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Abstract. In this paper we prove some characterization theorems
in the theory of best approximation in Banach lattices. We use a new
idea for finding the best approximation points in an ideal. We find the
distance between an ideal I and an element x by using lattice homomor-
phisms. We introduce maximal ideals of an AM space and characterize
other ideals by the maximal ideals. We also give a new representation
for principle ideals in Banach lattices that is a majorizing subspace and
we show that these principle ideals are proximinal. The role of lattice
homomorphisms in this paper is very important.
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1. Introduction

The theory of best approximation by elements of convex sets and re-
verses convex sets (i.e., complements of convex sets) in normed linear
spaces has many important applications in mathematics and other sci-
ences. This theory is well developed (see, e.g., [10, 11] and the references
therein). However, convexity is sometimes a very restrictive assumption,
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so there is a clear need to study the best approximation by not neces-
sarily convex sets. In this direction, Rubinov and Singer [9] developed
a theory of best approximation by elements of so-called normal sets in
the non-negative orthant RI

+ of a finite-dimensional coordinate space RI

endowed with the max-norm. Martinez-Legaz, Rubinov and Singer have
developed a theory of best approximation by downward subsets of the
space RI [6]. Also, Mohebi and Rubinov [8] generalized these concepts
and developed the theory of best approximation by closed normal and
downward subsets of Banach lattices X with a strong unit. If we compare
the definition of a downward subset with a solid subset we can say that
a solid subset is an absolutely downward subset.

The aim of this paper is to examine a theory of best approximation
by element of solid subsets in Banach lattices with an order unit. This
problem is related to the monotonicity theory which is studied in [2, 4,
5]. In [4, 5] the dominated approximation problem is considered, but
we want to examine the problem of best approximation without the
dominated restriction. We examine this problem for ideals and some
special subsets in Banach lattices, that some of them are true for solid
subsets. An ideal is a convex subset but a solid subset is not in general a
convex subset. The structure of the paper is as follows. In the Section 1.2
we recall that main definitions and some results on best approximation
in Banach lattices. The best approximation problem in AM spaces and
their ideals are discussed in section 2.1. In section 2.2 we examine the
proximinality problem for ideals in Banach lattices with an order unit
1. We also show that

d(x, I) = inf{λ > 0 : x− λ1 ∈ I}

where I is an ideal in a Banach lattice X and x ∈ X+. In the final
section we give a new representations for ideals in Banach lattices and
obtain some more results about their best approximations. We show that
every principle ideal that is a majorizing subspace in a Banach lattice is
a proximinal subset.
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1.1 Preliminaries

Let W be a non-empty subset of the normed linear space X. For any
x ∈ X, define

d(x,W ) = inf{‖x− y‖ : y ∈W}.

Recall (see e.g [10]) that a point w0 ∈W is called a best approximation
for x ∈ X if

‖w0 − x‖ = d(x,W ).

If each x ∈ X has at least one best approximation w0 ∈ W , then W

is called a proximinal subset of X. The (possibly empty) set of best
approximations x from W is defined by

PW (x) = {y ∈W : ‖x− y‖ = d(x,W )}.

We recall some definitions from lattice theory (see e.g [1, 7]).
A real vector space X is said to be an ordered vector space whenever it is
equipped with an order relation > (i.e., > is a reflexive, antisymmetric,
and transitive binary relation onX) that is compatible with the algebraic
structure of X in the sense that it satisfies the following two axioms:

i) If x > y, then x+ z > y + z holds for all z ∈ X,

ii) If x > y, than αx > αy holds for all α > 0.

A vector x in an ordered vector space X is called positive whenever
x > 0 holds. The set of all positive vectors of X will be denoted by X+,
i.e.,

X+ = {x ∈ X : x > 0}.

The set X+ of positive vectors is called the positive cone of X. A Riesz
space is an ordered vector space X with the additional property that for
each pair of vectors x, y ∈ X the supremum and the infimum of the set
{x, y} both exist in X. Following the classical notation, we shall write

x ∨ y = sup{x, y} and x ∧ y = inf{x, y}.

For every x ∈ X let

x+ = x ∨ 0 , x− = (−x) ∨ 0 , and |x| = x ∨ (−x).
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We say that x, y ∈ X are disjoint (denoted by x ⊥ y) if |x| ∧ |y| = 0. For
each x ∈ X we define x⊥ = {y ∈ X : |x| ∧ |y| = 0}.
Let X be an ordered set and x, y ∈ X such that x 6 y, we denote the
order interval in X by [x, y] and,

[x, y] = {z ∈ X : x 6 z 6 y}.

