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Abstract. Sagir and Erdogan [13] have defined non-Newtonian su-
perposition operators nySs where ¢ : N x R, — Rg by nSs(z) =
(p(m, xm))o_, for all a—sequences (). In this study, we get the con-
ditions for the *-boundedness, *-locally boundedness and *-uniform con-
tinuity of the non-Newtonian superposition operator yS¢ : foc,a — 41,8.
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1 Introduction and Preliminaries

Grossman and Katz were the first to introduce non-Newtonian calculus
to mathematics. They published a book on the basics of non-Newtonian
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calculus [3]. Recently, many writers have studied on classical sequence
spaces using non-Newtonian calculus [1, 5, 12, 19]. Kirigci [10] got some
conclusions on non-Newtonian metric spaces. Yilmaz[20] worked on mul-
tiplicative calculus.

An injective function with its domain the set of real numbers R is
described as generator and the range of generator is a subset of R. Let’s
take any « generator with range A = R,. Let’s define a—addition,
a—subtraction, a—multiplication, a—division and a—order as follows;

a—addition utv =a (ot (u) +at(v))

a—subtraction u%v =a(at(u)—at(v)

a—multiplication uxXv = o (oz_1 (u) x o™t (U))

a—division u/v = a'(a_l (u) /o=t (v)) (v #0)

a—order u<v (u<v) @ a t(u) <at(v) (a7 (u) <a™t(v))

for u,v € R, [3].

(Ry, 4, x, <) is totally ordered field [2].

The numbers z>0 are a—positive numbers and the numbers z<0
are a—negative numbers in R,. a—integers are obtained by successive
a—addition of 1 to 0 and successive a—subtraction of 1 from 0. Also
k = a (k) for every integer k.

a—absolute value of a number z € R,, ¥/z” and xP~ were defined
by Grossman and Katz. They also described the x—calculus with the
aid of two randomly selected generators. Let’s take any generator o
and  and denote the ordered arithmetic pair *(”star”) (a—arithmetic,
f—arithmetic).The following notations will be used in x—calculus.

a—arithmetic 3 — arithmetic

Realm A(=Ry,) B (=Rg)
Summation + ¥
Subtraction - -
Multiplication X X
Division / /
Ordering < <

The isomorphism from a—arithmetic to f—arithmetic is determined
by the unique function (iota) having the following properties.
1. 2 is one-to-one.
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2. 1is on A and onto B.
3. For any numbers p and ¢ in A,

p<q <= (p)<e(q).
It turns out that ¢ (p) = 8 {a‘l (p)} for every number p in A and that
L <k> =k for each integer k [3].

Let X be a vector space over the field R, and |.||yx, be a func-
tion from X to R*, U {O} satisfying the following non—Ne\;vtonian norm
axioms. For z,t € X and.)\ € Ry, .

(NN1) [|zllx o =0« 2 =0,
(NN2) [|axz]|y , = Mo < 2l x5
(NN3) [JzFt]| o, < 12l x,0 + 1tll 0 -

Then (X Al a) is a non-Newtonian normed space.

The non-Newtonian sequence spaces Sy, oo, and £,, on R, are
defined as following:

So ={z=(x,) :Yn €N, z, € Ry}

loon = {:c = (zp) € Sa: “sup|zy, <4—oo} ,
neN
o

lpo = {x = (xn) € Sy : O‘Z |2, | P <—Foo} (1<p< ).
n=1

The sequence space { o is non-Newtonian normed space with the

non-Newtonian norm ||.[, .. In here, the norm is defined by

(k)

[zl 0= sgg |zn|, [2]. The a—sequence e, is defined as
n

oo — L L k=n
n 0, k#n
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Let X, be space of non-Newtonian real number sequences, Y, be
a sequence space on R, and Zg be a sequence space on Rg. A non-
Newtonian superposition operator yS4 on Y, is a mapping from Y, to
X, which is defined by xSy (x) = (¢ (m, xm))r._; where ¢ : N x R, —
Rg. In addition, the function ¢ satisfies following condition (NA;).
(NAy) ¢(m,0) =0 for every m € N.
If NSg(x) € Zg for all x = (x,) € Yo, NSp acts from Y, into Zz and
it is written that ySy : Yo — Zg [13].
Also, we shall suppose the following conditions.
(NA3) ¢(m,.) is *-continuous for every m € N.
(NAS) ¢(m,.) is B—bounded on every a—bounded subset of R,
for every m € N.
Sagir and Erdogan [13] have characterized the non-Newtonian su-
perposition operator ySg on £ o as the following.

