 3s2)m

][
s2 + (B − s2)m

]2 ,

ξ2 = −
m2(m− 1)

[
2s2 − (B + 2s2m)

][
s2 + (B − s2)m

]4 (B − s2)2

−
m(m− 1)

[
6s2m− 3s2 +Bm

][
s2 + (B − s2)m

]3 (B − s2) +
2m(m− 1)s2[

s2 + (B − s2)m
] ,

ξ3 =
4m3

[
s2 − (B + s2)m

]
(m+ 1)s

[
s2 + (B − s2)m

]3 (B − s2)−
4m2s

[
2s2 − (B + 2s2)m

]
(m+ 1)s2

[
s2 + (B − s2)m

]2 ,
ξ4 =

[
−2m3(m− 1)

[
5s2 − (B + 5s2)m

]
s
[
s2 + (B − s2)m

]4 +
2m3

s3
[
s2 + (B − s2)m

]2
]

(B − s2)2

(m+ 1)
−

[
10m3(m− 1)s[
s2 + (B − s2)m

]4 +
4m2(m− 1)

[
4s2 + (B − 2s2)m

]
s
[
s2 + (B − s2)m

]3
+

2m2
[
3s2 + 2(B − 2s2)m

]
s3
[
s2 + (B − s2)m

]2
]
(B − s2)

(m+ 1)
+

2m

(m+ 1)s3

+
2m
[
2(2m− 1)(m− 1)s2 −Bm2

]
(m+ 1)s

[
s2 + (B − s2)m

]2 ,

ξ5 = − 4m2s[
s2 + (B − s2)m

]2 ,
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ξ6 =
6m2(m− 1)s[

s2 + (B − s2)m
]3 (B − s2)− 2m(m− 1)s[

s2 + (B − s2)m
]2 ,

ξ7 =
ms[

s2 + (B − s2)m
] ,

ξ8 = − m(m− 1)s[
s2 + (B − s2)m

]2 (B − s2),

ξ9 = − 8m4(m− 1)(B − s2)

(m+ 1)
[
s2 + (B − s2)m

]3 −
4m3

[
2s2 − (B + s2)m

]
(m+ 1)2s2

[
s2 + (B − s2)m

]2
+

4m2

(m+ 1)2s3
,

ξ10 =

[
12m4(m− 1)2s2

s2
[
s2 + (B − s2)m

]4 − 3m4

s4
[
s2 + (B − s2)m

]2
]
(B − s2)2

(m+ 1)2

+

[
4m3(m− 1)

[
5s2 − (B + 3s2)m

]
s2
[
s2 + (B − s2)m

]3 +
2m3

[
(4m− 3)s2 − 3

]
s4
[
s2 + (B − s2)m

]2
]

(B − s2)

(m+ 1)2
+

m2
[
5m2 − 10m+ 8

]
(m+ 1)2

[
s2 + (B − s2)m

]2 − 2m2(3m− 2)

(m+ 1)s2
[
s2 + (B − s2)m

]
+

3m2

(m+ 1)2s4
,

ξ11 = − m2[
s2 + (B − s2)m

]2 ,
ξ12 = − 8m3

(m+ 1)
[
s2 + (B − s2)m

]2 ,
ξ13 =

12m3(m− 1)

(m+ 1)
[
s2 + (B − s2)m

]3 (B − s2)− 2m2(m− 3)

(m+ 1)
[
s2 + (B − s2)m

]2 ,
ξ14 =

m[
s2 + (B − s2)m

] ,
ξ15 =

4m2

(m+ 1)
[
s2 + (B − s2)m

] ,
ξ16 =

2m2
[
s2 − (B + s2)m

]
(B − s2)

(m+ 1)s2
[
s2 + (B − s2)m

]2 +
m(m− 1)

(m+ 1)
[
s2 + (B − s2)m

]
+

2m

(m+ 1)s2
,

ξ17 =
2m2

(m+ 1)
[
s2 + (B − s2)m

] ,
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ξ18 =
m2
[
3s2 + (B − 3s2)m