A subset in a Riesz space is called order bounded if it is included in an
order interval. Let X be a Riesz space, a linear functional f : X → R is
said to be an order bounded functional if f maps order bounded subsets
of X to bounded subsets of R. The vector space X∼ of all order bounded
linear functionals on X is called the order dual of X. Garrett Birkhoff
shows that the norm dual of a Banach lattice X coincides with its order
dual, i.e., X ′ = X∼; see [1].

Definition 1.1.1. A norm, ‖.‖, on X is called a lattice norm if for
each x, y ∈ X, such that |x| 6 |y|, then ‖x‖ 6 ‖y‖. If X is a Riesz space
and ‖.‖ a norm on X, then (X, ‖.‖) is called a normed Riesz space. A
normed Riesz space which is complete with respect to the norm is called
a Banach lattice.

Definition 1.1.2. An operator T : E → F between two Riesz spaces is
said to be a lattice homomorphism whenever it preserves the lattice oper-
ations, that is, whenever T (x∨y) = T (x)∨T (y) holds for all x, y ∈ E. A
lattice homomorphism which is in addition one-to-one and isometry is
referred to as a isometric lattice isomorphism.

Definition 1.1.3. i) A subspace U of X is called a sublattice of X if
x ∨ y ∈ U and x ∧ y ∈ U for all x, y ∈ U.
ii) A subset A of X is called solid if |x| < |y| for some y ∈ A implies
that x ∈ A.
iii) Every solid subspace I of X is called an ideal in X.

LetX be a Riesz space. If S is a solid subset ofX, then S is not necessary
a convex subset.

Example 1.1.4. Let (R2,6) be a Riesz space such that (x1, y1) 6
(x2, y2) if and only if x1 6 x2 and y1 6 y2, then S = {(x, 0), (0, y) :
−1 6 x, y 6 1} is a solid subset of R2 that is not a convex subset of R2.
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Let X be a Riesz space and x ∈ X. It is clear that x⊥ is a closed
convex solid subset of X. Also an easy verification shows that d(x, x⊥) =
‖x‖. Therefore 0 ∈ Px⊥(x).

Lemma 1.1.5. Let X be a Riesz space and y, z ∈ X+ such that z 6 y.
If x ∈ [z, y]⊥ and x > 0, then d(x, [z, y]) = ‖x ∨ z‖.

Proof. For each t ∈ [z, y] we have ‖x − t‖ = ‖x ∨ t‖ and so ‖x ∨ z‖ 6
‖x ∨ t‖ 6 ‖x ∨ y‖. Therefore d(x, [z, y]) = ‖x ∨ z‖.
If X is a Riesz space and A is a subset of X+ such that inf(A) = y and
if x ∈ A⊥ and x > 0, then d(x,A) = ‖x ∨ y‖. Because for each t ∈ A

we have ‖x − t‖ = ‖x ∨ t‖ and since inf(A) = y so for each z ∈ A,
‖x ∨ y‖ 6 ‖x ∨ z‖. Therefore d(x,A) = ‖x ∨ y‖. �

Definition 1.1.6. A Banach lattice X is said to be an abstract M-space,
whenever its norm is an M-norm, i.e., if x ∧ y = 0 in X implies

‖x ∨ y‖ = max{‖x‖, ‖y‖}.

An abstract M-space is known as an AM-space.

Example 1.1.7. If K is a Hausdorff compact topological space, then
C(K) the set of all f such that

‖f‖ = sup{|f(k)| : k ∈ K},

is an AM space having unit the constant function one.
The ideal generated by a singleton {e} in X is called a principal ideal
and is denoted by Xe. If for some e ∈ X we have Xe = X, then e ∈ X
is called an order unit or strong unit and we denoted the order unit of
X by 1. The order unit norm on X is defined as follow

‖x‖ = inf{λ > 0 : |x| 6 λ1}.

Lemma 1.1.8. ([7]) Assume that X is an AM space with an order unit
1 and the order unit norm ‖.‖1. Let

B = {x′ ∈ X ′
+ :< x′,1 >= 1},
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and K = ex(B) the set of all extreme points of B, then K is σ(X ′, X)-
compact and the mapping

X 3 x→ fx ∈ C(K) defined by fx(x′) =< x′, x >

for all x′ ∈ K is an isometric lattice isomorphism.
Recall that X∼ denote the order dual space of X and for each Banach
lattice X we have X ′ = X∼.