Theorem 1.1. Let us suppose that ¢ : N x R, — Rg satisfies the
condition (NAg’). Then NS¢ : looa — l1,8 iff there exists (um) € (1
such that

¢ (m, 1) <uy, whenever |t|,<p

for each a—number >0 and all m € N .

Theorem 1.2. Non-Newtonian superposition operator nSg : loo,a —
0y g is *-continuous on lss o iff the function ¢ (m,.) is *-continuous Ry
for allmeN .

Prior to proving theorems about non-Newtonian superposition oper-
ators on /o o to £1 g, we give the required definitions and theorems in
the sense of *-calculus.

Definition 1.3. Let (X,,d,) and (Yg,d’ﬂ) be non-Newtonian sequence

spaces. An operator T : Xo — Yg is *~bounded if T (E) is f—bounded
for all a—bounded subset E of X, .

Definition 1.4. Let (X,,d,) and (Yg,d/’a) be non-Newtonian sequence

spaces. An operatorT : X, — Y3 is *-locally bounded at ug € X, if there
exist >0 and n>0 such that T (u) € By, [T (ug) ,m] for u € By, [uo, 1].
T is *-locally bounded if it is *-locally bounded it is *-locally bounded for
allu € X,.
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Theorem 1.5. Let (X,,d,) and (Yg,d};) be non-Newtonian metric

sequence spaces. An operator T : X — Yp is *locally bounded if T' is
*_bounded.

Theorem 1.6. If the function ¢ : N x R, — Rg is *-locally bounded, it
is satisfies the condition (NAS). [0]

Definition 1.7. Let h : X — Rg with X C R,. If for all €30, there
exists an a-number § = 0 () >0 such that

|h (u1) <h (uz)|5 <e when |ui—ug| <8

for every ui,ug € X, h is *~uniformly continuous on X. If h : X — Rg
is *-uniformly continuous on X, then h is *-continuous on X.

Let (X, | . HX@) and (Y, | - HY”B> be non-Newtonian normed spaces
and let T : X — Y be an operator. If for all €30, there exists an a-

number § = 6 (¢) >0 such that

T (z1) =T (acg)Hyﬁ <e when Haﬁlixgﬂx,a <0

for all x1,x9 € X, T is *~uniformly continuous on X [7].

Superposition operators were discussed according to classical arith-
metic by several authors. Dedagich and Zabreiko [3] have found the
conditions for the superposition operators on ¢,, ¢ and cp. In addi-
tion, several features of the superposition operator, such as bounded-

ness, continuity, compactness, were worked by Sama-ae[l(], Sagir and
Giingor|[14, 15], Kolk and Raidjoe[! 1] and many others [1, 9, 17, 18].
Sagir and Erdogan [13] defined a non-Newtonian superposition oper-

ator xSy where ¢ : N xR, — Rg with nSg (z) = (¢ (m, 24,)) 5 for all
non-Newtonian real sequence (x,,) and characterized non-Newtonian su-
perposition operators on o o, Cay Co,o and £, o into £1 g. In this article,
we proof that the non-Newtonian superposition operator xSy : o0 —
¢y g is *-locally bounded iff ¢ satisfies the condition (NA5). Also we
obtain that yS¢ : foo,a — £1,5 is *-bounded iff ¢ satisfies the condition
(NA)). Finally we show that the necessary and sufficient conditions for
the *-uniform continuity of .Sy : loc.a — ¢1,5-
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2 Main Results

Theorem 2.1. Let the function ¢ : N x R, — Rg be given. The non-
Newtonian superposition operator NS¢ : loo,a — €15 is *-locally bounded
iff ¢ satisfies the condition (N A)).

