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Abstract. In this paper we decompose Γα(Z(Zp1p2...pα)), a graph with
vertises Z(Zp1p2...pα) and two distinct vertices x and y are adjacent if
and only if there exists i, 1 ≤ i ≤ α, such that pi | x, y. We obtain
dimension, edge metric dimension, strong metric dimension, and frac-
tional metric dimension for it.
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1 Introduction

The concept of metric dimension of a general metric space was intro-
duced in 1953 by Blumenthal [2]. About twenty years later, it was
applied by Slater [12] who introduced the concept of locating set of a
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graph. Independently Harary and Melter [6] introduced the same con-
cept as the resolving sets and calculated the metric dimension of a tree
graph. Since then, it has been frequently used in graph theory, chem-
istry, biology, robotics and many other disciplines.

Let G = (V,E) be a simple, finite, undirected and connected graph.
For graph theoretic terminology we refer to [5]. We say that a vertex
u ∈ V distinguishes (determines or recognizes) two vertices x, y ∈ V if
d(u, x) ̸= d(u, y), where d(x, y) represents the length of a shortest x− y-
path in G. A metric generator for G is a set B ⊆ V with the property
that, for each pair of vertices x, y ∈ V , there exists a vertex u ∈ B that
distinguishes x and y. If for some metric generator A ⊆ V , we have that
|A| = min{|B| : B is a metric generator for G}, we say that A is a metric
basis for G and dim(G) = |A|, is the metric dimension of G.

A set L ⊆ V is said to be a local metric generator for G if for each
pair of vertices x, y ∈ V such that xy ∈ E, there exists a vertex u ∈ L

that distinguishes x and y. If for some local metric generator M ⊆ V ,
we have that |M| = min{|L| : L is a local metric generator for G}, then
we say that M is a local metric basis for G and dimℓ(G) = |M|, is the
local metric dimension of G. The concept of adjacency generator was
introduced by Jannesari and Omoomi [9] as a tool to study the metric
dimension of lexicographic product of graphs. An adjacency generator
for G is a set B ⊆ V such that for each x, y ∈ V − B there exists b ∈ B

such that b is adjacent to exactly one of x and y. An adjancency which
has the minimum cardinality among all adjacency generators of G is
called an adjacency basis of G, and its cardinality is said to be the
adjacency dimension of G, denoted by dima(G). The concepts of local
adjacency generator, local adjacency basis and local adjacency dimension
are defined analogously, and the local adjacency dimension of a graph
G is denoted by dima,ℓ(G).

The distance between the vertex v and the edge e is defined as
d(e, v) = min{d(u, v), d(w, v)}, where e = uw. A vertex w ∈ V dis-
tinguishes two edges e1, e2 ∈ E if d(w, e1) ̸= d(w, e2). A nonempty set
S ⊆ V is an edge metric generator for G if any two edges of G are
distinguished by some vertex of S. An edge metric generator with the
smallest possible cardinality is called an edge metric basis for G, and its
cardinality is the edge metric dimension, which is denoted by dime(G).
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A set S of vertices of G is a mixed metric generator if any two el-
ements (vertices or edges) of G are distinguished by some vertex of S.
The smallest cardinality of a mixed metric generator for G is called the
mixed metric dimension and is denoted by dimm(G). A mixed metric
basis for G is a mixed metric generator for G of cardinality dimm(G).
It immediately follows that dimm(G) ≥ max{dim(G), dime(G)} .

For any two vertices u and v of G, the interval I[u, v] is defined as
the collection of all vertices that belong to some shortest u− v-path. A
vertex w strongly distinguishes u and v if v ∈ I[u,w] or u ∈ I[v, w]. A
set S of vertices in a connected graph G is a strong metric generator for
G if every two vertices of G are strongly distinguished by some vertex
of S. The smallest cardinality of a strong metric generator of G is called
strong metric dimension and is denoted by dims(G).

For any two vertices x and y of G, R{x, y} denotes the set of vertices
z such that d(x, z) ̸= d(y, z). In this view, a metric generating of G is a
subset W of V such that W ∩R{x, y} ≠ ∅ for any two distinct vertices x
and y of G. Let f : V (G) −→ [0, 1] be a real valued function. For W ⊆
V , denote f(W ) =

∑
v∈W f(v). We call f a resolving function of G if

f(R{x, y}) ≥ 1 for any two distinct vertices x and y of G. The fractional
metric dimension, denoted by dimf (G), is given by dimf (G) = min{|g| :
g is a resolving function of G}, where |g| = g(V (G)).

