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1 Introduction and Preliminaries

Investigating inequality theory is crucial due to its widespread appli-
cations in various fields of science. It is widely acknowledged that the
Hermite–Hadamard-type inequalities are a prominent inequalities for
the case of convex functions. Convexity theory is an interesting and
coercive methodology for the case of considering the great issues that
arise in several different areas of the pure and applied sciences. Sundry
structures have been presented and explored, including convex sets and
related functions. This theory has a rich history and has been the focus
and motivation of special mathematical research. Moreover, convexity
theory has a critical place in the advancement of the idea of inequality.
There are many types of convexity in the literature.

Definition 1.1. [23] Suppose that I is an interval of real numbers.
Then, a function f : I → R is said to be convex, if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

is satisfied ∀x, y ∈ I and ∀t ∈ [0, 1].

Inequalities have an interesting mathematical model because of their
important applications in traditional calculus, fractional calculus, quan-
tum calculus, interval-valued, fractal sets, etc. Recently, many researchers,
including mathematicians and engineers, have dedicated themselves to
considering the inequalities and properties associated with convexity.
Many integral inequalities have been developed so far by different math-
ematicians. In the literature, we have many types of inequalities that
include convex functions, such as Hermite–Hadamard-type inequalities,
Simpson-type inequalities, Bullen-type inequalities, etc. Hence, there
are a lot of well-known integral inequalities but the most notable one is
the Simpson-type inequalities.

Theorem 1.2. [9] Let f : [a, b] → R be a four times continuously dif-
ferentiable function on (a, b) and

∥∥f (4)∥∥∞ = supx∈(a,b) |f (4)(x)| < ∞.
Then, the following inequality holds:∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣
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≤ 1

2880

∥∥∥f (4)∥∥∥
∞
(b− a)4.

Simpson-type inequality via fractional calculus have been consid-
ered widely by many interested researchers. Fractional calculus is a
field of mathematics that expands the traditional derivative and inte-
gral ideas to non-integer orders. The popularity of this topic among
mathematicians continues to increase very strongly in recent years (see
[8, 11, 25, 5, 3]). Riemann-Liouville fractional integrals, conformable
fractional integrals, and many types of fractional integrals have been
investigated with Simpson-type inequalities. Fractional derivatives are
also used to model a wide range of mathematical biology, as well as
chemical processes, physics and engineering problems [15, 4, 10]. By us-
ing the derivative’s fundamental limit formulation, a newly well-behaved
fundamental fractional derivative known as the conformable derivative
is improved in the paper [20]. Several major requirements that can-
not be implemented by the Riemann-Liouville and Caputo definitions
are implemented by the conformable derivative. On the other hand, in
paper [2] the author established that the conformable approach in [20]
cannot yield good results when compared to the Caputo definition for
specific functions. This flaw in the conformable definition was avoided
by several extensions of the conformable approach [26, 14, 21].

Let us put forth some preliminaries which will be utilized in the
sequel. The fundamental definitions of Riemann-Liouville integrals and
conformable integrals, which are used throughout the paper, are given
as follows:

Definition 1.3. The gamma function, beta function, and incomplete
beta function are represented

Γ (x) :=

∞∫
0

tx−1e−tdt,

B (x, y) :=

1∫
0

tx−1 (1− t)y−1 dt,
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and

B (x, y, r) :=

r∫
0

tx−1 (1− t)y−1 dt,

respectively for 0 < x, y <∞ and x, y ∈ R.

Kilbas et al. [19] defined fractional integrals, also called Riemann-
Liouville integrals as follows:

Definition 1.4. [19] The Riemann-Liouville integrals Jβ
a+f(x) and J

β
b−f(x)

of order β > 0 are given by

Jβ
a+f(x) =

1

Γ(β)

∫ x

a
(x− t)β−1 f(t)dt, x > a (1)

and

Jβ
b−f(x) =

1

Γ(β)

∫ b

x
(t− x)β−1 f(t)dt, x < b, (2)

respectively for f ∈ L1[a, b]. Note that the Riemann-Liouville integrals
coincides with the classical integrals for the case of β = 1.

