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Abstract. In this paper, we describe a method for the solution of
linear and nonlinear ordinary differential equations ODE’s of arbitrary
order with initial or boundary conditions. In this direction we first inves-
tigate some properties of orthogonal rational Legendre functions, and
then we give the least square method based on these basis functions for
the solution of such equations. In this method the solution of an ODE is
reduced to a minimization problem, which is then numerically solved via
Maple 16. Finally results of this method which are obtained in the form
of continuous functions, will be compared with the numerical results in
other references.
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1. Introduction

Ordinary differential equations appear in modelling various physical phe-
nomena [10], and, depending on the accompanying side conditions, they
are classified under the two main categories of initial and boundary value
problems. Moreover, obtaining the analytic solution of these problems
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are difficult or in general impossible, and therefore numerical methods
must be utilized. Some of these methods are given in [2,8,16].

Least square methods, which are useful in dealing with ODE problems,
have received lots of attention in recent years [1,9,14]. Loghmani and
Alavizadeh used the least square method based on B-splines for solution
of boundary value problems [18].

In the present paper, we have used the least squares method based on
Legendre orthogonal rational functions for solution of higher-order linear
ordinary differential equations.

Orthogonal rational functions which are generalizations of orthogonal
polynomials were formally introduced by Bultheel [7], and moreover he
investigated the properties of these functions in different regions. Legen-
dre rational functions are a class of orthogonal rational functions which
generalize Legendre polynomials.

Boyd [4-6] and Christov [11] used some spectral methods for the solution
of certain linear problems on infinite intervals by employing systems of
orthogonal rational functions. Recently, Guo and others have presented
different approximations for solution of differential equations [12,27,30].
The method which is proposed in the present paper is capable of solving
ODE’s with arbitrary precision, which can be achieved more easily than
the previous methods.

This paper is organized as follows: in Section 2, we introduce the rational
Legendre functions and also describe some useful properties of these
basis functions. In Section 3, we describe the Legendre rational functions
approximation. In Section 4, we express a theorem about convergence
the series of Legendre rational functions. In Section 5, we propose a least
square method based on the rational Legendre functions to solve ODE’s
with initial and boundary conditions. In Section 6, the proposed method
is applied to several numerical examples.
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2. Rational Legendre Functions

Let L, (x) be the Legendre polynomial of degree n. We recall that Ly, (x)
is the eigenfunction of the singular Sturm-Liouville problem

% ((1 - wz);;Ln(w)> +n(n+1)Ly(z) =0, n=0,1,2,....

The Legendre polynomials are orthogonal with respect to the Lo inner
product on the interval [-1,1]:

1
2
/1 Lm(a}')Ln(ﬂf)da}' = mdn—”“

and satisfy L, (1) = 1, where 0,,, denotes the Kronecker delta. These
polynomials can be determined with the recurrence relation [3]:

Lo(x) =1, Li(z) =z,

2n+1 n
Lnnale) = 2 olnle) =0

The rational Legendre function of degree n is defined by

Ru(z) = Ln (i;ﬁ) , (1)

Ly_i(z),n>1.

where the constant parameter L sets the length scale of the mapping.
Boyd [4] offered guidelines for optimizing the map parameter L for ratio-
nal Chebyshev functions, which is useful for rational Legendre functions,
too.
The R, (x) is the nth eigenfunction of the singular Sturm-Liouville prob-
lem [13]

(x+ L)% d ( d

xden(x)) +nn+1)R,(z) =0, =€ (0,00), (2)

2L dx
which satisfies the following recurrence relation for z € (0, 00):

x— L
x+ L’

Ruale) = (250) (257) Rt = (57 ) o), m> 1,

Ro(z) = 1, Ri(z) =
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3. Legendre Rational Functions Approximations
Let A = {z| 0 < z < o0}, and for 1 < P < oo consider

LE = {v: A = R| v is measurable and ||v||;» < oo},

Wllee = ( / '|u<x)1'°w(w>dm) "

and (u,v), and |||, denote the inner product and the norm of the
space L2(A), i.e.:

where

(25 27) 2/0 u(z)v(z)w(z)dz, ||v|o = (u,v)é. : (3)

