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1 Introduction

Throughout this paper,H denotes a non trivial separable complex Hilbert
space, with norm ∥·∥, induced by the inner product ⟨·, ·⟩. The algebra of
linear bounded operators acting on H will be denoted by B(H). Among
the most interesting scalar quantities associated with T ∈ B(H) is the
so called numerical radius, defined by

ω (T ) = sup {|⟨Tx, x⟩| : x ∈ H, ∥x∥ = 1 } .
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This quantity has received a considerable attention in the literature
due to its importance in operator theory and matrix analysis. However,
due to the difficulty of computing the exact value of ω(T ), a considerable
attention has been put towards finding upper and lower bounds of this
quantity, see [4, 9, 11, 12], and the references therein for example.

Since the operator norm ∥T∥ of an operator T is easier to compute
than ω(T ), the following inequality [11]

1

2
∥T∥ ≤ ω (T ) ≤ ∥T∥ , T ∈ B(H), (1)

had been useful in the literature because of the easier lower and upper
bounds of ω(·).

Attempts to sharpen (1) have been made by numerous authors, as
one can find in [1, 10] to mention a few.

Another formula for ω(T ) in terms of the operator norm ∥ · ∥ is the
following useful identity that has been used extensively in the literature

ω(T ) = sup
θ∈R

∥∥∥ℜ(
eiθT

)∥∥∥ . (2)

Motivated by this formula, the so called Hilbert-Schmidt numerical
radius has been recently defined in [2] as follows

ω2 (T ) = sup
θ∈R

∥∥∥ℜ(
eiθT

)∥∥∥
2
,

for any operator T ∈ C2(H); the Hilbert-Schmidt class. Recall that an
operator T ∈ B(H) is said to belong to the Hilbert–Schmidt class C2 (H)
if

∞∑
i,j=1

|⟨Tei, ej⟩|2 =
∞∑
i=1

∥Tei∥2 < ∞,

for any orthonormal basis {ei}∞i=1 of H.

Further, we recall the notation ∥T∥2 for T ∈ C2(H) as the Hilbert-
Schmidt norm of T , defined via

∥T∥2 =
∞∑
i=1

∥Tei∥2 = (tr (T ∗T ))
1
2 < ∞.
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Note that ∥T∥2 is unitarily invariant, in the sense that

∥UTV ∥2 = ∥T∥2 ,

for every T ∈ C2 (H) and unitary operators U, V ∈ B(H). We refer the
reader to [2, 13] for further details.

In addition, for every T ∈ C2 (H), the Hilbert-Schmidt numerical
radius ω2 (·) satisfies

1√
2
∥T∥2 ≤ ω2 (T ) ≤ ∥T∥2 , (3)

similar to (1).
Moreover, if T ∈ C2(H) is self-adjoint (or normal), then

ω2 (T ) = ∥T∥2 , (4)

and

ω2 (T ) =
1√
2
∥T∥2 , (5)

if and only if T 2 = 0. For proofs and more facts, we refer the reader to
[2, 3].

Two important properties of ω2 (·) are that it is weakly unitarily
invariant in the sense

ω2 (UTU∗) = ω2 (T ) , (6)

for every T,U ∈ B(H) such that U is unitary operator, and that it is
self-adjoint in the sense

ω2 (T
∗) = ω2 (T ) ,

for every T ∈ C2(H).
A considerable attention in the literature has been directed to the

study of numerical radius inequalities for 2× 2 block operators [5, 7].
Extending these block results, inequalities of ω2 for block operators

have been studied recently, as one can see in [2, 3, 6, 8].
For example, in [3] the following inequalities were shown:

max {ω2 (A+B) , ω2 (A−B)}√
2

≤ ω2

([
0 A
B 0

])
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≤ ω2 (A+B) + ω2 (A−B)√
2

, (7)

for A,B ∈ C2 (H).
Our aim in this paper is to give several Hilbert-Schmidt numerical

radius inequalities of 2× 2 block operators. These inequalities improve
and extend some earlier related inequalities. More precisely, we derive
new upper and lower bounds for the Hilbert-Schmidt numerical radius
inequalities of 2× 2 blocks, and some applications are obtained.