Lemma 1.1.9. ([7]) For every 0 6= x′ ∈ X∼ the following assertions are
equivalent.

i) x′ is a lattice homomorphism,

ii) x′ ∈ X+ and (x′)−1(0) is an ideal in X.

Lemma 1.1.10. ([7]) For every closed subspace J of C(K) the following
assertions are equivalent.

i) J is an algebraic ideal in C(K),

ii) J is an ideal in C(K),

iii) There exists a closed set K0 satisfyingJ = {f ∈ C(K) : f(Ko) = 0}.

Let I be any ideal in C(X) and let Z[f ] = {x ∈ X : f(x) = 0} for each
f ∈ C(X). If ∩f∈IZ[f ] is nonempty, we call I a fixed ideal.

Lemma 1.1.11. ([3]) The fixed maximal ideals in C(X) are precisely the
sets

Mp = {f ∈ C(X) : f(p) = 0},

for p ∈ X. The ideals Mp are distinct for distinct p.

Lemma 1.1.12. ([3]) If X is compact, then every ideal I in C(X) is
fixed.

Theorem 1.1.13. Let J be a maximal ideal in C(K) such that K is a
compact set. Let f ∈ C(K), then d(f, J) = |f(p)| for some p ∈ K, and
J is a proximinal subset of C(K).
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Proof. Since K is a compact set and J is a maximal ideal in C(K),
by Lemma 1.1.11 and Lemma 1.1.12, J = {f ∈ C(K) : f(p) = 0}
for some p ∈ K. Suppose that f ∈ C(K), and g ∈ J . Then ‖f − g‖ =
sup{|f(t)−g(t)| : t ∈ K}. Since p ∈ K and g ∈ J we have ‖f−g‖ > |f(p)|
and since g was arbitrary, d(f, J) > |f(p)|.
On the other hand if we put g0 = f−f(p), then g0(p) = 0 and so go ∈ J ,
and ‖f − g0‖ = |f(p)|, hence d(f, J) = |f(p)|. For each f ∈ C(K), we
have f − f(p) ∈ PJ(f). So J is a proximinal subset of C(K). �

2. Characterization of Nearest Points and
Proximinality of Ideals

In this section we examine ideals in AM space and in general Banach
lattices and give some applications in best approximation.

2.1 Ideals in AM spaces and some application to best
approximation

In this subsection we characterize maximal ideals in an AM space X and
some application of this characterization to best approximation. Also we
characterize other ideals in AM spaces with maximal ideals. We will show
that a maximal ideal I in AM space X is of the form I = {x :< x′, x >=
0} for a lattice homomorphism x′ ∈ X ′. We also show that other ideals
are intersection of some maximal ideals.

Definition 2.1.1. Let X be a Banach lattice and x′ ∈ X ′. The zero set
of x′ ∈ X ′ is denoted by N(x′) and defined as follow,

N(x′) = {x ∈ X : < x′, x >= 0}.

Proposition 2.1.2. Let X be an AM space with an order unit 1 and
B = {x′ ∈ X ′

+ :< x′,1 >= 1}. I, is a maximal ideal in X if and only if
I = N(x′) for some x′ ∈ ex(B).

Proof. Put K = ex(B), then by Lemma 1.1.8, K is σ(X,X ′)-compact
and X is isometrically lattice isomorphic to C(K). By Lemma 1.1.11,
fixed maximal ideals of C(K) are precisely Jp = {f ∈ C(K) : f(p) = 0}
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and since K is compact, all ideals of C(K) are fixed. This complete the
proof. �
We note that by Lemma 1.1.9, x′ is a lattice homomorphism.

Theorem 2.1.3. Let X be an AM space with an order unit 1. If I is
a maximal ideal in X and x ∈ X, then x− < x′, x > 1 ∈ PI(x) and
d(x, I) = | < x′, x > | for some x′ ∈ X ′.

Proof. Suppose that I is a maximal ideal in X. By Proposition 2.1.2,
there exists an x′ ∈ ex(B) such that I = {x :< x′, x >= 0}, where
B = {x′ ∈ X ′

+ :< x′,1 >= 1}. So x− < x′, x > 1 ∈ I and hence
d(x, I) 6 | < x′, x > |. For each y ∈ I,

‖x− y‖ = sup{| < y′, x− y > | : ‖y′‖ 6 1}.