Note that the function w(z) = (_r%{i—)g is a non-negative, integrable, real-
valued function on A, The orthogonality of rational Legendre functions
leads to

(Rm- Rn)w = -/.0 Rm.(CL)Rn.(-L)W(i)dx = ma‘m?u

where 6,,,, denotes the Kronecker delta. Thus for any v € L2 (A) we have

+0o0

v(-_r) = Z CjRj(.’L‘)-_ (4)

j=0

where

Cq = - —
7RI 2

/ v(z)Rj(z)w(x)dz.
A

4. Orthogonal Projection

Let N be any positive integer, and Ry = span{Ro(z), Ry(z), ..., Rn ()},
where R;’s are defined in (1). We define the orthogonal projection Py :
L2(A) — Ry by
N
[Pnu] (z) = Z ciRj(x),

J=0
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where u € L2(A) and ¢;’s are the rational Legendre-Fourier coefficients
of u. Then Pyu is the orthogonal projection of u on Ry with respect to
inner product (3). Hence orthogonality of rational Legendre functions
leads to

(Pnu —u,¢), =0, Vo e Ry.

To obtain the order of the error ||Pyu — ul|,, we consider the space
w1(A) = {v| vis a measurable and ||v||,. T < oo},

where for non-negative integer r, the norm ||v||,, 7 is defined by [3]:

N|=

2r dj 2
_ r+j
e = | X e+ 245

and T is the Sturm-Liouville operator in (2),i.e.,

T @) =~ (xdxl/(x)> .

By induction, we have
2r

T (@) = 3 (@ + 1)y ()2 ()

4 dx)
Jj=0

where p;(x)’s are rational functions which are bounded uniformly on the
interval A. Therefore, T" is continuous mapping from H[, 1.(A) to L2(A).

Theorem 4.1. For any u € H], +(A) and any r > 0, there is a positive
constant C such that

|Pyu o < ON"lullrr

Proof. See [3]. O
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5. Explanation of the Method

Suppose U is an open subset of R™*2? and ¢ : U — R is a continuous
function, and consider the differential equation

9(x,y(x),y (@), ., y"™ () =0, a<z <D, (5)
with the general separated boundary conditions
m—1
a,jy =4, ,0<i<m-1. (6)
7=0

We convert problem (5) to an optimal control problem
b
win [ (962, (0). 9/ (@), ™ (2)) Par(o)
yeClab] J,
under the separated boundary conditions

-1

3

I
o

J
The actual solution of (5)-(6) is a function v such that

lg(z, v(x),v'(2),...,v™ (2))[|2 = 0
Zmola”vm(al) =4, ,0<i<m~—1.

For approximating the solution of (5) and (6) by the elements of Ry we

consider
k

vk(az) = ZciRi(.ﬁ?), keN, (7)

i=0
where the coefficients {¢;} are determined from the least square problem

min [lg(a, on(@), vh(2), .. o™ (@))]12,

cieR

subject to constraints:

)_l

m—
ol (@) = A, 0<i<m—1, (8)
J=0
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Note that the above minimization problem is equivalent to the following
system:

L llg(@, vr(@), v (@), . o™ @)IZ =0, (i=0,1,...,n—1),
Z;?";Bl ai,jv,(j)(ai) =A;, ,0<i<m-1.

In [18], the convergence of this method with B-spline functions has been
investigated for ODE’s.

6. Numerical Results

In this section, seven linear and nonlinear test problems are solved by
using the above method. The rational Legendre approximate solution of
the system of equations (5) and (6) is obtained by using a linear combi-
nation (7), and the resulting minimization problem is solved by Maple
16 with 80 digits precision and with Optimization package. Absolute
errors and the least square errors(LSE),i.e.,

b
LSEW) = [ lyla) - " (@) w(a)ds
a
where y(z) is the exact solution and y*(z) is the approximate solution,

for these test problems [1-7] are calculated and depicted in tables and
figures.