By definition of the different variants of generators, the following
inequalities hold for any graph G. For more details see [9].

� dim(G) ≤ dima(G),

� diml(G) ≤ dim(G) ≤ diml(G) + dima,l(G
c),

� diml(G) ≤ dima,l(G),

� dima,l(G) ≤ dima(G),

For a non-zero commutative ring R, let Z(R) be the set of zero-
divisors of R. Anderson and Badawi in [1] introduced the total graph
of R, denoted by Γ(R), as an undirected graph with all elements of R
as vertices, and for distinct x, y ∈ R, the vertices x and y are adjacent
if and only if x + y ∈ Z(R). They also studied the induced subgraph
Γ(Z(R)) of Γ(R) with vertices Z(R).



4 M. GHOLAMNIA, M. TAGHIDOOST AND A. ABBASI

In this paper, we let P = {p1, p2, . . . , pα} as a set of odd prime num-
bers and consider the total graph Γ(Zp1p2...pα) and its induced subgraph
Γ(Z(Zp1p2...pα)) . We define the graph Γα(Z(Zp1p2...pα)) as a subgraph
of Γ(Z(Zp1p2...pα)), with all elements of Z(Zp1p2...pα) as vertices, and
two distinct vertices x and y are adjacent if and only if there exists i,
1 ≤ i ≤ α, such that pi | x, y. We find a decomposition for this graph,
and investigate the various dimensions.

2 Decomposition

In this section we first decompose the subgraph Γ2(Z(Zpq)), where p, q
are two distinct odd prime numbers and then generalize it into
Γα(Z(Zp1p2...pα)). We know that Z(Zp1p2...pα) is not an ideal of Zp1p2...pα ,
and 2 /∈ Z(Zp1p2...pα), so by [1], Γ(Z(Zp1p2...pα)) is a connected graph with
diameter two.

Remark 2.1. It is known by Euler’s formula that |Z(Zn)| = n − ϕ(n)
such that ϕ(n) = nΠα

i=1(1− 1
pi
). So we have

|Z(Zp1p2...pα)| = p1p2 . . . pα −
α∏

i=1

(pi − 1),

which is the number of vertices of Γα(Z(Zp1p2...pα)).

Remark 2.2. One can see that Γ2(Z(Zpq)) is the graph Γ(Z(Zpq)). For
α ≥ 3, Γα(Z(Zp1p2...pα)) and Γ(Z(Zp1p2...pα)) are distinct. It is easy
to see that Γα(Z(Zp1p2...pα)) is a subgraph of Γ(Z(Zp1p2...pα)) because
for any two adjacent vertices x, y in Γα(Z(Zp1p2...pα)), there exists i,
1 ≤ i ≤ α, such that pi | x, y which leads to pi | x + y, by [3]. So,
x + y ∈ Z(Zp1p2...pα), and x ∼ y in Γ(Z(Zp1p2...pα)). Since the logical
proposition pi | x, y ⇒ pi | x + y, is not reversible, there exist adjacent
vertices in Γ(Z(Zp1p2...pα)) which are nonadjacent in Γα(Z(Zp1p2...pα)).

Example 2.3. Consider the graphs Γ(Z(Z105)) and Γ3(Z(Z105)) with
P = {3, 5, 7} . It is clear that the number of edges in Γ(Z(Z105)) is more
than Γ3(Z(Z105)) . For example, 3 ∼ 7, 33 ∼ 77 in Γ(Z(Z105)) since
3+ 7, 33+ 77 ∈ Z(Z105). But 3 ≁ 7, 33 ≁ 77 in Γ3(Z(Z105)), since there
isn’t any common prime factor in P .
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Lemma 2.4. The following facts hold in Γ2(Z(Zpq)):

(i) If u = kp where 1 ≤ k ≤ q − 1, then deg(u) = q − 1.

(ii) If v = kq where 1 ≤ k ≤ p− 1, then deg(v) = p− 1.

(iii) deg(0) = p+ q − 2.

