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Abstract. In this paper, we describe a method for the solution of
linear and nonlinear ordinary differential equations ODE’s of arbitrary
order with initial or boundary conditions. In this direction we first inves-
tigate some properties of orthogonal rational Legendre functions, and
then we give the least square method based on these basis functions for
the solution of such equations. In this method the solution of an ODE is
reduced to a minimization problem, which is then numerically solved via
Maple 16. Finally results of this method which are obtained in the form
of continuous functions, will be compared with the numerical results in
other references.
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1. Introduction

Ordinary differential equations appear in modelling various physical phe-
nomena [10], and, depending on the accompanying side conditions, they
are classified under the two main categories of initial and boundary value
problems. Moreover, obtaining the analytic solution of these problems
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are difficult or in general impossible, and therefore numerical methods
must be utilized. Some of these methods are given in [2,8,16].
Least square methods, which are useful in dealing with ODE problems,
have received lots of attention in recent years [1,9,14]. Loghmani and
Alavizadeh used the least square method based on B-splines for solution
of boundary value problems [18].
In the present paper, we have used the least squares method based on
Legendre orthogonal rational functions for solution of higher-order linear
ordinary differential equations.
Orthogonal rational functions which are generalizations of orthogonal
polynomials were formally introduced by Bultheel [7], and moreover he
investigated the properties of these functions in different regions. Legen-
dre rational functions are a class of orthogonal rational functions which
generalize Legendre polynomials.
Boyd [4-6] and Christov [11] used some spectral methods for the solution
of certain linear problems on infinite intervals by employing systems of
orthogonal rational functions. Recently, Guo and others have presented
different approximations for solution of differential equations [12,27,30].
The method which is proposed in the present paper is capable of solving
ODE’s with arbitrary precision, which can be achieved more easily than
the previous methods.
This paper is organized as follows: in Section 2, we introduce the rational
Legendre functions and also describe some useful properties of these
basis functions. In Section 3, we describe the Legendre rational functions
approximation. In Section 4, we express a theorem about convergence
the series of Legendre rational functions. In Section 5, we propose a least
square method based on the rational Legendre functions to solve ODE’s
with initial and boundary conditions. In Section 6, the proposed method
is applied to several numerical examples.
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2. Rational Legendre Functions

Let Ln(x) be the Legendre polynomial of degree n. We recall that Ln(x)
is the eigenfunction of the singular Sturm-Liouville problem

d

dx

(
(1 − x2)

d

dx
Ln(x)

)
+ n(n + 1)Ln(x) = 0, n = 0, 1, 2, ... .

The Legendre polynomials are orthogonal with respect to the L2 inner
product on the interval [-1,1]:∫ 1

−1
Lm(x)Ln(x)dx =

2
2n + 1

δmn,

and satisfy Ln(1) = 1, where δmn denotes the Kronecker delta. These
polynomials can be determined with the recurrence relation [3]:

L0(x) = 1, L1(x) = x,

Ln+1(x) =
2n + 1
n + 1

xLn(x) − n

n + 1
Ln−1(x), n � 1 .

The rational Legendre function of degree n is defined by

Rn(x) = Ln

(
x − L

x + L

)
, (1)

where the constant parameter L sets the length scale of the mapping.
Boyd [4] offered guidelines for optimizing the map parameter L for ratio-
nal Chebyshev functions, which is useful for rational Legendre functions,
too.
The Rn(x) is the nth eigenfunction of the singular Sturm-Liouville prob-
lem [13]

(x + L)2

2L

d

dx

(
x

d

dx
Rn(x)

)
+ n(n + 1)Rn(x) = 0, x ∈ (0,∞), (2)

which satisfies the following recurrence relation for x ∈ (0,∞):

R0(x) = 1, R1(x) =
x − L

x + L
,

Rn+1(x) =
(

2n + 1
n + 1

) (
x − L

x + L

)
Rn(x) −

(
n

n + 1

)
Rn−1(x), n � 1,
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where u ∈ L2
ω(Λ) and cj ’s are the rational Legendre-Fourier coefficients

of u. Then PNu is the orthogonal projection of u on �N with respect to
inner product (3). Hence orthogonality of rational Legendre functions
leads to

(PNu − u, φ)ω = 0, ∀φ ∈ �N .