Many mathematicians have considered the twice-differentiable con-
vex functions in order to get sundry significant inequalities. For exam-
ple, several fractional Simpson-type inequalities [12] established for func-
tions whose second derivatives in absolute value are convex. Moreover,
several generalized trapezoid-type and midpoint-type fractional integral
inequalities for the case of twice-differentiable convex functions are ob-
tained in paper [22]. Furthermore, Sarikaya and Aktan [24] proved sev-
eral new inequalities of the Simpson-type and the Hermite–Hadamard-
type for functions whose absolute values of derivatives are convex. For
results connected with several properties of Riemann-Liouville fractional
integrals and twice-differentiable convex functions one can see Refs.
[7, 13, 12, 18] and the references therein.

Jarad et al. [17] established the fractional conformable integral op-
erators. They also derived certain characteristics and relationships be-
tween these operators and several other fractional operators in the lit-
erature. The fractional conformable integral operators are described as
follows:
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Definition 1.5. [17] The conformable fractional operators βJ α
a+f(x)

and βJ α
b−f(x) of order β ∈ C, Re(β) > 0 and α ∈ (0, 1] are given by

βJ α
a+f(x) =

1
Γ(β)

∫ x
a

(
(x−a)α−(t−a)α

α

)β−1
f(t)

(t−a)1−αdt, t > a (3)

and

βJ α
b−f(x) =

1
Γ(β)

∫ b
x

(
(b−x)α−(b−t)α

α

)β−1
f(t)

(b−t)1−αdt, t < b, (4)

respectively for f ∈ L1[a, b].

If we consider α = 1 in (3), then the fractional integral in (3) equals
to the Riemann-Liouville fractional integral in (1). Moreover, the frac-
tional integral in (4) is equal to the Riemann-Liouville fractional integral
in (2) if α = 1. There have been a great number of research papers writ-
ten on these subjects, [1, 16] and the references therein.

The purpose of this paper is to prove Simpson-type inequalities for
the case of twice-differentiable convex functions with respect to con-
formable fractional integrals. The entire form of the study takes the
form of three sections including introduction. Here, we also presented
the fundamental definitions of convex functions, Riemann-Liouville in-
tegrals and conformable integrals in order to build our principal out-
comes. In Section 2, an equality will be established for the case of
twice-differentiable convex functions according to the conformable frac-
tional integrals. With the help of this equality, we will present several
Simpson-type inequalities for twice-differentiable convex functions re-
lated to conformable fractional integrals. More precisely, several impor-
tant inequalities are obtained by taking advantage of the convexity, the
Hölder inequality, and the power mean inequality. Furthermore, we also
give several corollaries and remarks in this section. Finally, concluding
remarks are given in Section 3.

2 Statement of the Problem

In this section, Simpson-type inequalities are created for the case of
twice-differentiable convex functions with respect to the conformable
fractional integrals. Let us first set up the following identity in order to
obtain conformable fractional versions of Simpson-type inequalities.
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Lemma 2.1. Let us consider that f : [a, b] → R is a twice-differentiable
function on (a, b) such that f ′′ ∈ L1 [a, b]. Then, the following equality
holds:

αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
(5)

=
(b− a)2 αβ

2

4∑
i=1

Ωi,

where βJ α
b− and βJ α

a+ denote conformable fractional operators defined
in Definition 1.5 and

Ω1 =

1
2∫
0

(
t∫
0

[(
1−(1−s)α

α

)β
− 1

3αβ

(
1−

(
1
2

)α)β]
ds

)
f ′′ (tb+ (1− t) a) dt,

Ω2 =

1
2∫
0

(
t∫
0

[(
1−(1−s)α

α

)β
− 1

3αβ

(
1−

(
1
2

)α)β]
ds

)
f ′′ (ta+ (1− t) b) dt,

Ω3 =
1∫
1
2

(
1∫
t

[
2

3αβ + 1
3αβ

(
1−

(
1
2

)α)β −
(
1−(1−s)α

α

)β]
ds

)
×f ′′ (tb+ (1− t) a) dt,

Ω4 =
1∫
1
2

(
1∫
t

[
2

3αβ + 1
3αβ

(
1−

(
1
2

)α)β −
(
1−(1−s)α

α

)β]
ds

)
×f ′′ (ta+ (1− t) b) dt.

