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Abstract. In this paper, several inequalities involving the Hilbert-
Schmidt numerical radius inequalities for 2 x 2 operator matrices op-
erators are established. In particular, we obtain some generalizations
and refinements of earlier inequalities. Some upper and lower bounds
for the Hilbert-Schmidt numerical radius inequalities for 2 x 2 operator
matrices operators is also given.
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1 Introduction

Throughout this paper, H denotes a non trivial separable complex Hilbert
space, with norm || ||, induced by the inner product (-, -). The algebra of
linear bounded operators acting on H will be denoted by B(#). Among
the most interesting scalar quantities associated with 7' € B(H) is the
so called numerical radius, defined by

w(T)=sup{[{(Tx,z)| :z € H,|z|]|=1}.
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This quantity has received a considerable attention in the literature
due to its importance in operator theory and matrix analysis. However,
due to the difficulty of computing the exact value of w(7T"), a considerable
attention has been put towards finding upper and lower bounds of this
quantity, see [4, 9, 11, 12], and the references therein for example.

Since the operator norm ||7’|| of an operator 7" is easier to compute
than w(T"), the following inequality [11]

% ITI| < w (T) < |T|,T € B(H), (1)

had been useful in the literature because of the easier lower and upper
bounds of w(-).

Attempts to sharpen (1) have been made by numerous authors, as
one can find in [I, 10] to mention a few.

Another formula for w(7T) in terms of the operator norm || - || is the
following useful identity that has been used extensively in the literature

o) = sp R (7). @

Motivated by this formula, the so called Hilbert-Schmidt numerical
radius has been recently defined in [2] as follows

I

o) = gp ()

(JSIN

for any operator T' € Co(H); the Hilbert-Schmidt class. Recall that an
operator T' € B(H) is said to belong to the Hilbert—Schmidt class Cy (H)

if
o0 [e.@]
Yo Teien)l’ = ITei]* < oo,
ij=1 i=1
for any orthonormal basis {e;};~; of H.

Further, we recall the notation || 7|2 for T' € Co(H) as the Hilbert-
Schmidt norm of T, defined via

1
1Tl = Z |Teil|* = (¢r (T°T))? < oo



FURTHER RESULTS ON HILBERT-SCHMIDT ...

Note that ||T'||, is unitarily invariant, in the sense that
1TV [y = 1Tl

for every T' € C (H) and unitary operators U,V € B(#H). We refer the
reader to [2, 13] for further details.

In addition, for every T' € Cy (H), the Hilbert-Schmidt numerical
radius ws (-) satisfies

¢1§ 1Tl < w2 (T) < T, (3)

similar to (1).
Moreover, if T € Cy(H) is self-adjoint (or normal), then

wa (T) = [Tl (4)

and
ws (T) = é Il (5)

if and only if T2 = 0. For proofs and more facts, we refer the reader to

2, 3.
Two important properties of ws (-) are that it is weakly unitarily
invariant in the sense

wo (UTU*) = wy (T), (6)

for every T,U € B(H) such that U is unitary operator, and that it is
self-adjoint in the sense

w9 (T*) = W2 (T) s

for every T' € Ca(H).
A considerable attention in the literature has been directed to the
study of numerical radius inequalities for 2 x 2 block operators [5, 7].
Extending these block results, inequalities of wy for block operators
have been studied recently, as one can see in [2, 3, 6, &].
For example, in [3] the following inequalities were shown:

maX{OJQ(AWL\Bﬁ)’wZ(A_B)} < wy <[ g 61])
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< w2 (A+ B) +ws(A— B)
< NG )

for A, B € Cy (H).

Our aim in this paper is to give several Hilbert-Schmidt numerical
radius inequalities of 2 x 2 block operators. These inequalities improve
and extend some earlier related inequalities. More precisely, we derive
new upper and lower bounds for the Hilbert-Schmidt numerical radius
inequalities of 2 x 2 blocks, and some applications are obtained.

The following lemmas will be needed in our analysis.

(7)

Lemma 1.1. ([0]) Let A, X € Cy(H). Then
w2 (AXA") < | AR (X)

Lemma 1.2. [9] Let A,B € Cy(H). Then

(a) wa -eigB ?]):w2<[g ?])forevery@ER.