The following lemmas will be needed in our analysis.

Lemma 1.1. ([6]) Let A,X ∈ C2 (H). Then

ω2 (AXA∗) ≤ ∥A∥22 ω2 (X) .

Lemma 1.2. [3] Let A,B ∈ C2 (H). Then

(a) ω2

([
0 A

eiθB 0

])
= ω2

([
0 A
B 0

])
for every θ ∈ R.

(b) ω2

([
0 A
B 0

])
= ω2

([
0 B
A 0

])
.

(c) ω2

([
0 A
A 0

])
=

√
2ω2 (A).

(d) ω2

([
A 0
0 B

])
≤

√
ω2
2 (A) + ω2

2 (B). In particular, if A,B are

self-adjoint, then

ω2

([
A 0
0 B

])
=

√
ω2
2 (A) + ω2

2 (B).

Lemma 1.3 ([3], Theorem 1 (b)). Let A,B ∈ C2 (H). Then

ω2

([
A B
0 0

])
=

√
ω2
2 (A) +

1

2
∥B∥22.

Lemma 1.4. [3] If A,B ∈ C2 (H) are positive operators, then

ω2

([
0 A
B 0

])
=

∥A+B∥2√
2

.
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Lemma 1.5. Let A,B,C,D ∈ C2 (H). Then

(i) ω2

([
A 0
0 D

])
≤ ω2

([
A B
C D

])
.

(ii) ω2

([
0 B
C 0

])
≤ ω2

([
A B
C D

])
.

Proof. (i) Clearly we have[
A 0
0 D

]
=

1

2

[
A B
C D

]
+

1

2

[
A −B
−C D

]
. (8)

Let U =

[
−I 0
0 I

]
. Then, U is a unitary operator on H⊕H and

ω2

([
A B
C D

])
= ω2

(
U∗

[
A B
C D

]
U

)
= ω2

([
A −B
−C D

])
.

So, by (8) and the triangle inequality we get the desired result.

(ii) In view of Lemma 1.2 (a,b) and the assertion (i), we deduce that

ω2

([
A −B
−C D

])
= ω2

([
−A B
C −D

])
= ω2

([
A B
C D

])
.

Moreover, by using the fact that[
0 B
C 0

]
=

1

2

[
A B
C D

]
+

1

2

[
−A B
C −D

]
,

and the subadditivity property of ω2 (·), we get the required result.
□

Lemma 1.6. Let A ∈ C2 (H). Then

ω2

([
0 A
A 0

])
= ω2

([
−A 0
0 A

])
.
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Proof. Let U = 1√
2

[
I I
−I I

]
. Then, U is a unitary operator on

H⊕H and we have

ω2

([
0 A
A 0

])
= ω2

(
U∗

[
0 A
A 0

]
U

)
=

1

2
ω2

([
−2A 0
0 2A

])
= ω2

([
−A 0
0 A

])
.

□

Lemma 1.7. Let X ∈ C2 (H). Then

ω2

([
−X −X
X X

])
=

√
2 ∥X∥2 .

Proof. Notice that for X ∈ C2 (H), we have[
−X −X
X X

]2
=

[
0 0
0 0

]
.

Let U be the unitary operator as in proof of Lemma 1.6. and by (5),
we have

ω2

([
−X −X
X X

])
=

1√
2

∥∥∥∥[ −X −X
X X

]∥∥∥∥
2

=
1√
2

∥∥∥∥U∗
[
−X −X
X X

]
U

∥∥∥∥
2

=
1

2
√
2

∥∥∥∥( 0 −4X
0 0

)∥∥∥∥
2

=
√
2 ∥X∥2 .

□
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2 Main Results

In this section, we present our results.