Proof. From the fact of the integrating by parts, it follows

Ω1 =

1
2∫

0

 t∫
0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

 (6)

× f ′′ (tb+ (1− t) a) dt

=
1

b− a

 t∫
0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds


×f ′ (tb+ (1− t) a)

∣∣ 12
0
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− 1

b− a

1
2∫

0

[(
1− (1− t)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]

× f ′ (tb+ (1− t) a) dt

=
1

b− a


1
2∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds


× f ′

(
a+ b

2

)
− 1

b− a

{
1

b− a

[(
1− (1− t)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
f (tb+ (1− t) a)

∣∣∣∣∣
1
2

0

− β

b− a

1
2∫

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (tb+ (1− t) a) dt


=

1

b− a


1
2∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds


× f ′

(
a+ b

2

)
− 1

3 (b− a)2

(
1−

(
1
2

)α
α

)β (
2f

(
a+ b

2

)
+ f (a)

)

+
β

(b− a)2

1
2∫

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (tb+ (1− t) a) dt.

Similar to foregoing process, we get

Ω2 = − 1

b− a


1
2∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

 (7)

× f ′
(
a+ b

2

)
− 1

3 (b− a)2

(
1−

(
1
2

)α
α

)β (
2f

(
a+ b

2

)
+ f (b)

)
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+
β

(b− a)2

1
2∫

0

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (ta+ (1− t) b) dt,

Ω3 = − 1

b− a

 1∫
1
2

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds


(8)

× f ′
(
a+ b

2

)
− 1

3 (b− a)2

×

 1

αβ
−

(
1−

(
1
2

)α
α

)β
(2f (a+ b

2

)
+ f (b)

)

+
β

(b− a)2

1∫
1
2

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (tb+ (1− t) a) dt,

and

Ω4 =
1

b− a

 1∫
1
2

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds


(9)

× f ′
(
a+ b

2

)
− 1

3 (b− a)2

×

 1

αβ
−

(
1−

(
1
2

)α
α

)β
(2f (a+ b

2

)
+ f (a)

)

+
β

(b− a)2

1∫
1
2

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (ta+ (1− t) b) dt.
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If we collect from equality (6) to equality (9), then we can obtain

4∑
i=1

Ωi =
β

(b− a)2

1∫
0

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (tb+ (1− t) a) dt

(10)

+
β

(b− a)2

1∫
0

(
1− (1− t)α

α

)β−1

(1− t)α−1 f (ta+ (1− t) b) dt

− 1

3 (b− a)2 αβ

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
.

If we use change of variables in (10), then equality (10) is converted as
follows:

4∑
i=1

Ωi =

(
1

b− a

)αβ+2 Γ (β + 1)

Γ (β)
(11)

×
b∫

a

(
(b− a)α − (b− x)α

α

)β−1 f (x)

(b− x)1−αdx

+

(
1

b− a

)αβ+2 Γ (β + 1)

Γ (β)

×
b∫

a

(
(b− a)α − (x− a)α

α

)β−1 f (x)

(x− a)1−αdx

− 1

3 (b− a)2 αβ

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
=

Γ (β + 1)

(b− a)αβ+2

[
βJ α

b−f (a) +
β J α

a+f (b)
]

− 1

3 (b− a)2 αβ

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]
.

If equality (11) is multiplied by (b−a)2αβ

2 , then the proof of Lemma 2.1
is completed. □
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Theorem 2.2. Suppose that f : [a, b] → R is a twice-differentiable
function on (a, b) such that f ′′ ∈ L1 [a, b] and |f ′′| is convex on [a, b].
Then, the following inequality∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2
{φ1 (α, β) + φ2 (α, β)}

[∣∣f ′′ (a)∣∣+ ∣∣f ′′ (b)∣∣]
is valid. Here, βJ α

b− and βJ α
a+ denote conformable fractional operators

defined in Definition 1.5 and

φ1 (α, β) =

1
2∫
0

∣∣∣∣ t∫
0

[(
1−(1−s)α

α

)β
− 1

3αβ

(
1−

(
1
2

)α)β]
ds

∣∣∣∣ dt
=

1
2∫
0

∣∣ 1
αβ+1

{
B
(
1
α , β + 1

)
− B

(
1
α , β + 1, (1− t)α

)}
− 1

3αβ

(
1−

(
1
2

)α)β
t
∣∣∣ dt,

φ2 (α, β) =
1∫
1
2

∣∣∣∣ 1∫
t

[
2

3αβ + 1
3αβ

(
1−

(
1
2

)α)β −
(
1−(1−s)α

α

)β]
ds

∣∣∣∣ dt
= 1

αβ

1∫
1
2

∣∣∣{2
3 + 1

3

(
1−

(
1
2

)α)β}
(1− t)− 1

αB
(
1
α , β + 1, (1− t)α

)∣∣∣ dt,
(12)

where B and B denote the beta function and incomplete beta function,
respectively.