Proof. It is clear that u = kp is adjacent to zero and all of the other
multiples of p. Similarly, v = kq is adjacent to zero and all of the other
multiples of q. Obviously, u and v are not adjacent. □

Definition 2.5. A decomposition of a graph G is a list of subgraphs
G1, G2, . . . , Gr such that each edge appears in exactly one subgraph in the
list. In this terminology, we say that G is decomposed by G1, G2, . . . , Gr

and show it by G = G1 +G2 + · · ·+Gr.

Theorem 2.6. Γ2(Z(Zpq)) has the following decomposition;

Γ2(Z(Zpq)) = Kp +Kq.

Proof. In Γ2(Z(Zpq)) we have q vertices of the form v = kp which induce
Kq and p vertices of the form v = kq which induce Kp, by Lemma 2.4.
It is clear that there is no other adjacency and zero is the only common
vertex of them. □

Example 2.7. In Figure 1, we see the decomposition of Γ2(Z(Z35)).

0

28

7

21

14

5

30

10

25

15

20

Figure 1: Γ2(Z(Z35)) = K7 +K5
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Theorem 2.8. Γ3(Z(Zpqr)) = Kpq +Kpr +Kqr − (Kp +Kq +Kr).

Proof. By Remark 2.1, V |Γ3(Z(Zpqr))| = pqr − (p − 1)(q − 1)(r − 1).
These vertices are classified in multiples of p, q and r. It is clear that qr
elements of them are multiples of p, pr elements are multiples of q and
pq elements are multiples of r. Hence, the edges of G can be decomposed
into three complete graphs Kqr,Kpr and Kpq.

There are also some other edges formed by common multiples of p, q
and r. Since there are r common multiples of p and q, p common multi-
ples of q and r and q common multiples of p and r, which form Kr,Kp

and Kq, respectively, in order to avoid considering repeated edges, we
omit Kr,Kp and Kq from the decomposition. (See Figure 2.) □

0

Kq

Kp Kr

KqrKpq

Kpr

Figure 2: Decomposition of Γ3(Z(Zpqr))

Theorem 2.9. Γ4(Z(Zpqrs)) = Kpqr + Kpqs + Kprs + Kqrs − (Kpq +
Kpr +Kps +Kqr +Kqs +Krs) +Kp +Kq +Kr +Ks.
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Proof. Similar to proof of theorem 2.8, multiples of p, q, r and s form
the complete graphs Kqrs,Kprs,Kpqs and Kpqr, respectively. Notice that
there are

(
4
2

)
common multiples of every two factors of p, q, r and s

which are counted once in above complete graphs. So, we should omit
the edges of Kpq + Kpr + Kps + Kqr + Kqs + Krs. Since the edges
formed by common multiples of every three factors of p, q, r and s are
missed by the procedure of deletion, we have to add the complete graphs
Kp +Kq +Kr +Ks. (See Figure 3.) □

Kp

Kq Kr

Ks

Kpq

Kqr

Krs

KpsKpqs

Kpqr Kqrs

Kprs

Kqs

Kpr Kqs

Kpr

0

Figure 3: Decomposition of Γ4(Z(Zpqrs))
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In general, we have the following theorem.

Theorem 2.10.

Γα(Z(Zp1p2...pα)) =

α∑
i=1

K α∏
j=1
j ̸=i

pj
−

α∑
i,j=1
i<j

K α∏
k=1
k ̸=i,j

pk

+
α∑

i,j,k=1
i<j<k

K α∏
l=1

l ̸=i,j,k

pl
− . . .+ (−1)α

α∑
i=1

Kpi .

Proof. The proof follows by inclusion-exclusion principle and induction
on α due to the proofs of Theorems 2.8, 2.9. □

Corollary 2.11. The clique number of Γα(Z(Zp1p2...pα)) is max{
α∏

j=1
j ̸=i

pj |

1 ≤ i ≤ α}. In the case p1 < p2 < · · · < pα, the clique number is
p2p3 . . . pα.

Proof. According to Theorem 2.10, it is clear. □

Corollary 2.12. diam(Γα(Z(Zp1p2...pα))) = 2.