The following is the extension of Lemma 1.1 to 2× 2 blocks.

Theorem 2.1. Let A,B,C,D ∈ C2 (H). Then

ω2

([
0 ACB∗

BDA∗ 0

])
≤ 2 ∥A∥2 ∥B∥2 ω2

([
0 C
D 0

])
.

Proof. Let T =

[
A 0
0 B

]
and S =

[
0 C
D 0

]
. Then, we have

TST ∗ =

[
0 ACB∗

BDA∗ 0

]
.

Noting that

∥T∥22 =
∥∥∥∥[ A 0

0 B

]∥∥∥∥2
2

= ∥A∥22 + ∥B∥22 ,

and using Lemma 1.1, we get

ω2

([
0 ACB∗

BDA∗ 0

])
= ω2 (TST

∗)

≤ ∥T∥22 ω2 (S)

≤
(
∥A∥22 + ∥B∥22

)
ω2

([
0 C
D 0

])
.

Thus,

ω2

([
0 ACB∗

BDA∗ 0

])
≤

(
∥A∥22 + ∥B∥22

)
ω2

([
0 C
D 0

])
. (9)

In that case A = 0, the result is clear.

If A ̸= 0, then by replacing A and B by tA and 1
tB, respectively in

(9), where t =
√

∥B∥2
∥A∥2

, we get the desired inequality □

Now, using (7), we have the following result.
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Corollary 2.2. Let A,B,C,D ∈ C2 (H). Then

ω2

([
0 ACB∗

BDA∗ 0

])
≤

√
2 ∥A∥2 ∥B∥2 (ω2 (C +D) + ω2 (C −D)) .

In [6], commutator inequalities were shown for operators of the form
AXB∗+BX∗A∗. In the the following, we present commutator inequality
for ω2 for operators of the form AXB∗ +BY A∗.

Theorem 2.3. Let A,B,X, Y ∈ C2 (H). Then

ω2 (AXB∗ ±BY A∗) ≤ 2 ∥A∥2 ∥B∥2 ω2

([
0 X
Y 0

])
. (10)

Proof. Let T =

[
A B
0 0

]
and S =

[
0 X
Y 0

]
. Then, we have

TST ∗ =

[
AXB∗ +BY A∗ 0

0 0

]
.

By Lemma 1.3, it can be observed that

ω2 (AXB∗ +BY A∗) = ω2

([
AXB∗ +BY A∗ 0

0 0

])
= ω2 (TST

∗)

≤ ∥T∥22 ω2 (S)

=
(
∥A∥22 + ∥B∥22

)
ω2

([
0 X
Y 0

])
.

Consequently,

ω2 (AXB∗ +BY A∗) ≤
(
∥A∥22 + ∥B∥22

)
ω2

([
0 X
Y 0

])
. (11)

For A = 0 the result is clear.
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If A ̸= 0 then, by replacing A and B by tA and 1
tB, respectively in

(11), where t =
√

∥B∥2
∥A∥2

, we get

ω2 (AXB∗ +BY A∗) ≤ 2 ∥A∥2 ∥B∥2 ω2

([
0 X
Y 0

])
. (12)

Replacing A by iA in the inequality (12), we have

ω2 (AXB∗ −BY A∗) ≤ 2 ∥A∥2 ∥B∥2 ω2

([
0 X
Y 0

])
. (13)

From (12) and (13) we get the required inequality. This completes
the proof. □

As an immediate consequence of Theorem 2.3, we have the follow-
ing inequality, stated without using blocks and obtained earlier in [6,
Remark 2.5].

Corollary 2.4. Let A,B,X ∈ C2 (H). Then,

ω2 (AXB∗ ±BXA∗) ≤ 2
√
2 ∥A∥2 ∥B∥2 ω2 (X) .

Proof. Letting X = Y in Theorem 2.3, we get

ω2 (AXB∗ ±BXA∗) ≤ 2 ∥A∥2 ∥B∥2 ω2

([
0 X
X 0

])
.