Proof. Let us take the absolute value of both sides of (5). Then, we
have the following inequality∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
(13)

≤ (b− a)2 αβ

2


1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
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×
∣∣f ′′ (tb+ (1− t) a)

∣∣ dt
+

1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
×
∣∣f ′′ (ta+ (1− t) b)

∣∣ dt
+

1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
×
∣∣f ′′ (tb+ (1− t) a)

∣∣ dt
+

1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
×
∣∣f ′′ (ta+ (1− t) b)

∣∣ dt} .
Since |f ′′| is convex on [a, b], we can easily obtain

∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2


1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
×
[
t
∣∣f ′′ (b)∣∣+ (1− t)

∣∣f ′′ (a)∣∣+ t
∣∣f ′′ (a)∣∣+ (1− t)

∣∣f ′′ (b)∣∣] dt
+

1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
×
[
t
∣∣f ′′ (b)∣∣+ (1− t)

∣∣f ′′ (a)∣∣+ t
∣∣f ′′ (a)∣∣+ (1− t)

∣∣f ′′ (b)∣∣] dt}
=

(b− a)2 αβ

2


1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣ dt
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+

1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣ dt


×
[∣∣f ′′ (a)∣∣+ ∣∣f ′′ (b)∣∣] .

This finishes the proof of Theorem 2.2. □

Remark 2.3. Let us consider α = 1 and β = 1 in Theorem 2.2. Then,
Theorem 2.2 reduces to∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) dx− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣∣
≤ (b− a)2

162

[∣∣f ′′ (a)∣∣+ ∣∣f ′′ (b)∣∣] ,
which is given in [24, Proposition 1].

Theorem 2.4. Assume that f : [a, b] → R is a twice-differentiable func-
tion on (a, b) such that f ′′ ∈ L1 [a, b]. Assume also that |f ′′|q is convex
on [a, b] with q > 1. Then, the following inequalities hold:∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
(14)

≤ (b− a)2 αβ

2
1+ 1

q

((
ψα,β
1 (p)

) 1
p
+
(
ψα,β
2 (p)

) 1
p

)
×

[(
|f ′′ (b)|q + 3 |f ′′ (a)|q

4

) 1
q

+

(
|f ′′ (a)|q + 3 |f ′′ (b)|q

4

) 1
q

]

≤ (b− a)αβ

2
1+ 1

q

((
4ψα,β

1 (p)
) 1

p
+
(
4ψα,β

2 (p)
) 1

p

)[∣∣f ′′ (a)∣∣+ ∣∣f ′′ (b)∣∣] .
Here, 1

p + 1
q = 1 and

ψα,β
1 (p) =

1
2∫
0

∣∣∣∣ t∫
0

[(
1−(1−s)α

α

)β
− 1

3αβ

(
1−

(
1
2

)α)β]
ds

∣∣∣∣p dt,
ψα,β
2 (p) =

1∫
1
2

∣∣∣∣ 1∫
t

[
2

3αβ + 1
3αβ

(
1−

(
1
2

)α)β −
(
1−(1−s)α

α

)β]
ds

∣∣∣∣p dt.
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Proof. If we use Hölder inequality in (13), then we obtain

∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2

×




1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
p

dt


1
p

×




1
2∫

0

∣∣f ′′ (tb+ (1− t) a)
∣∣q dt


1
q

+


1
2∫

0

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt


1
q


+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
p

dt


1
p

×


 1∫

1
2

∣∣f ′′ (tb+ (1− t) a)
∣∣q dt


1
q

+

 1∫
1
2

∣∣f ′′ (ta+ (1− t) b)
∣∣q dt


1
q


 .