Since ‖x′‖ 6 1 and < x′, y >= 0 we get ‖x − y‖ > | < x′, x > |.
Therefore d(x, I) = | < x′, x > |. In the end, z = x− < x′, x > 1 ∈ I

and ‖x− z‖ = d(x, I). Therefore z ∈ PI(x).
In Proposition 2.1.2, we show that if X is an AM space with an order
unit 1, then N(x′) is a maximal ideal in X for each x′ ∈ ex(B). In
continuation we will show that if I is an ideal in X and X is an AM
space with an order unit 1, then there exists a subset K of ex(B) such
that I is the intersection of zero sets in K. �

Theorem 2.1.4. Let X be an AM space with an order unit 1. If I is
a closed ideal in X, Then there exists a closed subset K of ex(B) such
that I = ∩x′∈KN(x′).

Proof. We have only to combine Lemma 1.1.5 and Lemma 1.1.8. �

Theorem 2.1.5. Let X be an AM space with an order unit 1. If I is
a closed ideal in X and x ∈ X+ \ I, then d(x, I) = supx′∈Kd(N(x′), x),
for a subset K of ex(B) and PI(x) 6= ∅

Proof. By Theorem 2.1.4, there exists a closed subset K of ex(B) such
that I = ∩x′∈KN(x′). Since N(x′) for each x′ ∈ K is a maximal ideal
by Theorem 2.1.3, d(x,N(x′)) =< x′, x >, for each x′ ∈ K and also
x− < x′, x > 1 ∈ N(x′). We define t = sup{< x′, x >: x′ ∈ K}. Since
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I ⊂ N(x′) for each x′ ∈ K, it follows that d(x, I) > d(x,N(x′)). So
d(x, I) > t. Also since ‖x‖ > t, we have x − t1 > 0. Therefore 0 6
x− t1 6 x− < x′, x > 1. Since N(x′) is an ideal, x− t1 ∈ N(x′) for each
x′ ∈ K and so x− t1 ∈ I. Now

d(x, I) 6 ‖x− (x− t1)‖ = ‖t1‖ = t 6 d(x, I).

This shows that d(x, I) = supx′∈Kd(N(x′), x) and x− t1 ∈ PI(x). �

Theorem 2.1.6. Let X be a Banach lattice with an order unit 1 and
K = [−r, r] a closed interval in R. Suppose that x′ > 0 is an element in
X ′ such that < x′,1 >= 1. If I = {x : < x′, x >∈ K} and x ∈ X+ \ I,
then d(x, I) =< x′, x > −r and x− (< x′, x > −r)1 ∈ PI(x).

Proof. For any α ∈ [1− r
<x′,x> , 1+ r

<x′,x> ], we have x−α < x′, x > 1 ∈ I,
especially z = x − (< x′, x > −r)1 ∈ I. Hence d(x, I) 6 ‖x − z‖ or
equivalently d(x, I) 6< x′, x > −r. For any y ∈ I

‖x− y‖ = sup{| < y′, x− y > | : ‖y′‖ 6 1}.

Since ‖x′‖ 6 1 and < x′, x >> r, we get ‖x − y‖ >< x′, x > −r and
therefore d(x, I) =< x′, x > −r. Since z ∈ I and ‖x − z‖ = d(x, I), we
have z ∈ PI(x). �

2.2 Proximinality of ideals in Banach lattices

Let X be a Banach lattice and I a closed ideal in X. We show that I is
a proximinal subset of X for every x ∈ X+ and in continuation we will
show that d(x, I) = inf{λ > 0 : x− λ1 ∈ I}.

Theorem 2.2.1 Let X be a Banach lattice with an order unit 1. If I is
a closed subset in X and x ∈ X+, then PI(x) 6= ∅.