Proof. The decomposition in Theorem 2.10 shows that Γα(Z(Zp1p2...pα))
is not a complete graph. Since Γα(Z(Zp1p2...pα)) is a subgaph of
Γ(Z(Zp1p2...pα)), diam(Γα(Z(Zp1p2...pα))) = 2. □

3 Twin Equivalence Classes of Γ(Z(Zp1p2...pα))

For a vertex u, the open neighborhood of u in G is N(u) = {v ∈ V |
uv ∈ E} and the closed neighborhood of u is N [u] = N(u) ∪ {u}. Two
vertices u, v are true twins of G if N [u] = N [v]. They are false twins
if N(u) = N(v); and twins if they are any of the previous. Define a
relation ≡ on V (G) by u ≡ v if and only if u = v or u, v are twins. By
Lemma 2.6 in [7], ≡ is an equivalence relation. It is not difficult to see
that the equivalence classes of the true-twin relations are cliques and
those of the false-twin relations are independent sets. There are three
possibilities for each twin equivalence class U :



ON DIMENSION OF SOME FINITE TOTAL GRAPHS 9

(a) U is a singleton set, or

(b) |U | > 1 and N(u) = N(v) for any u, v ∈ U , or

(c) |U | > 1 and N [u] = N [v] for any u, v ∈ U .

We will refer to the type (c) as the true twin equivalence classes.
Consider the equivalence relation ≡. For each vertex v ∈ V (G), let

v∗ be the set of vertices of G that are equivalent to v under ≡. Let
{v∗1, ..., v∗k} be the partition of V (G) induced by ≡, where each vi is a
representative of the set v∗i . The twin graph of G, denoted by G∗, is
the graph with vertex set V (G∗) := {v∗1, ..., v∗k}, where v∗i v

∗
j ∈ E(G∗) if

and only if vivj ∈ E(G). By Lemma 2.10 in [7], one can see that this
definition is independent of the choice of representatives.

Note that in Γα(Z(Zp1p2...pα)) the vertices can be classified in mul-
tiples and common multiples of pi’s. In the next, we show that this
partition forms equivalence classes. Also, we obtain the number of the
equivalence classes by counting the ways of selecting common multiples
of pi’s.

Notation 3.1. For any nonempty subset S ⊆ P , let AS = {x ∈
Z(Zp1p2...pα); p | x ⇐⇒ p ∈ S}. Set A = {AS ;S ⊆ P} and for all
1 ≤ i ≤ α, Ai = {AS ; S ⊆ P, |S| = i}.

One sees that |Ai| =
(
α
i

)
. In the next theorem we show that for all

∅ ≠ S ⊆ P , AS is an equivalence class.

Theorem 3.2. The number of twin equivalence classes of
Γα(Z(Zp1p2...pα)) is 2α − 1.

Proof. Let S = {pi1 , . . . , pis} ⊆ P . We show that N [x] = N [y] for
every x, y ∈ AS ∈ As. Suppose that z ∈ N [x]. There exists pi such that
pi | x , pi | y. If pi ∈ S, then pi = pil , for some 1 ≤ l ≤ s. So, pil | x and
pil | z. Since pil | y, it leads to z ∼ y. Therefore, z ∈ N [y]. If pi /∈ S,
then pil ∤ y. So, y /∈ AS , which contradicts to the assumption. Thus, AS

is an equivalence class. Note that p | 0 for all p ∈ P . So, AP is the zero
singleton class.

By assumption, we have
(
α
s

)
sets of AS ’s. Therefore, the number of

the equivalence classes is
α∑

i=1

(
α
i

)
which equals to 2α − 1 by [3]. □
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0

A{p,r}

A{q,r} A{p,q}

A{p}A{r}

A{q}

Figure 4: Equivalence classes of Γ3(Z(Zpqr))

Lemma 3.3. Let S and T be two nonempty subsets of P = {p1, . . . , pα}.
For any v ∈ AS and w ∈ AT ;

(i) If S ∩ T ̸= ∅, then d(v, w) = 1;

(ii) If S ∩ T = ∅, then d(v, w) = 2.