(
=3 o5 2
@ (]G 5 ])=vEaw.
(d) wy ( 0 > < VaZ(A) + 2 (B). In particular, if A, B are

self-adjoint, then
A 0
wz<[ o D = \Jw3 (4) + w3 (B).

Lemma 1.3 ([3], Theorem 1 (b)). Let A,B € Cy(H). Then

w([4 8]) =y

Lemma 1.4. [9] If A, B € Cy (H) are positive operators, then

(5 4]
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Lemma 1.5. Let A,B,C,D € Cy (H). Then

I (Y RSP
wa([2 8][4 2])
Proof. (i) Clearly we have
oolmsle )il e n) 0 ®

Let U = [ _OI ? ] Then, U is a unitary operator on H @ H and

(& 5]) = (r[én]Y)
- m([jfi§]>

So, by (8) and the triangle inequality we get the desired result.
(ii) In view of Lemma 1.2 (a,b) and the assertion (i), we deduce that

ol e W)=l Bl)-=(85])

Moreover, by using the fact that

0 B]_1[A B] 17-4 B
cC 0| 2/C D 21 ¢ =D |’

and the subadditivity property of ws (-), we get the required result.

Lemma 1.6. Let A e Cy(H). Then

a(la o)== 3])
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Proof. Let U = % L1 ] Then, U is a unitary operator on

—I I
H ® H and we have

=l al) - =lr]a )

Lemma 1.7. Let X € Cy (H). Then

([ F]) -

Proof. Notice that for X € Cy (H), we have

~x -x1* oo
X X 10 0|
Let U be the unitary operator as in proof of Lemma 1.6. and by (5),
we have

(7 ) - 3l F 7
-l e

- a0 o)
= V2|XIl,.

2

2
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2 Main Results

In this section, we present our results.
The following is the extension of Lemma 1.1 to 2 x 2 blocks.

Theorem 2.1. Let A,B,C,D € Cy(H). Then

0 ACB* 0o C
wQ<[BDA* ; })s2nAmuBsz([D 0]>-

Proof. LetT:[A 0 } and S = { 0 C]. Then, we have

0 B D 0
. [ o AcB
rsT _[BDA* 0 ]

Noting that

2
, |I[[A 0
mE- |5 5],

and using Lemma 1.1, we get

0 ACB*
“2\| BDA* 0

2 2
= [lAllz + 1Bz,

wo (TST™)

IN

IT 1w (5)
< (g+sg)e (| 5 0 )-

Thus,

(| por “C]) < (irisR)e (| ) S]) ©

In that case A = 0, the result is clear.
If A # 0, then by replacing A and B by tA and %B , respectively in

(9), where t = \/ 5”2 , we get the desired inequality O
2

Now, using (7), we have the following result.
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Corollary 2.2. Let A,B,C,D € Cy(H). Then

([ poae " ]) =B IBL @€+ D)+ s - D).

In [6], commutator inequalities were shown for operators of the form
AX B*+BX*A*. In the the following, we present commutator inequality
for wo for operators of the form AX B* 4+ BY A*.

Theorem 2.3. Let A,B, X, Y € Cy(H). Then

2 (AXE 2 BYA) <24l Blowe (| 3 ]): (0

0 X

A B
Proof.LetT—[O O}andS—{Y 0

]. Then, we have

TST*:[AXB z)rBYA 8]'

By Lemma 1.3, it can be observed that

wy (AX B* + BY A*) = w2<[AXB 1 BYA 0])

0 0
= wy (TST™)
< ||T|5 w2 ()
0 X
— (1B +158)e | 7 ])-
Consequently,
wo (AXB +BYA>§(\A\\§+\\Byy§)w2<[y ) D (11)

For A = 0 the result is clear.



FURTHER RESULTS ON HILBERT-SCHMIDT ...

If A # 0 then, by replacing A and B by tA and %B , respectively in

B
(11), where t = ||||A||||§ , we get

. ; 0 X
wy (AXB +BYA)§2||A|]2HBH2w2<[Y ) D (12)

Replacing A by A in the inequality (12), we have

% ¥ 0 X
@ (AXB" = BYA) <214l 1Bl (| ) 5 ])- 09

From (12) and (13) we get the required inequality. This completes
the proof. ]

As an immediate consequence of Theorem 2.3, we have the follow-
ing inequality, stated without using blocks and obtained earlier in [0,
Remark 2.5].