]
(B − s2)

(m+ 1)s2
[
s2 + (B − s2)m

]2 − m2

(m+ 1)
[
s2 + (B − s2)m

]
− m

(m+ 1)s2
,

ξ19 = −2m(m− 1)

(m+ 1)2s2
,

ξ20 = − 2m3

(m+ 1)s
[
s2 + (B − s2)m

]2 ,
ξ21 =

4m3

(m+ 1)2s
[
s2 + (B − s2)m

] ,
ξ22 = − 4m3(m− 1)(B − s2)

(m+ 1)2s
[
s2 + (B − s2)m

]2 − m2

(m+ 1)s
[
s2 + (B − s2)m

] ,
ξ23 = − m2

(m+ 1)s
[
s2 + (B − s2)m

] ,
ξ24 = − 2m

(m+ 1)s
,

ξ25 = − 2m3

(m+ 1)2s2
[
s2 + (B − s2)m

] ,
ξ26 = − m2

(m+ 1)2s2
.

Using the above calculations, we get the following result:

Theorem 3.2. Let F be a generalized m-Kropina metric on a homoge-
neous Finsler space (M,F ). Then its Ricci curvature is given by

Ric(z) = αRic(z)−
mc2

(
C0
0n

)2
A4α2(z)

[
m(m− 1)A2(B − s2)2 −A

{
m(n− 1)A1

+ (m− 1)(A6 − 3s2)
}
(B − s2)− 2(m− 1)s2A2 + (n− 1)A2(A3 − 2s2)

]
+

mc3Cn
n0C0

0n

(m+ 1)s3A4α(z)

[
m2
{
A2 − (m− 1)s2A5

}
(B − s2)2 −m

{
5m(m− 1)s4

+ 3(m2 − 1)s4A− 2ms2AA1 +A2(2A2 − s2) + 2(m− 1)s2A(A2 + 2s2)
}

(B − s2) + 2m(m+ 1)(n− 1)s4A2 + 2(2m− 1)(m− 1)s4A2 −Bs4A2
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+A4 + (m− 1)s4A2
]
+

mcsC0
j0

α(z)A

(
C0
nj + Cj

n0

)[
(n− 1)A− (m− 1)(B − s2)

]
+

m2c4
(
Cn
n0

)2
4(m+ 1)2s4A4

[
3m2

{
4(m− 1)2s4 −A2

}
(B − s2)2 + 2A

{
2m(m− 1)s2

(A3 + 2s2)− 4m2(m2 − 1)(n− 1)s4 +A(4m− 3)s2 − 3A− 6m(m2 − 1)s4
}

(B − s2) + 3A4 + 2(m− 3)(m− 1)s2A2 − 4(n− 1)s2A2(A1 + s2) + 8m

(m+ 1)(n− 1)s4A2 + (m+ 1)2s4A2 + (5m2 − 10m+ 8)s4A4 + 4(n− 1)s

A4 − 2(3m− 2)s2A3
]
+

mc2

4A

[
4Cj

jnC
0
0n + 2C0

0jC
j
nj +

(
C0
jn + Cj

0n

)(
Cn
0j + 2C0

nj

+ 2Ck
0n

)]
+

m(m− 1)c2
(
Cn
j0

)2
2(m+ 1)s2

+
mc2Cn

0j

(
C0
nj + Cj

n0

)
4(m+ 1)s2A2

[
2A2 + (4mn− 3m

− 1)s2A+ 2mA1(B − s2)
]
+

mc2C0
0jCn

nj

2(m+ 1)s2A2

[
(2n− 3m)s2A+m(B − s2)

A3 −A2
]
+

m2c3α(z)
(
Cn
njCn

j0

)2
4(m+ 1)2sA2

[
(4n− 5)A− 4m(m− 1)(B − s2)

]
− m2c3α(z)

4(m+ 1)sA

[
4Cn

n0C
j
nj + Cn

jn

(
Cn
j0 + 4C0

nj

)]
− mcα(z)

2(m+ 1)s

[
C0
jqCn

jq + 2Cj
jqC

n
q0

]
− m2c2α2(z)

4(m+ 1)2s2A

[
2mc2

(
Cn
nj

)2 − (Cn
ij

)2
A
]
,

where z(̸= 0) ∈ m,

A = s2 + (B − s2)m,

Aη = ηs2 − (B + ηs2)m.