Using Lemma 1.2 (c), we have

ω2

([
0 X
X 0

])
=

√
2ω2 (X) .

Therefore, we obtain

ω2 (AXB∗ ±BXA∗) ≤ 2
√
2 ∥A∥2 ∥B∥2 ω2 (X) ,

as required. □
The following result is another consequence of Theorem 2.3, obtained

earlier in [6, Remark 2.4].
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Corollary 2.5. Let A,X ∈ C2 (H). Then

ω2 (AX ±XA∗) ≤ 2
√
2 ∥A∥2 ω2 (X) .

Proof. By putting X = Y and B = I in Theorem 10 we get the desired
result. □

Remark 2.6. Let A,B,X, Y ∈ C2 (H). Then, using (7), we have the
following inequality:

ω2 (AXB∗ ±BY A∗) ≤
√
2 ∥A∥2 ∥B∥2 (ω2 (X + Y ) + ω2 (X − Y )) .

In the case Y = X∗, we get

ω2 (AXB∗ ±BX∗A∗) ≤
√
2 ∥A∥2 ∥B∥2 (ω2 (X +X∗) + ω2 (X −X∗)) ,

which has recently proven in [6, Theorem 2.3].

In the following, we obtain an upper bound for a general 2× 2 block
operator. It should be noted that in [6, Theorem 2.6], it was shown that

ω2

([
0 A
B 0

])
≤ ∥A∥2 + ∥B∥2

2
.

The following result extends this inequality to any block

[
A B
C D

]
.

When A,D are self-adjoint, [6, Theorem 2.11] presented some upper and
lower bounds for the Hilbert-Schmidt numerical radius of such blocks.

Theorem 2.7. Let A,B,C,D ∈ C2 (H). Then

ω2

([
A B
C D

])
≤

√
ω2
2 (A) + ω2

2 (D) +
∥C∥2 + ∥B∥2√

2
.

Proof. Notice that

[
0 0
C 0

]2
=

[
0 0
0 0

]
and

[
0 B
0 0

]2
=

[
0 0
0 0

]
.

So, by (5) we have

ω2

([
0 0
C 0

])
=

1√
2

∥∥∥∥[ 0 0
C 0

]∥∥∥∥
2

=
1√
2
∥C∥2 .
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Similarly, we have

ω2

([
0 B
0 0

])
=

1√
2
∥B∥2 .

Now, by applying the properties of ω2 (·) with Lemma 1.2 (d), we
get

ω2

([
A B
C D

])
= ω2

([
A 0
0 D

]
+

[
0 B
0 0

]
+

[
0 0
C 0

])
≤ ω2

([
A 0
0 D

])
+ ω2

([
0 B
0 0

])
+ ω2

([
0 0
C 0

])
≤

√
ω2
2 (A) + ω2

2 (D) +
∥B∥2 + ∥C∥2√

2
.

This completes the proof. □
In [6], some upper bounds for the Hilbert-Schmidt numerical radius

of the block operator

[
A B
−A −B

]
were obtained. Now, we find some

upper and lower bounds for the Hilbert-Schmidt numerical radius of[
−A −B
B A

]
.

Theorem 2.8. Let A,B ∈ C2 (H). Then

√
2max {ω2 (A) , ω2 (B)} ≤ ω2

([
−A −B
B A

])
≤

√
2 (ω2 (A) + ω2 (B)) .

(14)

Proof. By Lemma 1.6 and Lemma 1.2, we have

ω2

([
−A −B
B A

])
≤ ω2

([
−A 0
0 A

])
+ ω2

([
0 −B
B 0

])
= ω2

([
0 A
A 0

])
+ ω2

([
0 B
B 0

])
=

√
2 (ω2 (A) + ω2 (B)) .
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On the other hand, by Lemma 1.5, it follows that

ω2

([
−A −B
B A

])
≥ max

{
ω2

([
−A 0
0 A

])
, ω2

([
0 −B
B 0

])}
=

√
2max {ω2 (A) , ω2 (B)} .