6.1 Initial value problems

Test problem 1. ([25]) Consider the linear initial value problem

(x+ 1y (z) +y(x)=1, =z€]l0,1],

with the exact solution

y(x):x+1 '

By using the method we have obtained the following results:
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Figure 1. Approximate and exact solutions for TP1 with N=5
LSE=0.0

The approximate solution which is obtained by using this method with
N=5 is:

-1 =z

z+1 =z+1

Test problem 2. ([25]) Consider the linear initial value problem

y*(z) = 0.5Ry(z) + 0.5R;(z) = 0.5+ 0.5

(z+1)y"(z) +y"(z) - ﬁ y(z) +zy(z) =zn(z+1), =ze€][0,1],

y(0)=0, ¢/(0)=1, y"(0)=—1,
with the exact solution
y(x) = In(z + 1).

By using the presented method we obtaine the following results:
The approximate solution which is obtained by using this method with
N=5 is:
y*(z) = 1.454Ry(x) + 1.671 R (z) + 0.3422Ry(x) + 0.1518 R3(x)
+0.0315R4(x) + 0.0057 R5(x).

In Tables 1 and 2 the obtained values using the present method together
with the results obtained from rational Chebyshev Collocation method
and also the exact values of y(x) are tabulated.
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Table 1: Approximates and exact values for test problem 2 for N=6

x | Exact solution | RC method Abs Error | Present method Abs Error

0.0 | 0.0000000000 | 0.00000000  0.00000 0.0000000000 0.00000
0.1 | 0.0953101798 | 0.09518697  1.23E-4 0.0953101093 7.05E-8
0.2 | 0.1823215567 | 0.18167362  6.48E-4 0.1823214070 1.50E-7
0.3 | 0.2623642644 | 0.26081935  1.54E-3 0.2623642480 1.64E-8
0.4 | 03364722366 | 0.33372802  2.74E-3 0.3364724663 2.30E-7
0.5 | 04054651081 | 0.40125453  4.21E-3 0.4054654768 3.69E-7
0.6 | 04700036292 | 0.46407087  5.93E-3 0.4700039187 2.90E-7
0.7 | 0.5306282510 | 0.52271881  T.91E-3 0.5306283003 4.93E-8
0.8 | 0.5877866649 | 0.57764525  1.01E-4 0.5877864739 LOE-T
0.9 | 0.6418538861 | 0.62922562  1.26E-2 0.6418536027 2.83E-7
1.0 | 0.6931471805 | 0.67777984  1.54E-2 0.6931469709 2.10E-7

Table 2: Approximates and exact values for test problem 2 for N=7

x | Exact solution | RC method Abs Error | Present method  Abs Error

0.0 | 0.0000000000 | 0.00000000  0.00000 0.0000000000 0.00000
0.1 | 0.0953101798 | 0.09518485 1.25E-4 0.0953101760 J.71E-9
0.2 | 0.1823215567 | 0.18173604  5.86E-4 0.1823215559 8.52E-10
0.3 | 0.2623642644 | 0.26105289 1.31E-3 0.2623642735 9.05E-9
0.4 | 0.3364722366 | 0.33419588  2.28E-3 0.3364722451 8.53E-9
0.5 | 0.4054651081 | 0.40197707  3.49E-3 0.4054651043 3.76E-9
0.6 | 0.4700036292 | 0.46505273  4.95E-3 0.4700036141 1.51E-8
0.7 | 0.5306282510 | 0.52396995  6.60E-3 0.5306282357 1.54E-8
0.8 | 0.5877866649 | 0.57919041  8.60E-3 (.587T866586 6.26E-9
0.9 | 0.6418538861 | 0.63110549 1L.OTE-2 0.6418538880 1.92E-9
1.0 | 0.6931471805 | 0.68004804 1.31E-2 0.6931471827 2.15E-9

=0t

2x 0t
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o n2 04 L] Lk 1
x

& qj imate solution exuct solution 0

L 02 04 06 [t |
x

(a) Approximate and exact solutions

LSE=4.278 E-12 (b) Absolute error
Figure 2. Errors for test problem 3 with N=6
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Test problem 3. ([24,25]) Consider the linear initial value problem
y'(x) + 229/ () =0, =z €]0,1],

y(0) =0 ,y/(0) = —%

with the exact solution

T .
gla)= ﬁfu exp(—t?)dt.