Proof. As we know that the Ricci curvature of a homogeneous Finsler
space (M,F ) is defined as

Ric = αRic+RT j
j ,

where RT j
j is given by the equation (1).

Then, using the equation (3) and the values of ξ1, ξ2, ..., ξ26 for general-
ized m-Kropina metric in the above equation, we get the required result.
□
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4 Ricci Curvature of a Homogeneous Gener-
alized m-Kropina Metric with Vanishing S-
Curvature

In this section, we first give a condition for a homogeneous Finsler
space with G-invariant generalized Kropina metric to have vanishing S-
curvature. Next, we calculate the formula for Ricci curvature of aforesaid
metric having vanishing S-curvature.

Theorem 4.1. Let (G/H,F ) be a homogeneous Finsler space with G-
invariant generalized m-Kropina metric F . Then G/H has vanishing
S-curvature if and only if ⟨[X,u]m, X⟩ = 0 ∀ X ∈ m.

Proof. Let F has vanishing S-curvature. As Shen and Cheng [22]
showed that a Finsler metric F has vanishing S-curvature if and only if
rik = 0 and si = 0 ∀ 1 ≤ i, k ≤ n. Therefore,

c

2

(
Ck
in + Ci

kn

)
= 0, (4)

and
c2

2
Cn
ni = 0.

Taking i = k in the equation (4), we get

⟨[ui, u]m, ui⟩ = 0.

Therefore, for orthonormal basis of m, we have

⟨[X,u]m, X⟩ = 0 ∀ X ∈ m.

Conversely, Suppose that ⟨[X,u]m, X⟩ = 0 ∀ X ∈ m, i.e.,

⟨[ui, u]m, ui⟩ = 0 ∀ 1 ≤ i ≤ n,

⟨[ui + uk, u]m, ui + uk⟩ = 0 ∀ 1 ≤ i, k ≤ n,

⟨[ui + u, u]m, ui + u, ⟩ = 0 ∀ 1 ≤ i ≤ n,

⟨[u, ui], u⟩ = 0.

Using the above equations, we get rik = 0 and si = 0 ∀ 1 ≤ i, k ≤ n,
which implies that F has vanishing S-curvature. This completes the
proof. □
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Theorem 4.2. Let (G/H,F ) be a homogeneous Finsler space with gen-

eralized m-Kropina metric F =
αm+1

βm
(m ̸= 0,−1) having vanish S-

curvature, then its Ricci curvature is given by

Ric(z) = αRic(z) +
m(m− 1)c2α2

2(m+ 1)2β2

(
Cn
j0

)2 − mcα2

2(m+ 1)β

(
C0
jqCn

jq + 2Cj
jqC

n
q0

)
+

c2m2α4

4(m+ 1)2β2

(
Cn
ij

)2
.

(5)

Proof. Let F has vanishing S-curvature, then by Theorem 4.1, we have

⟨[X,u]m, X⟩ = 0 ∀ X ∈ m.