Proof. (i) If pl ∈ S ∩ T , then pl | v and pl | w. So, v ∼ w. (ii)
Let S = {pi1 , . . . , pis} and T = {pj1 , . . . , pjt}. Since the intersection is
empty, pil ∤ w for any 1 ≤ l ≤ s, and pjr ∤ v for any 1 ≤ r ≤ t. If
d(v, w) = 1, then there exists pk ∈ P such that pk | v and pk | w. By
the assumption, pk /∈ S ∪ T . It means that there is no prime factor in
P which aliquots both v and w. So, v ≁ w. Hence, d(v, w) = 2. □

We know that a subset S ⊆ V is an independent set in G if no
two vertices in S are adjacent. The independence number of G is the
maximum size of all independent sets of vertices, denoted by α(G).

Theorem 3.4. The independence number of Γα(Z(Zp1p2...pα)) is α.

Proof. Consider the equivalence classes A1 = {A{pi}; 1 ≤ i ≤ α}.
Let I = {v1, v2, . . . , vα} such that vi ∈ A{pi}. For any two distinct
vertices vi, vj ∈ I, by part (ii) of Lemma 3.3, vi and vj are not adjacent.
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A{q,r,s}

A{p,r,s} A{p,q,s}

A{p,q,r}

A{r,s}

A{p,s}

A{p,q}

A{q,r}A{r}

A{s} A{p}

A{q}

A{p,r}

A{q,s} A{p,r}

A{q,s}

0

Figure 5: Equivalence classes of Γ4(Z(Zpqrs))

Therefore, I is an independent set. Suppose that u /∈ I. If u ∈ A1, then
u ∈ A{pt} for some 1 ≤ t ≤ α, so pt | u. Since pt | vt, it leads to u is
adjacent to vt. Let u /∈ A1, then there is an equivalence class AS such
that u ∈ AS . Clearly, AS /∈ A1, |S| ≥ 2, and {pt} ∩ S ̸= ∅ for some
1 ≤ t ≤ α. Let pr ∈ S such that pr ̸= pt, then pr | u and pt | u. So,
u ∼ vr and u ∼ vt. Hence, I is the maximal independent set. □
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4 Dimension

In this section we obtain some types of dimensions for the graph G =
Γα(Z(Zp1p2...pα)). First, we note that determining whether a given set B
of vertices of G is a metric generating set of G, one need only investigate
the pairs of vertices in V (G) − B, since u ∈ B is the only vertex of G
whose distance from u is 0.

Theorem 4.1. [8] If G∗ is the twin graph of G, then dim(G) ≥ n(G)−
n(G∗).

Theorem 4.2. Let G = Γα(Z(Zp1p2...pα)). Then dim(G) = n(G)−2α+
1.

Proof. By Theorems 4.1 and 3.2, dim(G) ≥ n(G) − 2α + 1. Set R as
a set of representative vertices of equivalence classes. By Theorem 3.2,
|R| = 2α − 1. We show that M = V (G) − R is a metric basis for G.
For any two distinct vertices x, y ∈ M, d(x, x) = 0 and d(x, y) = 1 or
d(x, y) = 2. So, d(x, x) ̸= d(x, y).

Let u, v ∈ R such that u, v ̸= 0, and suppose S and T be two subsets
of P such that u ∈ AS and v ∈ AT . There exists L ⊆ P such that
L ∩ S ̸= ∅ and L ∩ T = ∅. So, for every vertex x ∈ AL, x /∈ R;
d(x, u) = 1 and d(x, v) = 2, by Lemma 3.3.

Again, let u, v ∈ R and u = 0. There exists L ⊆ P such that
L ∩ S ̸= ∅ and L ∩ T = ∅. Then for all x ∈ AL, d(x, v) = 2 and
d(x, u) = 1; since zero is adjacent to all vertices. Hence, M is a metric
basis and dim(G) ≤ n(G)− 2α + 1. □

Corollary 4.3. Let G = Γα(Z(Zp1p2...pα)), Then dima(G) = n(G) −
2α + 1.

Proof. Since diam(G) = 2, it is easy to see that dima(G) = dim(G) =
n(G)− 2α + 1. □

Lemma 4.4. Let y and z be true twins. If e, f ∈ E(G) such that e = xy
and f = xz, then at least one of y and z belongs to an edge metric basis
of G.