Note that |f ′′|q is convex on [a, b]. Then, we get

∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2

×




1
2∫

0

 t∫
0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

p

dt


1
p
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×




1
2∫

0

(
t
∣∣f ′′ (b)∣∣q + (1− t)

∣∣f ′′ (a)∣∣q) dt


1
q

+


1
2∫

0

(
t
∣∣f ′′ (a)∣∣q + (1− t)

∣∣f ′′ (b)∣∣q) dt


1
q


+

 1∫
1
2

 1∫
t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

p

dt


1
p

×


 1∫

1
2

(
t
∣∣f ′′ (b)∣∣q + (1− t)

∣∣f ′′ (a)∣∣q) dt


1
q

+

 1∫
1
2

(
t
∣∣f ′′ (a)∣∣q + (1− t)

∣∣f ′′ (b)∣∣q) dt


1
q




=
(b− a)2 αβ

2
1+ 1

q

((
ψα,β
1 (p)

) 1
p
+
(
ψα,β
2 (p)

) 1
p

)
×

[(
|f ′′ (b)|q + 3 |f ′′ (a)|q

4

) 1
q

+

(
|f ′′ (a)|q + 3 |f ′′ (b)|q

4

) 1
q

]
.

The second inequality of Theorem 2.4 can be obtained simultane-
ously by letting ϕ1 = 3 |f ′′ (a)|q , ϱ1 = |f ′′ (b)|q , ϕ2 = |f ′′ (a)|q and
ϱ2 = 3 |f ′′ (b)|q and applying the following inequality:

n∑
k=1

(ϕk + ϱk)
s ≤

n∑
k=1

ϕsk +
n∑

k=1

ϱsk, 0 ≤ s < 1,

which ends the proof of Theorem 2.4. □

Corollary 2.5. Let us consider α = 1 and β = 1 in Theorem 2.4. Then,
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we have∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) dx− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣∣
≤ (b− a)2

3 · 22+
1
q




1
2∫

0

∣∣3t2 − t
∣∣p dt


1
p

+

 1∫
1
2

∣∣2− 5t+ 3t2
∣∣p dt


1
p


×

[(
|f ′ (b)|q + 3 |f ′ (a)|q

4

) 1
q

+

(
|f ′ (a)|q + 3 |f ′ (b)|q

4

) 1
q

]

≤ (b− a)2

3 · 22+
1
q


4

1
2∫

0

∣∣3t2 − t
∣∣p dt


1
p

+

4

1∫
1
2

∣∣2− 5t+ 3t2
∣∣p dt


1
p

 [∣∣f ′′ (a)∣∣+ ∣∣f ′′ (b)∣∣] .
Theorem 2.6. If f : [a, b] → R is a twice-differentiable function on
(a, b) such that f ′′ ∈ L1 [a, b] and |f ′′|q is convex on [a, b] with q ≥ 1,
then the following inequality holds:∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2

{
(φ1 (α, β))

1− 1
q

×
[(
φ3 (α, β)

∣∣f ′′ (b)∣∣q + (φ1 (α, β)− φ3 (α, β))
∣∣f ′′ (a)∣∣q) 1

q

+
(
φ3 (α, β)

∣∣f ′′ (a)∣∣q + (φ1 (α, β)− φ3 (α, β))
∣∣f ′′ (b)∣∣q) 1

q

]
+ (φ2 (α, β))

1− 1
q

[(
φ4 (α, β)

∣∣f ′′ (b)∣∣q + (φ2 (α, β)− φ4 (α, β))
∣∣f ′′ (a)∣∣q) 1

q

+
(
φ4 (α, β)

∣∣f ′′ (a)∣∣q + (φ2 (α, β)− φ4 (α, β))
∣∣f ′′ (b)∣∣q) 1

q

]}
.
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Here, βJ α
b− and βJ α

a+ denote conformable fractional operators defined
in Definition 1.5 and φ1 (α, β), φ2 (α, β) are described in (12) and

φ3 (α, β) =

1
2∫
0

t

∣∣∣∣ t∫
0

[(
1−(1−s)α

α

)β
− 1

3αβ

(
1−

(
1
2

)α)β]
ds

∣∣∣∣ dt
=

1
2∫
0

t
∣∣ 1
αβ+1

{
B
(
1
α , β + 1

)
− B

(
1
α , β + 1, (1− t)α

)}
− 1

3αβ

(
1−

(
1
2

)α)β
t
∣∣∣ dt,

φ4 (α, β) =
1∫
1
2

t

∣∣∣∣ 1∫
t

[
2

3αβ + 1
3αβ

(
1−

(
1
2

)α)β −
(
1−(1−s)α

α

)β]
ds

∣∣∣∣ dt
= 1

αβ

1∫
1
2

t
∣∣∣{2

3 + 1
3

(
1−

(
1
2

)α)β}
(1− t)− 1

αB
(
1
α , β + 1, (1− t)α

)∣∣∣ dt,
where B and B denote the beta function and incomplete beta function,
respectively.