Now

C0
0n = ⟨[X,un]m, X⟩ =

〈[
X,

u

c

]
m
, X
〉
= 0,

Cj
nj = ⟨[un, uj ]m, uj⟩ =

1

c
⟨[u, uj ]m, uj⟩ = 0,

Cn
n0 = ⟨[un, X]m, un⟩ =

1

c2

(
⟨[u,X]m, u⟩+ ⟨[u,X]m, X⟩

)
=

1

c2
⟨[u, u+X]m, u+X⟩ = 0,

Cn
nj = ⟨[un, uj ]m, un⟩ =

〈[u
c
, uj

]
m
,
u

c

〉
=

1

c2

(
⟨[u, uj ]m, u⟩+ ⟨[u, uj ]m, uj⟩

)
=

1

c2
⟨[u, u+ uj ]m, u+ uj⟩ = 0,

and

Cj
n0 + C0

nj = ⟨[un, X]m, uj⟩+ ⟨[un, uj ]m, X⟩

=
1

c

(
⟨[u,X]m, uj⟩+ ⟨[u, uj ]m, X⟩+ ⟨[u,X]m, X⟩+ ⟨[u, uj ]m, uj⟩

)
=

1

c

(
⟨[u,X]m, X + uj⟩+ ⟨[u, uj ]m, X + uj⟩

)
=

1

c

(
⟨[u,X + uj ]m, X + uj⟩

)
= 0.

Substituting these values in Theorem 3.2, we get the equation (5). This
completes the proof. □
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5 Projective Ricci Curvature of Generalized m-
Kropina Metric

In this section, we derive the formula for projective Ricci curvature of
generalized m-Kropina Finsler metric.

LetM be an n-dimensional Finsler manifold with generalizedm-Kropina
metric F . From the equation (2), the geodesic coefficient of a generalized

m-Kropina metric F =
αm+1

βm
is defined by

Gi =Ḡi − αm

(m+ 1)s
si0 −

m

(m+ 1)A

[
(m+ 1)sr00

α
+ 2ms0

]
yi

+
m

2(m+ 1)sA

[
(m+ 1)sr00 + 2mαs0

]
bi,

where A = s2 + (B − s2)m. Therefore

Gi
l = Ḡi

l −
αylm

(m+ 1)s
si0 −

αm

(m+ 1)s
sil +

αm

(m+ 1)s2
si0syl −

m

(m+ 1)A[
2(m+ 1)sr0l

α
+

(m+ 1)sylr00

α
−

(m+ 1)sr00αyl

α2
+ 2msl

]
yi

− m

(m+ 1)A

[
(m+ 1)sr00

α
+ 2ms0

]
δil +

2sm(1−m)syl

(m+ 1)A2

[
(m+ 1)sr00

α

+ 2ms0

]
yi +

m

2(m+ 1)sA

[
2(m+ 1)sr0l + (m+ 1)r00syl + 2mαsl

+ 2ms0αyl
]
bi −

m
(
A+ 2s2 − 2ms2

)
syl

2(m+ 1)s2A2

[
(m+ 1)sr00 + 2mαs0

]
bi.

Then using the above equation, we get

S|ly
l = yl

∂S

∂xl
−Gk

l y
l ∂S

∂yk

= S;ly
l +

[
2mα

(m+ 1)s
sl0 −

m

(m+ 1)sA

[
(m+ 1)sr00

+ 2mαs0
]
bi
]
Syl +

2m

(m+ 1)A

[
(m+ 1)sr00

α
+ 2ms0

]
S,

(6)
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where |l denotes the horizontal covariant derivative of S along geodesic.

The formula of S-curvature for generalized m-Kropina metric is given
by [16]

S = −
m
[
(n− nm)s2 + (nm+ 1)b2

]
(m+ 1)α

[
(1−m)s2 + b2m

]2 [mα⟨[v, y], v⟩ − (m+ 1)s⟨[v, y], y⟩
]
.

Now, the previous equation can be rewritten as

S = −m(nA+ b2)

(m+ 1)αA2

[
(m+ 1)sr00 − 2mαr0

]
. (7)

Further, the following relations hold:

b2;l = 2(rl + sl), b2;0 = 2(r0 + s0), s;l =
r0l + s0l

α
, s;0 =

r00
α

,

syl =
αbl − syl

α2
, sl0syl =

s0
α
, blsyl =

b2 − s2

α
, α;0 = 0,

sl0r0l = q00, sl0rl = q0, sl0yl = 0, blαyl = s.