□
In the following we obtain an upper bound for the Hilbert-Schmidt

numerical radius of operator matrix

[
B −A
A B

]
.

Proposition 2.9. Let A,B ∈ C2 (H). Then

ω2

([
B −A
A B

])
≤

√
ω2
2 (A+ iB) + ω2

2 (A− iB).

Proof. Let T =

[
iB −A
A iB

]
and U = 1√

2

[
I iI
iI I

]
. Then, U is a

unitary operator on H⊕H. Using (6), we get

ω2 (T ) = ω2 (U
∗TU)

= ω2

([
−i (A−B) 0

0 i (A+B)

])
≤

√
ω2
2 (−i (A−B)) + ω2

2 (i (A+B)) (Lemma 1.2(d))

=
√

ω2
2 (A−B) + ω2

2 (A+B).

Hence

ω2

([
iB −A
A iB

])
≤

√
ω2
2 (A−B) + ω2

2 (A+B).

Replacing B by −iB, we obtain

ω2

([
B −A
A B

])
≤

√
ω2
2 (A+ iB) + ω2

2 (A− iB).

□
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Corollary 2.10. If A,B ∈ C2 (H) are self-adjoint operators. Then

ω2

([
B −A
A B

])
≤

√
2ω2 (A+ iB) .

Now, we are in a position to prove the following result.

Theorem 2.11. Let A,B,C,D ∈ C2 (H). Then

ω2

([
A B
C D

])
≤ω2 (C +B) + ω2 (D −A)√

2

+1
2

√
ω2
2 ((C −B) + i (A+D)) + ω2

2 ((C −B)− i (A+D)).

Proof. Let U = 1√
2

[
I −I
I I

]
be a unitary operator on H⊕H. Then,

using (6), Proposition 2.9 and Lemma 1.2 (c,d). We see that

ω2

([
A B
C D

])
= ω2

(
U∗

[
A B
C D

]
U

)
=

1

2
ω2

([
A+B + C +D −A+B − C +D
−A−B + C +D A−B − C +D

])
=

1

2
ω2

([
A+D B − C
C −B A+D

]
+

[
B + C D −A
D −A −B − C

])
=

1

2
ω2

([
A+D B − C
C −B A+D

]
+

[
B + C 0

0 −B − C

]
+

[
0 D −A

D −A 0

])
≤ 1

2
ω2

([
A+D B − C
C −B A+D

])
+

1

2
ω2

([
B + C 0

0 − (B + C)

])
+

1

2
ω2

([
0 D −A

D −A 0

])
≤ 1

2

√
ω2
2 ((C −B) + i (A+D)) + ω2

2 ((C −B)− i (A+D))

+

√
2

2
(ω2 (B + C) + ω2 (D −A)) .
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□
As a consequence of Theorem 2.11, we have the following results.

Corollary 2.12. Let A,B,C ∈ C2 (H). Then

ω2

([
A B
C −A

])
≤ 1√

2
(ω2 (C −B) + ω2 (C +B) + 2ω2 (A)) .

Corollary 2.13. Let A,B ∈ C2 (H). Then

ω2

([
A B
B A

])
≤ ω2 (A) +

√
2ω2 (B) .

Corollary 2.14. Let A,B ∈ C2 (H). Then

ω2

([
0 A
B 0

])
≤ ω2 (A+B) + ω2 (A−B)√

2
.

In the next theorem we obtain a new upper bound for a 2 × 2 off-
diagonal block operators. For the usual numerical radius, related result
have been given in [7].

Theorem 2.15. Let A,B ∈ C2 (H). Then

ω2

([
0 A
B 0

])
≤

√
2 (ω2 (A) + ω2 (B))− |ω2 (A+B)− ω2 (A−B)|√

2
.