Proof. If x ∈ I then x ∈ PI(x). Suppose that x ∈ X+ \ I and d(x, I) =
r. For each r0 > r, s(x, r0) ∩ I 6= ∅, especially s(x, r + 2n+1

2n(n+1)) ∩ I 6=
∅. Suppose that yn ∈ s(x, r+ 2n+1

2n(n+1))∩I So for this yn we have r+ 1
n+1 6

‖yn − x‖ 6 r + 1
n . So

x+ (r +
1

n+ 1
)1 6 yn 6 x+ (r +

1
n

)1.
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For each n 6 m, we have x + (r + 1
n)1 > x + (r + 1

m)1. Since x > 0
we have |yn| 6 x + (r + 1

n)1 and yn > ym. By the relation |yn − ym| =
2|yn| ∨ |ym| − |yn + ym|,

|yn − ym| 6 2(x+ (r +
1
n

)1)− (2x+ (2r +
1

n+ 1
+

1
m+ 1

)1)

= (
1
n
− 1
n+ 1

)1 + (
1
n
− 1
m+ 1

)1.

Thus ‖yn − ym‖ 6 ‖ 1
n −

1
n+1‖ + ‖ 1

n −
1

m+1‖, and this tend to zero as
n,m → ∞. So {yn} is a cauchy sequence in I and since I is a closed
subspace, there exists a y0 ∈ I such that yn → y0 and ‖y0 − x‖ = r.

Therefore PI(x) 6= ∅. �

Theorem 2.2.2. Let X be a Banach lattice with an order unit 1 and
order unit norm, I a closed ideal in X and x ∈ X+. Suppose that
d(x, I) = r and 0 /∈ PI(x), then inf PI(x) = x− r1.

Proof. If x ∈ I, then d(x, I) = 0 and PI(x) = {x}, so the proof is
complete. Suppose that x ∈ X+ \ I, since 0 /∈ PI(x) so ‖x‖ > r, by the
definition of order unit norm we have x−r1 > 0. So x−(r+ε)1 > 0, for
each ε ∈ [0 , ‖x‖ − r]. For all such ε > 0, there exits a yε ∈ I, such that
‖yε− x‖ < r+ ε, or equivalently x− (r+ ε)1 < yε < x+ (r+ ε)1. Since
x−(r+ε)1 > 0 and yε ∈ I, we have x−(r+ε)1 ∈ I. Tend ε to zero, also
I is a closed ideal, therefore x− r1 ∈ I and clearly x− r1 ∈ PI(x). Now
if y ∈ PI(x), since PI(x) ⊂ B(x, r) ∩ I, we have x − r1 6 y 6 x + r1.
Thus inf PI(x) = x− r1. �

Theorem 2.2.3. Let X be a Banach lattice with an order unit 1 and
order unit norm, I a closed ideal in X. If x ∈ X+ such that 0 /∈ PI(x),
then d(x, I) = inf{λ > 0 : x− λ1 ∈ I}.

Proof. Suppose that A = {λ > 0 : x − λ1 ∈ I}. If x ∈ I, then x −
01 = x ∈ I, and so infA = 0 = d(x, I). Suppose that x /∈ I, then
r = d(x, I) > 0. If λ > 0 is arbitrary such that x− λ1 ∈ I, then

λ = ‖λ1‖ = ‖x− (x− λ1)‖ > d(x, I) = r.
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On the other hand by Theorem 2.2.2, x− r1 ∈ I. It follows that r ∈ A.
Hence infA = r. �

Theorem 2.2.4. Let X be a Banach lattice with an order unit 1 and
order unit norm, {Ik}k∈J a family of closed ideals in X. If x ∈ X+ such
that 0 /∈ PIk

(x) for each k ∈ J , then d(x,∩Ik) = supk∈Jd(x, Ik).

Proof. If x ∈ ∩k∈JIk, then d(x, Ik) = 0 for each k ∈ J and the proof
is complete. Suppose that x ∈ X+ \ ∩k∈JIk. Put I = ∩k∈JIk and rk =
d(x, Ik). Since I ⊂ Ik for all k ∈ J , we have rk 6 d(x, I) for all k ∈ J.

Define t = supk∈Jrk. Then t 6 d(x, I). If t = ∞, then d(x, I) = ∞, and
hence the result holds. Suppose that t < ∞. The inequality t > rk for
all k ∈ J implies that x− t1 6 x−rk1. Since x−rk1 > 0 for each k ∈ J ,
x− t1 > 0 and therefore |x− t1| 6 |x− rk1|.
Since x− rk1 ∈ Ik and Ik is an ideal in X, we get x− t1 ∈ Ik, for each
k ∈ J . Therefore x− t1 ∈ ∩k∈JIk. In view of Theorem 2.2.3,

d(x, I) = inf{λ > 0 : x− λ1 ∈ I}.

Since x− t1 ∈ I, it follows that d(x, I) 6 t. Therefore, d(x, I) = t.