Therefore

S;ly
l =− m(nA+ b2)

(m+ 1)αA2

[
(m+ 1)sr00;0 +

(m+ 1)r200
α

− 2mαr0;0

]
+

2m

(m+ 1)αA3

[
(m+ 1)sr00 − 2mαr0

][
(nA+ 2b2)(sr00

α
+
(
r0 + s0 −

sr00
α

)
m
)
−A(r0 + s0)

]
,

(8)

Syls
l
0 =− m(nA+ b2)

(m+ 1)αA2

[
(m+ 1)

α
r00s0 + 2(m+ 1)sq00 − 2mαq0

]
+

2m(1−m)ss0
(m+ 1)α2A3

(nA+ b2)
[
(m+ 1)sr00 − 2mαr0

]
,

(9)

and

Sylb
l = −m(nA+ b2)

(m+ 1)αA2

[
(m+ 1)r00

(b2 − s2

α

)
− 2mαr + 2sr0

]
+

m

(m+ 1)α2A3

[
(m+ 1)sr00 − 2mαr0

]
[
2s(1−m)(nA+ 2b2)(b2 − s2) + sb2A+ nsA2

]
.

(10)
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Using the equations (7), (8), (9) and (10) in equation (6), we have

S|ly
l = −m(nA+ b2)

(m+ 1)αA2

[
(m+ 1)sr00;0 +

(m+ 1)r200
α

− 2mαr0;0

]
+

2m

(m+ 1)αA3

[
(m+ 1)sr00 − 2mαr0

][
(nA+ 2b2)

(sr00
α

+
(
r0 + s0

− sr00
α

)
m
)
−A(r0 + s0)

]
− 2m2(nA+ b2)

(m+ 1)2sA2

[
(m+ 1)

α
r00s0 + 2(m+ 1)

sq00 − 2mαq0

]
+

4m2(1−m)s0
(m+ 1)2αA3

(nA+ b2)
[
(m+ 1)sr00 − 2mαr0

]
+

m2(nA+ b2)

(m+ 1)2αsA3

[
(m+ 1)r00

(b2 − s2

α

)
− 2mαr + 2sr0

][
(m+ 1)sr00

+ 2mαs0

]
− m2

(m+ 1)2α2sA4

[
(m+ 1)sr00 − 2mαr0

][
2s(1−m)(nA

+ 2b2)(b2 − s2) + sb2A+ nsA2
][
(m+ 1)sr00 + 2mαs0

]
− 2m2(nA+ b2)

(m+ 1)2α2A3

[
(m+ 1)sr00 − 2mαr0

][
(m+ 1)sr00 + 2mαs0

]
.

(11)

From the above calculations, we obtain the following result:

Theorem 5.1. Suppose (M,F ) is a homogeneous Finsler space with
generalized m-Kropina metric F of dimension n and Ric denotes the
Ricci curvature of generalized m-Kropina metric. Then the projective
curvature PRic of F is given by

PRic = αRic− n− 1

n+ 1

{
m(nA+ b2)h5
(m+ 1)α2A2

− 2mt1
(m+ 1)αA3

[
(nA+ 2b2)

(
h0

(1−m) +
h2 − h1

4α

)
− A(h2 − h1)

4mα

]
+

2m2(nA+ b2)h4
(m+ 1)2sαA2

− 2m(1−m)

(m+ 1)2αA3

(nA+ b2)h1[h2 − (m+ 1)h0]−
m2(nA+ b2)h3h2
(m+ 1)2α2sA3

+
m2h1h2

(m+ 1)2α2sA4

[
3s

b2A+ 3nsA2 + 2s(1−m)(nA+ 2b2)(b2 − s2)
]
− m2(nA+ b2)2 h21

(m+ 1)2(n+ 1)α2A4

}
.