Proof. Assume that the function ¢ satisfies (NAY). Let z = (z,) €
loo s p>0and z = (2,) € oo such that Hx;szm . <u. Then |Zm,, <y
for all m € N. By Theorem 1.1, there exists a (um) € {1 g such that
¢ (M, 2m) | <ty for every m € N. Then

o0 o0 o0
NSy (M, , = 5D 10 (mzm)ls< Y um= g Y lumls = ll(um)lly, , -
m=1 m=1 m=1

Since
IS ()= w85 @)y, , 2 IvS5 )l , FllwSe @),
&l , IS @), -

we get HNS¢ (2) = NS (az)”zw <~ whenever v = H(um)HeLB FInSe (3:)||£1ﬁ.
Thus Sy is *-locally bounded at = € log -

Conversely, let Sy : loo.o — {18 be *-locally bounded. Let m € N
and d € R,. Let w = (wy,) be defined as

o — d, n=m
"T10,n#m

It is obvious that (wn) € lso a Since nSy is *-locally bounded at w €
lx.,a , there are p>0 and 30 such that

HNS¢ (z) = NSy (w)”em <n  where Hx;w}lgmya <u . (1)

Let = (x,) be defined as

a,n=m
xn: .
0, n#m

with a € R, and ‘aid}a <p. Then (z,) € loo,o- Since

ol = *sup ], = Jad], 2
neN
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by 1, we get HNS¢ ()= NSy (W)HEM <n. Then

6 (m, @) 26 (m, d)] 4 £ 53 |6 (n,0) Z6 (n,00)]
n=1

=||wSs () = nSs @), ,
<n
Thus ¢ (m,.) is *-locally bounded at d. Since d € R, is randomly,

¢ (m,.) is *-locally bounded. Therefore ¢ (m,.) satisfies to (NA}) by
Theorem 1.6. ]

Theorem 2.2. Let the function ¢ : N x R, — Rg be given. The non-
Newtonian superposition operator NS¢ : looca — {18 is *-bounded iff
¢ satisfies the condition (N AS).

Proof. Suppose that function ¢ satisfies (INA5). By Theorem 1.1, there
is a (um) € €1 g such that

6 (m, )] Zupy where Jt], p )

for every m € N and p>0. Let 030 and @ € fy o Wwith Nz, . <o.

Then |2,,|, <o for all m € N. From 2, we get |p (M, zm)] 4 <u,, for
every m € N and thereby obtaining that

[e.e] o o
InSe @y, = 8 3 16mam)ls 25> tm = 5 lumly = Nl ,
m=1 m=1 m=1

Hence y Sy is *-bounded.

Conversely, suppose that xSy is *-bounded. Let m € N and A is an
a—bounded interval. Then there exists an a—number ¢>0 such that
|t|,, < for all t € A. Since xS, *-bounded, there exists €30 such that

IS (2)l, , <€ whenever ||zl . <¢. (3)
a,n=m

0,n#m
that = € loo o since ||z, = “suplzn|, = |al, <¢. Then we obtain
“ neN

Let a € A and let © = (z,,) be defined as x,, = { . It is seen
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that ||nS4 () <¢ by 3. Since

e, 4

6 (m.a)ls 2 53 16 (mn)ly = NS (@), -

n=1

we have that |¢ (m,a)]g <¢. Thus ¢ satisfies the condition (NA5). O

Corollary 2.3. Let the function ¢ : N x R, — Rg be given. The non-
Newtonian superposition operator yS¢ : looa — {18 is *-bounded iff
NS¢ is *-locally bounded.

Theorem 2.4. Let NSy : loo,q — 1,8 The non-Newtonian superposi-
tion operator NSy is *-uniformly continuous on every a-bounded subset
of Uoo,o iff the function ¢ (m,.) is *-continuous on Ry for every m € N.