To obtain the order of the error ‖PNu − u‖ω, we consider the space

Hr
ω,T (Λ) = {ν| ν is a measurable and ‖ν‖r,ω,T < ∞},

where for non-negative integer r, the norm ‖ν‖r,ω,T is defined by [3]:

‖ν‖r,ω,T =

⎛
⎝ 2r∑

j=0

∥∥∥∥(x + 1)r+j dj

dxj
ν

∥∥∥∥
2

ω

⎞
⎠

1
2

and T is the Sturm-Liouville operator in (2),i.e.,

[Tν] (x) = − 1
ω(x)

d

dx

(
x

d

dx
ν(x)

)
.

By induction, we have

[T rν] (x) =
2r∑

j=0

(x + 1)r+jpj(x)
dj

dxj
ν(x)

where pj(x)’s are rational functions which are bounded uniformly on the
interval Λ. Therefore, T r is continuous mapping from Hr

ω,T (Λ) to L2
ω(Λ).

Theorem 4.1. For any u ∈ Hr
ω,T (Λ) and any r � 0, there is a positive

constant C such that

‖PNu − u‖ω � CN−r‖u‖r,ω,T

Proof. See [3]. �
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5. Explanation of the Method

Suppose U is an open subset of R
m+2 and g : U → R is a continuous

function, and consider the differential equation

g(x, y(x), y′(x), ..., y(m)(x)) = 0, a < x < b, (5)

with the general separated boundary conditions

m−1∑
j=0

αi,jy
(j)(ai) = Ai , 0 � i � m − 1 . (6)

We convert problem (5) to an optimal control problem

min
y∈C[a,b]

∫ b

a
[g(x, y(x), y′(x), ..., y(m)(x))]2ω(x)dx

under the separated boundary conditions

m−1∑
j=0

αi,jy
(j)(ai) = Ai , 0 � i � m − 1,

The actual solution of (5)-(6) is a function v such that{ ‖g(x, v(x), v′(x), ..., v(m)(x))‖2
ω = 0∑m−1

j=0 αi,jv
(j)(ai) = Ai , 0 � i � m − 1 .

For approximating the solution of (5) and (6) by the elements of �N we
consider

vk(x) =
k∑

i=0

ciRi(x), k ∈ N, (7)

where the coefficients {ci} are determined from the least square problem

min
ci∈R

‖g(x, vk(x), v′k(x), . . . , v(m)
k (x))‖2

ω,

subject to constraints:

m−1∑
j=0

αi,jv
(j)
k (ai) = Ai , 0 � i � m − 1, (8)
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Note that the above minimization problem is equivalent to the following
system:{

∂
∂ci

||g(x, vk(x), v′k(x), . . . , v(m)
k (x))‖2

ω = 0, (i = 0, 1, . . . , n − 1),∑m−1
j=0 αi,jv

(j)
k (ai) = Ai , 0 � i � m − 1 .

In [18], the convergence of this method with B-spline functions has been
investigated for ODE’s.

6. Numerical Results

In this section, seven linear and nonlinear test problems are solved by
using the above method. The rational Legendre approximate solution of
the system of equations (5) and (6) is obtained by using a linear combi-
nation (7), and the resulting minimization problem is solved by Maple
16 with 80 digits precision and with Optimization package. Absolute
errors and the least square errors(LSE),i.e.,

LSE(y) =
∫ b

a
[y(x) − y∗(x)]2ω(x)dx

where y(x) is the exact solution and y∗(x) is the approximate solution,
for these test problems [1-7] are calculated and depicted in tables and
figures.

6.1 Initial value problems

Test problem 1. ([25]) Consider the linear initial value problem

(x + 1)y′(x) + y(x) = 1, x ∈ [0, 1],

y(0) = 0,

with the exact solution
y(x) =

x

x + 1
.

By using the method we have obtained the following results:
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