By using the method we have obtained the following results:

The approximate solution which is obtained by using this method with
N=5 is:

y*(z) = 0.3713Rg(z) — 0.2075R; (z) — 1.113Ry(z) — .7316R3(x)

—.2281Ry(z) — 0.0305R5(z),

In Table 3 the resulting values using the present method together with
the Rational Chebyshev Collocation method and also the exact values
of y(z) are tabulated.
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(a) Approximate and exact solutions

LSE—3.990 E-8 (b) Absolute error

Figure 3. Errors for test problem 3 with N=5
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Table 3: Approximates and exact values for test problem 3 for N=5

x | Exact solution | RC method Abs Error | Present method Abs Error

0.0 | 0.0000000000 | 0.0000000 0.00000 0.0000000000 0.00000
0.1 | 0.1124629160 | 0.1124386 2.43E-5 0.1124622250 6.91E-7
0.2 | 0.2227025892 | 0.2228901 1.88E-4 0.2227044042 1.82E-6
0.3 | 0.3286267594 | 0.3285654 6.14E-5 0.3286237932 2.97TE-6
0.4 | 0.4283923550 | 0.4283688 2.36E-5 0.4283900363 2.32E-6
0.5 | 0.5204998778 | 0.5204235 7.64E-5 0.5205059668 6.09E-6
0.6 | 0.6038560908 | 0.6038157 4.04E-5 0.6038630643 6.97E-6
0.7 | 0.6778011938 | 0.6776712 1.30E-4 0.6777968757 4.32E-6
0.8 | 0.7421009647 | 0.7422375 1.37E-4 0.7420872860 1.37E-5
0.9 | 0.7969082124 | 0.7968211 8.71E-5 0.7969014534 6.76E-6
1.0 | 0.8427007929 — 0.8427053088 4.52E-6

Test problem 4. ([23]) Consider a special case of Lane-Emden equation
which is named after astrophysicists Jonathan Homer Lane and Robert
Emden [15] :

9(z?* + 32° + 6)
x(z + 3)3

y'(@) + 2y (@) + (@) = . zel)

with the exact solution

3x
r+3°

y(x) =

By using the method we have obtained the following results:

The approximate solution which is obtained by using this method with
N=10 is:

y*(x) = 1.0962Ro(2)+1.3887R; ()+3.7001x 10! Ry()+9.7651 x 10~ R3(x)
+2.5226x 1072 Ry () +6.2451 x 1073 R5 () +1.4327x 10> Rg () +2.8965x 10~ Ry ()

+4.7853 x 107° Rg(x) + 5.6817 x 1075 Ry(z) + 3.6021 x 10~7 Ryo(x)
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6.2 Boundary value problems

Test problem 5. ([25]) Consider the linear boundary value problem

M) — L% N
1
y(0) =1 ,y(1) = 5
with the exact solution i
y(z) = T

By using the method we have obtained the following results:
The approximate solution which is obtained by using this method with
N=5 is:

y*(z) = 0.5Rp(x) — 0.5R;(z) — 1.023 x 1078 Ry(z) — 2.814 x 10~ " Ry ()
—2.815 x 10" Ry(z) — 9.659 x 10~ R5(z).

LSE= 143389456386 1620442 1 4¢-19

o7
-0
06 2% 10
03
[EES [
04
03
1ox 10t
02
0.1 5, %1011
0
0 02 04 06 08 l
v
- : : o
= _aps solution —— exact solution] 0 02 04 0.6 0.5 I

(a) Approximate and exact solutions

LSE=1.434E-20 (b) Absolute error

Figure 4. Errors for test problem 4 with N=10

since the coefficients of Ry(x) ..., R5(x) are negligible, by ignoring them
we obtain the exact solution, i.e.:

LT P, ety S = L, —ALE z—1 L 1
y*(xz) = 0.5Rp(x) — 0.5R(xz) =0.5-0.5 Tl %1
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Figure 5. Approximate and exact solutions for TP5 with N=5
LSE=6.773 E-161