Proof. Suppose that nSy is *-uniformly continuous. In that case
¢ (m,.) is *-continuous by Theorem 1.2. Conversely, let ¢ (m,.) be
*-continuous on R, for all m € N. It should be shown that xS is
*-uniformly continuous on a-ball B, [0,¢] for all ¢>0. Let ¢>0 and
£30. Since ¢ satisfies the condition (N As), ¢ also satisfies the condition
(NA5). Then, by Theorem 1.1, there exists a (un,) € ¢1,3 such that

|6 (m, t)|3 <um where [t], <¢ (4)

o
for every m € N. There exists N € N such that g > um<§ B because
m=N
of (um) € f15. Since ¢ (m,.) is *-uniformly continuous on [0-—¢, ¢,

there is a § € R, with 0<d<1 such that

|p (m,t) ~¢ (m, 3)‘5 <¥B whenever |t—s| <0 (5)
5% (W21)

for all m € {1,2,...,N —1} and s,t € [0-¢,¢]. Let z = (zm),y =
(ym) € Ba [0,¢] with Hm—yH&X}ya <. In that case |zm|, <@, [yml, <¢

for every m € N. Accordingly, ‘sziym‘a <¢ for all m € N. From 5, we
find .
|6 (m, 2m) = (M, ym)| 5 < o7y B
3% (N—1>
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for all m € {1,2,..., N —1}. Thus

BZ{qf)mxm'—(mym‘ﬂ 3 (6)

By 4, it is written that [¢ (m,zm)]4 <, and ¢ (M, ym)| g <, for all
m € N. Hence, we get

e 00
- . €
B Z |¢(m71‘m)|5§ 8 Z U, <=0 (7)
3
m=N m=N
and
- - > . €
B Z ¢ (msym)|s < g Z Um < =[. (8)
3
m=N m=N
From 6, 7 and 8,
ISs @)% w6 Wle, 28 30 16 0mm) =6 (movm)
m=1
N-—-1
Z ¢ (m,wm) “¢ (moym)| 5+ g S 16 (mo @) 6 (m, i Dl
n=1 m=N
i |¢ (m, zm) ~¢ (m, ym){ﬁ+ 8 Z [¢ (m,zm)lg+ Z [¢ (m, ym)lg

<§ﬁ+§ﬁ+§ﬁ

=E.

Thus Sy is *-uniformly continuous on every a-bounded subset of /o 4.
O

(r) =1
Example 2.5. Let ¢ : NxR, — Rg be defined as ¢ (m,r) = {émﬁ‘ﬁﬁ

for each r € R,,. The function ¢ (m,.) is *-continuous. So ¢ satisfies the
condition (NAj). It is written that

}L(T) ;1‘5 < |L(T)‘B F1
for all r € Ry. Let (>0 with |r|, <¢. Then

“1
s (mnly = 1D Mg DT (c>+1

8mp {ms mg

B.
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Since

(O F1 BT U | L (¢) F1
3 s = (3 s —s ="M
m=1 1_7

86

C
L(g;:ﬁ for all m € N. By Theorem 1.1,
it is written that yS4 : foo,a — £1,8. By Theorem 2.4 .Sy is *-uniformly

continuous on every a-bounded subset of o -

we get (um) € 41,8 with u,, =

3 Conclusion

This article includes proofs of conditions that *-locally boundedness,
*_boundedness and *-uniform continuity of non-Newtonian superposi-
tion operators which acts {oc o to £ g.

Let the function ¢ : N x R, — Ry be given. The non-Newtonian su-
perposition operator .Sy : logo — {1 5 is *-locally bounded iff ¢ satisfies
the condition (NA%). Also, the non-Newtonian superposition operator
NS¢ : loo,a — 1 5 is *-bounded iff ¢ satisfies the condition (NN AS5).

The non-Newtonian superposition operator ySg is *-uniformly con-
tinuous on every a-bounded subset of l« o iff the function ¢ (m,.) is
*_continuous on R, for every m € N.

We think that our results will be presented new opinions for future
works.
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