Corollary 2.4. Let A,B, X € Cy(H). Then,
wy (AXB* + BXA*) < 2V2||Al|y | Bllywa (X) .

Proof. Letting X =Y in Theorem 2.3, we get
wy (AXB* £ BXA*) <2|All, || By w2 X 0 .

Using Lemma 1.2 (c), we have

([ ] maco

Therefore, we obtain
wa (AX B £ BXA*) < 2V2 |[Ally || Blly s (X),

as required. O
The following result is another consequence of Theorem 2.3, obtained
earlier in [0, Remark 2.4].
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Corollary 2.5. Let A, X € Cy(H). Then
wy (AX 4+ X A*) < 2V2|| Al w2 (X) .

Proof. By putting X =Y and B = I in Theorem 10 we get the desired
result. (|

Remark 2.6. Let A, B, X,Y € Cy(H). Then, using (7), we have the
following inequality:

wa (AX B £ BY A%) < V2 || Al || Blly (w2 (X +Y) 4wz (X — V).
In the case Y = X*, we get
wy (AX B + BX*A%) < V2| Ally | Blly (w2 (X + X7) + w2 (X - X*)).

which has recently proven in [6, Theorem 2.3].
In the following, we obtain an upper bound for a general 2 x 2 block
operator. It should be noted that in [6, Theorem 2.6], it was shown that

([ 8] <t

B 0 2

The following result extends this inequality to any block [ é f) ] .

When A, D are self-adjoint, [6, Theorem 2.11] presented some upper and
lower bounds for the Hilbert-Schmidt numerical radius of such blocks.

Theorem 2.7. Let A,B,C,D € Cy(H). Then

([ B]) < Vid g+ 1t Bl

2 2
. 0 0 0 0 0 B 0 0
Proof. Notlcethat[c 0] _[O O]and{o O] —{0 0].

So, by (5) we have

“(les))=wlle ol

1
=—C,.
=510,
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Similarly, we have
0 B 1
«([5 2]) -
Now, by applying the properties of ws (-) with Lemma 1.2 (d), we
get
A B A 0 0 B 0 0
=([e 0]) = =(0 o]-[o v]+[e )
< A 0 N 0 B
= “2{|lo D “2\lo o
[0 0
- (o))
2 > 1Bl + 11,
< V3 (4) + e (D) + R
This completes the proof. ([l
In [6], some upper bounds for the Hilbert-Schmidt numerical radius
of the block operator _AA _BB were obtained. Now, we find some
upper and lower bounds for the Hilbert-Schmidt numerical radius of

-A -B
B A |
Theorem 2.8. Let A,B € Cy(H). Then

-A -B

V2max {ws (4) ,ws (B)} < wo ([ B A

(14)

Proof. By Lemma 1.6 and Lemma 1.2, we have
—-A -B —-A 0 n 0 -B
“\| B 4 “\l o 4 “\[B 0
_ 0 A n 0 B
- 2{l4a o “\|B 0
_|_

= V2(w (4)

IN

}) < V2 (w2 (A) +ws (B)).
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On the other hand, by Lemma 1.5, it follows that
-A -B S —-A 0 0 -B
w2 B A <~ max § w9 0 A , W2 B 0
= V2max {ws (A),ws (B)}.

O
In the following we obtain an upper bound for the Hilbert-Schmidt

. . . B —-A
numerical radius of operator matrix A4 B I

Proposition 2.9. Let A,B € Cy(H). Then

wo ([i _BA D < \/wg(AJriB)erg(A—iB).

Proof. Let T = |:ZB _A:| and U = -

A B V2
unitary operator on H @ H. Using (6), we get

[Ii]

i I].Then,U is a

wy (T) = w2(U*T[f)
-~ s )

< \wB(—i(A—B)+uw}(i(A+ B)) (Lemma 1.2(d))

= Ju3(A-B)+u(A+B).

Hence

m([ Zf Z_.E‘? D < \Jw (A= B) +w} (A +B).

Replacing B by —iB, we obtain

m({i _BA D < \/w§<A+¢B)+w§(A—¢B).
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Corollary 2.10. If A,B € Cy(H) are self-adjoint operators. Then

c@([ﬁ _BA D < V2wy (A+iB).

Now, we are in a position to prove the following result.

Theorem 2.11. Let A,B,C,D € Cy (H). Then
M(P4B}>§QW+BHMND—M

C D /2

+3/w((C—B)+i(A+ D)) +w3((C—B)—i(A+D)).