Proof. Let x ∈ AS and S be a subset of P . Consider two edges e = xy
and f = xz. It is clear that d(e, x) = d(f, x) = 0. So, x does not
distinguish e and f . Now for v ̸= x, y, z, consider the following cases.
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Case 1: Let y, z ∈ AS , if v ∈ AS , then d(e, v) = d(f, v) = 1. If
v /∈ AS , then v ∈ AT for some T ⊆ P and by Lemma 3.3, d(e, v) =
d(f, v) = 1 or d(e, v) = d(f, v) = 2.

d(e, v) = d(f, v) =

{
1 S ∩ T ̸= ∅
2 S ∩ T = ∅

Case 2: If y, z /∈ AS , since y and z are twin vertices, then by Lemma
3.3, y, z ∈ AT for some T ⊆ P such that S ∩ T ̸= ∅. If v ∈ AS∩T , then
v is adjacent to x, y and z. So, d(e, v) = d(f, v) = 1. If v ∈ AS or
v ∈ AT , then v ∈ AT is adjacent to x or y, z, respectively. Therefore,
d(e, v) = d(f, v) = 1. If v ∈ AP\{S∪T}, then d(e, v) = d(f, v) = 2, by
Lemma 3.3.

d(e, v) = d(f, v) =

{
1 v ∈ AS∪T
2 v ∈ AP\(S∪T )

So, no vertex v ̸= x, y, z distinguishes e and f . Also, x does not distin-
guish e and f , by the first part of the proof. Thus, at least one of y and
z must be in an edge metric basis E. □

Lemma 4.5. Let G = Γα(Z(Zp1p2...pα)) and S ⊆ P . Then every edge
metric basis E of G contains at least |AS | − 1 vertices of the equivalence
class AS.

Proof. Let S ⊆ P and consider the true twin equivalence class AS of
G. Let x, y, z be three vertices of AS and consider two edges e = xy and
f = xz. Then by Lemma 4.4, at least one of y and z must be in an edge
metric basis E. Since AS is a clique, this argument can be repeated for
any pair of such edges. □

Theorem 4.6. Let G = Γα(Z(Zp1p2...pα)). Then dime(G) = n(G)− 2.

Proof. For any edge metric basis E of G, by Theorem 3.2 and Lemma
4.5, |E| ≥ n(G) − 2α + 1. If E = V (G) − {u, v, w} such that u ∈ AU ,
v ∈ AV , and w ∈ AW where AU , AV , AW are three distinct equivalence
classes associated with U, V,W ⊆ P .

Let u, v, w ̸= 0, then for two edges e = 0u, f = 0v, d(e, 0) = d(f, 0) =
0, and d(e, x) = d(f, x) = 1 for all x ∈ E. Thus, E does not distinguish



14 M. GHOLAMNIA, M. TAGHIDOOST AND A. ABBASI

e and f . If u = 0, E = V (G)− {0, v, w}, then the edges e = 0w, f = 0v
have distance one to all vertices in E, which is a contradiction to edge
metric basis of E. By this argument, there is no edge metric basis of size
n− 3. Hence, dime(G) ≥ n− 2.

Let E
′
contains at least one of the vertices v and w. Suppose that

w ∈ E
′
and E

′
= V (G)−{0, v}. We show that E

′
is an edge metric basis.

According to the structure of the graph, for any pair edges e and f we
have the following cases. In each case, we show that there is an x ∈ E

′

which distinguishes e and f .
Case 1: Let e = xy, f = zt, such that x, y, z, t /∈ {0, v}. If e, f

belong to an equivalence class AS , then d(e, x) = 0 and d(f, x) = 1. If
e, f belong to distinct equivalence classes AS , AT , respectively, then
d(e, x) = 0. Also, for T ∩ S ̸= ∅, d(f, x) = 1 and T ∩ S = ∅, d(f, x) = 2.

Case 2: Let e = 0v, f = 0x, then d(f, x) = 0 and d(e, x) = 1; since
zero is adjacent to all vertices.

Case 3: Let e = 0x, f = 0y, then d(e, x) = 0 and d(f, x) = 1 or 2;
by Lemma 3.3.

Case 4: Let e = 0v, f = xy, then d(f, x) = 0 and d(e, x) = 1; since
zero is adjacent to all vertices.

Case 5: Let e = 0v, f = vx, then d(f, x) = 0, d(e, x) = 1; since
x ∈ AV , or x ∈ AS for some S ⊆ P such that V ∩ S ̸= ∅.

Case 6: Let e = vx, f = yz, then d(e, x) = 0, d(f, x) = 1 or 2; by
Lemma 3.3.