Proof. Let us apply power-mean inequality in (13). Then, we have∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2

×




1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣ dt


1− 1
q

×




1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
×
∣∣f ′′ (tb+ (1− t) a)

∣∣q dt) 1
q

+


1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
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×
∣∣f ′′ (ta+ (1− t) b)

∣∣q dt) 1
q

]

+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣ dt


1− 1
q

×


 1∫

1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
×
∣∣f ′′ (tb+ (1− t) a)

∣∣q dt) 1
q

+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
+
∣∣f ′′ (ta+ (1− t) b)

∣∣q dt) 1
q

]}
.

Note that |f ′′|q is convex on [a, b]. Then, we have∣∣∣∣∣αβΓ (β + 1)

2 (b− a)αβ

[
βJ α

b−f (a) +
βJ α

a+f (b)
]
− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣
≤ (b− a)2 αβ

2

×




1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣ dt


1− 1
q

×




1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
×
(
t
∣∣f ′′ (b)∣∣q + (1− t)

∣∣f ′′ (a)∣∣q) dt) 1
q

+


1
2∫

0

∣∣∣∣∣∣
t∫

0

[(
1− (1− s)α

α

)β

− 1

3αβ

(
1−

(
1

2

)α)β
]
ds

∣∣∣∣∣∣
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+
(
t
∣∣f ′′ (a)∣∣q + (1− t)

∣∣f ′′ (b)∣∣q) dt) 1
q

]

+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣ dt


1− 1
q

×


 1∫

1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
×
(
t
∣∣f ′′ (b)∣∣q + (1− t)

∣∣f ′′ (a)∣∣q) dt) 1
q

+

 1∫
1
2

∣∣∣∣∣∣
1∫

t

[
2

3αβ
+

1

3αβ

(
1−

(
1

2

)α)β

−
(
1− (1− s)α

α

)β
]
ds

∣∣∣∣∣∣
+
(
t
∣∣f ′′ (a)∣∣q + (1− t)

∣∣f ′′ (b)∣∣q) dt) 1
q

]}
,

which finishes the proof of Theorem 2.6. □

Remark 2.7. Consider α = 1 and β = 1 in Theorem 2.6. Then, we
obtain∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) dx− 1

6

[
f (a) + 4f

(
a+ b

2

)
+ f (b)

]∣∣∣∣∣∣
≤ (b− a)2

48

[(
5 |f ′′ (b)|q + 3 |f ′′ (a)|q

8

) 1
q

+

(
5 |f ′′ (a)|q + 3 |f ′′ (b)|q

8

) 1
q

]
,

∣∣∣∣∣ Γ (β + 1)

2 (b− a)β

[
Jβ
b−f (a) + Jβ

a+f (b)
]
− f

(
a+ b

2

)∣∣∣∣∣ ≤ (b− a)2

162

×

[(
59 |f ′′ (b)|q + 133 |f ′′ (a)|q

192

) 1
q

+

(
59 |f ′′ (a)|q + 133 |f ′′ (b)|q

192

) 1
q

]
,

which is given in [24, Proposition 7].
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3 Concluding Remarks

This paper establishes an equality for the case of convex differentiable
functions. By using this identity, we proved Simpson-type inequalities
related to the conformable fractional integrals. To be more precise, some
significant inequalities are established by using advantage of the convex-
ity, the Hölder inequality, and the power mean inequality. Moreover, we
also give several corollaries and remarks in this section. Furthermore,
our results generalized known results in the literature.

In future studies, the ideas for our results about Simpson-type in-
equalities with respect to conformable fractional integrals may open new
avenues for further research in this area. In addition, one can obtain like-
wise inequalities of Simpson-type by conformable fractional integrals for
twice-differentiable convex functions with the aid of the quantum calcu-
lus. Furthermore, one can apply these resulting inequalities to different
types of fractional integrals.
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