I -1
f I I
using (6), Proposition 2.9 and Lemma 1.2 (c¢,d). We see that

(%)
- [ 8]0

1 [ A+B+C+D —-A+B-C+D
“\| -A-B+C+D A-B-C+D

Proof. Let U = ] be a unitary operator on ‘H & H. Then,

A+ D B—C] [B+C D—A})

2
% <_C’—B A+D D-A -B-C

= (ot A0 ][ 70 Lie]

0- D A

RN

= ;”({éﬁg iHC)D ; 2([330 (BO+C)D

s ([pla 70t )

< w3 ((C—B) +i(A+ D) +w3(C~ B) ~i(A+D))
V2
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O
As a consequence of Theorem 2.11, we have the following results.

Corollary 2.12. Let A,B,C € Cy (H). Then

w2<[é _BAD §\}i(OJQ(C—B)+w2(C+B)+2w2(A)).

Corollary 2.13. Let A,B € Cy(H). Then

A B
w2<|:B A:|>§W2(A)+\/§W2<B)
Corollary 2.14. Let A,B € Cy(H). Then
w 0 A <w2(A+B)+WQ(A—B)
*\[B 0])~ V2 '

In the next theorem we obtain a new upper bound for a 2 x 2 off-
diagonal block operators. For the usual numerical radius, related result
have been given in [7].

Theorem 2.15. Let A,B € Cy(H). Then

w2<[ 04 ]) < V3 (wn (A) + wy (B)) — le2AE B —wn (A= B)|

B 0 V2
(15)
Proof. Recall that for any two real numbers a and 3, we have
0“55 :max{a,ﬁ}—’a;m. (16)

Using the identities (16) and (7), we have
0 A wa (A+ B) + w2 (A — B)
“([5 0 ]) 7
= V2max{w; (A+ B),ws (A— B)}
|wa (A + B) —ws (A — B)|
V2

< V2 (wy (A) + wsy (B))

_lwa(A+B) —wn(A-B)|

V2
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Thus,
0 A lw2 (A+ B) —ws (A — B)|
a(| g o) = Ve re ) - AL e BBl
as required. O

Applying Theorem 2.15 we have the following result, which relates
the Hilbert-Schmidt numerical radius with the Hilbert-Schmidt norm of
the real and imaginary parts of the operator.

Corollary 2.16. Let A € Cy (H) with A =RA+1i SA. Then,
[Ally + [IRA[ly = [|SA[y] < 2w, (A).

Proof. Putting B = A* in the inquality (15), we have

a4 0]) = Eewreay
e (A4 A% —wy (A— 49|
V2
03 (A) — lwa (2RA) — wo (2Z%A)|‘

V2

Since A and S A are self-adjoint operators. So, by (4) we get

([ 8 4]) < ovma - AL ISALL

Further, clearly [ 12* 1(4)1 ] is a self-adjoint operator. Again by (4)we
have
([ 0]) - L 0]
A* 0 A* 0 ],
= /Ay + (1A%,
= V2|All,.

Hence, (17) implies that

[Ally < 2ws (A) = [[[RA[ly — [[SA,] -



16 M. GUESBA

Therefore
[Ally + [[IRA[y — [[SA[] < 2w2 (A4).

O
Our final result can be stated as follows.

Theorem 2.17. Let A, B, X € Cy(H) be such that A and B are self-
adjoin. Then
| Xy Sw2 (X +A) +wr (X +1iB). (18)

Proof. We first prove that

S+ T* S T+S T-8
I t/i Hggm([; 0]>§W2( + )\v/%wz( ), (19)
for any T, S € Cy (H).

0 S
LetQ:[T O].Then
w2 o Ss+71|

s+ = [ 57 257 ][,
B 0o (s +1) 1
- S*+T 0 )
= |Q+Q3
= w5 (Q+ Q") (by (4))
< 43 (Q)

- (lrv))

=2 (3 1)

Moreover, by (7) we have

([ 5] z2mengern

Hence,
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Hence, we obtain the desired inequality (19). So, we conclude that

IS+ Ty w2 (T +5) +w2 (T = 5) (20)

Now, the desired inequality (18) follows from the inequality (20)

applied to the operators S = X + AJrTiB and T' = %T”B. This completes
the proof. ]
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