We recall that a subset S is a solid subset in Banach lattice space X if
|x| 6 |y| and y ∈ S implies that x ∈ S. �

Remark 2.2.5. In the above Theorems we can use a solid subset instead
of an ideal.

3. A New Representation of Ideals in Banach
Lattices

In this section we introduce a new representation of ideals in a Banach
lattice and with this new idea we give some applications to the best
approximation problem.

Definition 3.1. Suppose that X is a Banach lattice with an order unit
1 and x ∈ X. The zero set of x ∈ X is denoted by Nall(x) and define

Nall(x) = {x′ ∈ X ′ : x′ is a lattic homomorphism and < x′, x >= 0}.
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By the definition of Nall(x), it is clear that Nall(x) = Nall(|x|).

Definition 3.2. The ideal generated by x is called a principal ideal and
is denoted by Ex. We know that

Ex = ∪n∈N[−n|x|, n|x|],

for every x ∈ X without loss of generality we can assume that x > 0.
A vector subspace G of an ordered vector space X is a majorizing sub-
space whenever for each x ∈ X there exists some y ∈ G with x 6 y (or,
equivalently, if for each x ∈ X there exists some y ∈ G with y 6 x).

In the following Proposition, we use the theorem known as Liecki-Luxe-
mburg-Schep Theorem ([1]) Which stated that every lattice homomor-
phism whose domain is a majorizing subspace has always a lattice ho-
momorphic extension to the whole space.

Proposition 3.3. Let X be a Banach lattice with an order unit 1. If
x ∈ X+, such that the principle ideal generated by x is a majorizing
subspace, then

Ex = {y ∈ X : Nall(x) ⊆ Nall(y)}.

Proof. Put J = {y ∈ X : Nall(x) ⊆ Nall(y)}. Suppose that y ∈ Ex,
there exits an n ∈ N such that |y| 6 nx. If x′ ∈ Nall(x), then

| < x′, y > | = < x′, |y| >
6 < x′, nx >

= n < x′, x >

= 0.

Thus x′ ∈ Nall(y). Since x′ was arbitrary in Nall(x), we have Nall(x) ⊆
Nall(y) and y ∈ J . Therefore Ex ⊆ J .
Suppose that t /∈ Ex. Since Ex is a principle ideal that is a majorizing
subspace by Lipecki-Luxemburg-Schep theorem there exists a lattice ho-
momorphism x′ ∈ X ′ such that < x′, t >6= 0 and < x′, y >= 0 for each
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y ∈ Ex. So x′ /∈ Nall(t) and x′ ∈ Nall(x). Therefore Nall(x) * Nall(t),
and hence t /∈ J . Therefore J ⊆ Ex, this complete the proof. �

Theorem 3.4. Let X be a Banach lattice with an order unit 1. If Ex is
a majorizing subspace, then Ex is a proximinal subset of X.

Proof. By Proposition 3.3, Ex = {y ∈ X : Nall(x) ⊆ Nall(y)}. For
each w ∈ X, if w ∈ Ex, then d(w,Ex) = 0 and w ∈ PEx(w). Suppose
that w /∈ Ex. For any y ∈ Ex,

‖y − w‖ = sup{| < x′, y − w > | : ‖x′‖ = 1}
> sup{| < x′, y − w > | : x′ ∈ Nall(x), < x′,1 >= 1}
= sup{| < x′, w > | : x′ ∈ Nall(x), < x′,1 >= 1}.

Put K = {x′ ∈ Nall(x) :< x′,1 >= 1}. Therefore

d(w,Ex) > sup
x′∈K

| < x′, w > |.

We define u = w − (supx′∈K | < x′, w > |)1 ∧ w. If y′ ∈ Nall(x), then

< y′, u > = < y′, w > −( sup
x′∈K

| < x′, w > |) < y′,1 > ∧ < y′, w >

= < y′, w > − < y′, w >

= 0.

Therefore y′ ∈ Nall(u) and so Nall(x) ⊆ Nall(u). Thus u ∈ Ex. Also

d(w,Ex) 6 ‖w − u‖
= ‖ sup

x′∈K
| < x′, w > |1‖

= sup
x′∈K

| < x′, w > |‖1‖.

Thus d(w,Ex) = supx′∈K | < x′, w > |. Since u ∈ Ex and ‖w − u‖ =
d(w,Ex), Ex is a proximinal subset of X. �
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