(12)
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where 

h0 = sr0,
h1 = (m+ 1)sr00 − 2mαr0,
h2 = (m+ 1)sr00 + 2mαs0,
h3 = (m+ 1)r00(b

2 − s2)− 2mα2r + 2sαr0,
h4 = (m+ 1)r00s0 + 2α(m+ 1)sq00 − 2mα2q0,
h5 = (m+ 1)sαr00;0 + (m+ 1)r200 − 2mα2r0;0.

(13)

Proof. Since the projective Ricci curvature PRic of F is given by

PRic = Ric+
n− 1

n+ 1
S|ly

l +
n− 1

(n+ 1)2
S2, (14)

where Ric denotes the Ricci curvature of generalized m-Kropina metric,
using the equations (7), (11) and (13) in the equation (14), completes
the proof. □

5.1 Applications of projective Ricci curvature

As we know, projective Ricci curvature is an important projective in-
variant with respect to a fixed volume form in Finsler geometry. It
plays an important role in establishing the notion of projective Ricci
flat sprays. With the help of this, some important global rigidity results
with non-negative Ricci curvature can be established. The current study
of projective Ricci curvature with generalized m-Kropina metric can be
extended to the weighted projective Ricci curvature with aforesaid met-
ric. The study of projective Ricci curvature can be extended to warped
product/twisted product Finsler manifolds. Next, as a natural applica-
tion, we characterize projectively Ricci-flat generalized m-Kropina met-
ric defined by a Riemannian metric and constant length Killing 1-form.

Let M be an n-dimensional Finsler manifold and F be a generalized
m-Kropina metric with constant length Killing 1-form β, equivalently,
rij = 0, sj = 0. Therefore, from theorem 4.1 and 4.2, we have vanishing
S-curvature and

C0
0n = Cj

nj = Cn
nj = Cn

n0 = C0
0n = Cj

n0 + C0
nj = 0.
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Making use of above values, we get

r00 = r00;0 = r00;jb
j = r0j;jb

j = s0 = s0;0 = s0;jb
j = sj;0b

j

= sjs
j = sjs

j
0 = r0js

j
0 = rjs

j
0 = rj0sj = rjjs0 = 0.

Using above values in the equation (12), we obtain

PRic = αRic− 2m(m− 1)α2

(m+ 1)2β2
s0js

j
0 −

2mα2

(m+ 1)β
sj0;j −

m2α4

(m+ 1)2β2
sijs

j
i .

Now, suppose F is projectively Ricci flat Finsler metric, i.e., PRic = 0,
we get

αRic− 2m(m− 1)α2

(m+ 1)2β2
s0js

j
0 −

2mα2

(m+ 1)β
sj0;j −

m2α4

(m+ 1)2β2
sijs

j
i = 0,

i.e.,

(m+ 1)2β2 αRic = 2m(m− 1)α2s0js
j
0 + 2m(m+ 1)α2βsj0;j +m2α4sijs

j
i .

The above equation is equivalent to

Π4α
4 +Π2α

2 +Π0 = 0, (15)

where

Π0 = (m+ 1)2β2 αRic(z),

Π2 = 2m(m− 1)s0js
j
0 + 2m(m+ 1)βsj0;j

Π4 = m2sijs
j
i

Since α2 and β2 are relatively prime polynomials in y, then from equation
(15) and Π0, there exists a scalar function µ = µ(x) on M such that

αRic = µα2 (16)

Substituting (16) into (15), we get

(m+1)β
[
(m+1)βµ− 2msj0;j

]
− 2m(m− 1)s0js

j
0−m2α2sijs

j
i = 0. (17)

Therefore, for a Finsler manifold M of dimension n with constant length
Killing 1-form β, F is projectively Ricci flat Finsler metric if and only
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if there exist a function µ = µ(x) such that α is an Einstein metric and
β satisfies (17).
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