Case 7: Let e = vx, f = vy, then d(e, x) = 0, d(f, x) = 1; since
y ∈ AV , or y ∈ AT for some T ⊆ P such that V ∩ T ̸= ∅.

Case 8: Let e = 0x, f = yz, then d(e, x) = 0, d(f, x) = 1 or 2; by
Lemma 3.3.

In each case, E
′
is an edge metric basis of G. Thus, dime(G) ≤ n−2.

□

Definition 4.7. A vertex u ∈ N(v) is said to be a maximal neighbour
of v if N [v] ⊆ N [u].

Theorem 4.8. [10] Let G be a connected graph of order n. Then
dimm(G) = n if and only if every vertex of the graph G has a maximal
neighbour.

Theorem 4.9. Let G = Γα(Z(Zp1p2...pα)). Then dimm(G) = n(G).
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Proof. By the structure of the graph G, every vertex v belongs to a
twin equivalence class of AS for some S ⊆ P . So, each vertex has a
maximal neighbour, and the result follows by Theorem 4.8. □

Definition 4.10. X ⊆ V is called a twin-free clique in G if the subgraph
induced by X is a clique and for every u, v ∈ X it follows N [u] ̸= N [v].
We say that the twin-free clique number of G, denoted by ω̄(G), is the
maximum cardinality among all twin-free cliques in G.

Theorem 4.11. [11] Let H be a connected graph of order n ≥ 2.
Then dims(H) ≤ n − ω̄(H). Moreover, if H has diameter two, then
dims(H) = n− ω̄(H).

Remark 4.12. Let G∗ be the twin graph of G and χ be a maximal
clique in G∗. Then it induces a clique in G which is twin-free, i.e.
ω(G∗) ≤ ω̄(G). Let Θ be a maximal twin-free clique in G, i.e. every
vertex is belong to a twin equivalence class AS for some S ⊆ P . Then
it induces a clique in G∗. So, ω̄(G) ≤ ω(G∗). Hence, ω̄(G) = ω(G∗).

Theorem 4.13. Let G = Γα(Z(Zp1p2...pα)), then dims(G) = n− 2α−1.

Proof. By remark 4.12, ω̄(G) = ω(G∗). If α = 2, according to decom-
position in Theorem 2.6, G∗ is isomorphic to P3. So, ω(G

∗) = 2.

For α ≥ 3, we claim that ω(G∗) = 2α−1. Without lose of generality,
let T = {p1} ⊆ P and S

′
= {S ⊆ P ; p1 ∈ S, |S| ≥ 2}. Consider

the equivalence classes B = {AS ; S ∈ S
′} ∪ {AT c}. Let X be the set

of representative vertices of the equivalence classes B. It is clear that
|S′ | = 2α−1 − 1. So, |X| = 2α−1.For all S ∈ S

′
, S ∩ T c ̸= ∅. So, by

Lemma 3.3, all the vertices of X are adjacent. It means that the graph
induced by X is the complete graph K2α−1 .

Now, suppose R ⊆ P such that R /∈ S
′
. If R = T , then the rep-

resentative vertex of AR is not adjacent to the representative vertex of
AT c . If R ̸= T , then Rc = S, for some S ∈ S

′
. So, by Lemma 3.3, the

representative vertex of AR is not adjacent to at least one vertex of the
clique K2α−1 . Hence, K2α−1 is a maximal clique of G∗. □

Lemma 4.14. [4] For any twin vertices x, y of a connected graph G,
R{x, y} = {x, y}.
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Theorem 4.15. [4] Let G be a connected graph of order at least two.

Then dimf (G) = |V (G)|
2 if and only if there exists a bijection α : V (G) −→

V (G) such that α(v) ̸= v and |R{v, α(v)}| = 2 for all v ∈ V (G).

Proposition 4.16. Let G = Γα(Z(Zp1p2...pα)). Then dimf (G) = n(G)
2 .

Proof. Let α : V (G) −→ V (G) such that α(x) = x+
∏
pi|x

pi. Then it is

easy to check that α is a bijection which takes any vertex x to it’s twin
and α(x) ̸= x. Moreover, by Lemma 4.14, R{x, α(x)} = {x, α(x)}, and
the result follows by Theorem 4.15. □
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