Test problem 6. ([19,20,21,22,29]) Consider the following nonlinear
boundary value problem of twelfth-order

y1 (@) = 2¢ (@) +9"(x), =z €[0,1]

y(0) = ¥ (0) = y(0) = y©(0) = y®(0) = y19(0) = 1
y(1) =y"(1) =yW (1) =4©1) =y® (1) = y10(1) = ¢!

with the exact solution

T

y(z) = e

By using the method we have obtained the following results:
The approximate solution which is obtained by using this method with
N=10 is:

y* (’E) = 0.5360R(} (.L‘) —U.584UR1 (3’!)—[). 1024RQ(L)+0057{}R5(T)+00657R4 (.’I:}

+0.0387Rs () + 0.0167Rg(z) + 0.0054 Rz (x) + 0.0012Rg ()
+0.0002Rg(x) + 0.0000 R ()
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] . solution cxmsululioﬂ Ou 0.2 04 (X3 (53

(a) Approximate and exact solutions

LSE—2 639F.7 (b) Absolute error

Figure 6. Errors for test problem 6 with N=10

Test problem 7. ([17,26,28]) Consider the following an eighth-order
boundary value problem:

¥ (@) + g(a)y(z) = ¥(z), € [a,b]
y(a) = Ao,y"(a) = A2,yM(a) = A4,y (a) = 46
y(b) = Bo,y"(b) = B2,yV (b) = B4,y (b) = By
where y(x) and ¢(z) and 1(x) are continuous functions defined in the
interval [a,b]. A; and B; (i =0,2,4,6), are finite real constants.
Exact solutions with various constants and functions for test problem 7

are listed in Table 4.

Table 4: Variables for differential equations and boundary conditions
in test problem 7

Example 7.1 7.2 7.3 T4
[a,b] [0.1] [1.1] 1] [-1,1]
@x) x -z -1 -1
x) (4B 4 15r 4 2N ) (8BS 4 1Te+ 2T — £M)e®  —B[2rcos(z) 4 Taln(z)]  S[2zain(z) - Toes (=)
('lu 0 ] 0 0
Ay 0 % ~dcou{l) = 2aln (1) ~4sin (1) + 2con (1)
114 -8 —% Heos (1) 4 12sin (1} Bain (1) — 12eos (1)
Ag -24 —-% —12cou (1) = 30win (1) —12sin (1) + 30 cos (1)
By 0 0 0 0
Ba —4e —be teom (1) + 2ain (1) —dsin (1) + Zeoa{l)
By —16Ge —20e ~Hcon (1) = 12sin (1) Suin (1) = 12con (1)
B —36e —42e 12 com (1) + 30win (1) —t2sln (1) 4 30 eos (1)
Solution  x(1 — x)e* (1 =a?)e” (x2 = 1)sin(x) (2% = 1) cos (z)
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By using the method we have obtained the following results:
The approximate solution of example 7.1 which is obtained by using this
method with N=20 is:

y*(z) = —2.7957 x 1010 Ry (2) — 7.6249 x 10'° Ry (x) — 1.0500 x 10! Ry ()
—1.1029 x 10" R3(z) — 9.6510 x 10'°Ry(x) — 7.2702 x 10'°R5(z)
—4.7855 x 10! Rg(z) — 2.7714 x 10'°R;(z) — 1.4156 x 10'°Rg(x)
—6.3751 x 10°Rg(x) — 2.5241 x 10°Ryg(x) — 8.7432 x 108Ry;(z)
—2.6303 x 108Ry5(z) — 6.8038 x 107 Ry3(x) — 1.4926 x 107 Ry4(x)
—2.7250 x 10°Ry5(z) — 4.0316 x 10° Ryg(z) — 4.6470 x 10 Ry7(x)
—3.9169 x 10°R;s(z) — 2.1485 x 10?Ry9(x) — 5.7581 Rag(x)

The approximate solution of example 7.2 which is obtained by using this
method with N=5 is:

y*(z) = —4.5236 x 10" R () — 1.0219 x 10" Ry (z) — 8.6467 x 10" Ry()