(15)

Proof. Recall that for any two real numbers α and β, we have

α+ β

2
= max {α, β} − |α− β|

2
. (16)

Using the identities (16) and (7), we have

ω2

([
0 A
B 0

])
≤ ω2 (A+B) + ω2 (A−B)√

2

=
√
2max {ω2 (A+B) , ω2 (A−B)}

− |ω2 (A+B)− ω2 (A−B)|√
2

≤
√
2 (ω2 (A) + ω2 (B))− |ω2 (A+B)− ω2 (A−B)|√

2
.
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Thus,

ω2

([
0 A
B 0

])
≤

√
2 (ω2 (A) + ω2 (B))− |ω2 (A+B)− ω2 (A−B)|√

2
,

as required. □
Applying Theorem 2.15 we have the following result, which relates

the Hilbert-Schmidt numerical radius with the Hilbert-Schmidt norm of
the real and imaginary parts of the operator.

Corollary 2.16. Let A ∈ C2 (H) with A = ℜA+ i ℑA. Then,

∥A∥2 + |∥ℜA∥2 − ∥ℑA∥2| ≤ 2ω2 (A) .

Proof. Putting B = A∗ in the inquality (15), we have

ω2

([
0 A
A∗ 0

])
≤

√
2 (ω2 (A) + ω2 (A

∗))

− |ω2 (A+A∗)− ω2 (A−A∗)|√
2

= 2
√
2ω2 (A)− |ω2 (2ℜA)− ω2 (2iℑA)|√

2
.

Since ℜA and ℑA are self-adjoint operators. So, by (4) we get

ω2

([
0 A
A∗ 0

])
≤ 2

√
2ω2 (A)−

2 |∥ℜA∥2 − ∥ℑA∥2|√
2

. (17)

Further, clearly

[
0 A
A∗ 0

]
is a self-adjoint operator. Again by (4)we

have

ω2

([
0 A
A∗ 0

])
=

∥∥∥∥[ 0 A
A∗ 0

]∥∥∥∥
2

=
√

∥A∥2 + ∥A∗∥2
=

√
2 ∥A∥2 .

Hence, (17) implies that

∥A∥2 ≤ 2ω2 (A)− |∥ℜA∥2 − ∥ℑA∥2| .
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Therefore

∥A∥2 + |∥ℜA∥2 − ∥ℑA∥2| ≤ 2ω2 (A) .

□
Our final result can be stated as follows.

Theorem 2.17. Let A,B,X ∈ C2 (H) be such that A and B are self-
adjoin. Then

∥X∥2 ≤ ω2 (X +A) + ω2 (X + iB) . (18)

Proof. We first prove that

∥S + T ∗∥2√
2

≤ ω2

([
0 S
T 0

])
≤ ω2 (T + S) + ω2 (T − S)√

2
, (19)

for any T, S ∈ C2 (H).

Let Q =

[
0 S
T 0

]
. Then

2 ∥S + T ∗∥22 =

∥∥∥∥[ 0 S + T ∗

S∗ + T 0

]∥∥∥∥2
2

=

∥∥∥∥[ 0 (S∗ + T )∗

S∗ + T 0

]∥∥∥∥2
2

= ∥Q+Q∗∥22
= ω2

2 (Q+Q∗) (by (4))

≤ 4ω2
2 (Q)

= 4ω2
2

([
0 S
T 0

])
.

Hence,
∥S + T ∗∥2√

2
≤ ω2

([
0 S
T 0

])
.

Moreover, by (7) we have

ω2

([
0 S
T 0

])
≤ ω2 (T + S) + ω2 (T − S)√

2
.
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Hence, we obtain the desired inequality (19). So, we conclude that

∥S + T ∗∥2 ≤ ω2 (T + S) + ω2 (T − S) (20)

Now, the desired inequality (18) follows from the inequality (20)
applied to the operators S = X+ A+iB

2 and T = −A+iB
2 . This completes

the proof. □
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