—1.5982 x 101 R3(x) + 5.6238 x 101 Ry(x) + 8.8260 x 10 R (x)
+7.5425 x 10" Rg(z) + 4.0897 x 10 R7(z) + 1.0012 x 10 Rg(x)
—5.9698 x 10" Rg(z) — 9.2210 x 10" Ryg(z) — 6.6618 x 10'3 Ry, (x)
—3.4137 x 103 Rya(x) — 1.3491 x 103 Ry3(z) — 4.2117 x 10"2Ry4(x)
—1.0390 x 10" Ry5(z) — 1.9952 x 101 Ryg(x) — 2.8881 x 10'°Ry7(z)
—2.9733 x 10°Rig(z) — 1.9446 x 108 Ryg(z) — 6.0828 x 10°Ryg()

The approximate solution of example 7.3 which is obtained by using this
method with N=20 is:

y*(x) = —4.5959 x 101 Ry(x) — 1.2522 x 102 Ry () — 1.7208 x 1012 Ry ()

—1.8013 x 10" R3(z) — 1.5680 x 10" Ry(z) — 1.1724 x 10" R5(x)
—7.638410" Rg(z) — 4.3638 x 101 Ry (z) — 2.1902 x 10 Rg()
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—9.6469 x 10 Rg(z) — 3.7166 x 10'°Ryg(x) — 1.2456 x 10'9Ryy ()

—3.1903 x 107 Ry5(z) — 4.4172 x 106 Ryg(z) — 4.7306 x 10° Ry7(x)

—3.6037 x 10°Ry3(z) — 8.9063 x 108 Ry3(x) — 1.8542 x 108 Ry4(x)
—3.6786 x 10°Rig(z) — 1.8484 x 103 Ryg(z) — 4.5062 x 10 Ryg(x)

(
(
(
(

The approximate solution of example 7.4 which is obtained by using this
method with N=20 is:

y*(x) = 1.3059 x 108 Ry(z) + 3.5404 x 103R; (z) + 4.8158 x 10°Ry(x)

+4.9640 x 10°R3(x) + 4.2320 x 10%Ry(z) + 3.0817 x 10®Rs(x)
+1.9443 x 10°Rg(x) + 1.0694 x 10*Ry(z) + 5.1377 x 107 Rg(x)
+2.1544 x 107 Rg(x) + 7.8620 x 10°Ryo(x) + 2.4844 x 10°Ry; (x)
+6.7495 x 10°Rya(x) + 1.5611 x 10°Ry3(x) + 3.0327 x 101 Ry4()
+4.8576 x 103 Ry5(x) + 6.2490 x 10°Ry6(x) + 6.2084 x 10' Ry7(x)
+4.4727R1g(x) 4+ 2.0798 x 1071 Ryg(x) + 4.6873 x 1073 Ry ()

In Figures 7, 8, 9 and 10 exact and approximate solution diagrams for
test problem 7 (Examples 7.1, 7.2, 7.3 and 7.4) have been plotted with

least square errors and absolute errors.
04
Sw 0"
o3
10
02 L5x10°
o4 b 10
ERS
To n: 04 (1] g 1
| * approsimate solution NaclwlM nn 02 04 i 08 1

a) Approximate and exact solutions
(8] Appraxiisiy ; RASERES (b) Absolute error

LSE=-5.625 E-27

Figure 7. Errors for test problem 7, example 7.1 with N=20
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Figure 8. Errors for test problem 7, example 7.2 with N=20
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Figure 9. Errors for test problem 7, example 7.3 with N=20
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Figure 10. Errors for test problem 7, example 7.4 with N=20

7. Conclusion

In this paper, a new method based on the least square method was given
for solution of linear and nonlinear ordinary differential equations. In
this method we used orthogonal rational Legendre functions, which are
constructed from Legendre orthogonal polynomials, as basis functions.
According to theorem 1 in section 4, the approximation of functions in
or(A) with orthogonal rational Legendre functions has an uniformly
bounded error on the interval A.
To illustrate the accuracy and efficiency of our method, some well known
equations such as Lane-Emden equation are solved. Comparing the nu-
merical results with the results given in other references such as [17-22],
[24-26] and [28] shows that the proposed method gives a more accurate
solution in the form of a continuous function. Moreover, this method
gives an accurate result by using only a few node points.
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