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1 Introduction

In this paper, the vertex set, edge set and the full automorphism group of
a finite, simple and undirected graph Σ are denoted by V (Σ), E(Σ), and
Aut(Σ), respectively. A graph Σ is said to be vertex-transitive and edge-
transitive if Aut(Σ) acts transitively on V (Σ) and E(Σ), respectively.
For a positive integer s, an s-arc of Σ is an (s+ 1)-tuple (v0, v1, . . . , vs)
of vertices such that {vi−1, vi} ∈ E(Σ) for 1 ≤ i ≤ s and if s ≥ 2, then
vi−1 ̸= vi+1 for 1 ≤ i ≤ s − 1. A graph Σ is called s-arc-transitive if
Aut(Σ) acts transitively on V (Σ) and on the set of s-arcs and also it is
called s-transitive graph if Σ is an s-arc-transitive but not (s + 1)-arc-
transitive. Note that for s = 1, we simply use A(Σ) to denote its 1-arc
set and 1-arc-transitive graph is called arc-transitive. An arc-transitive
graph Σ is said to be s-regular if for any two s-arcs in Σ, there is a unique
automorphism of Σ mapping one to the other. Also, an arc-transitive
graph Σ is said to be one regular if |Aut(Σ)| = |A(Σ)|.

Let G be a finite group and S ⊂ G such that 1G /∈ S. The Cayley di-
graph CD = CayD(G,S) onG with respect to S is defined by V (CD) = G
and E(CD) = {(g, sg)|g ∈ G, s ∈ S}. The three obvious results follow
immediately from this definition: (1) The automorphism group of CD,
Aut(CD), contains the right regular representation GR of G, and so
CD is vertex-transitive; (2) CD is connected if and only if G = ⟨S⟩;
(3) CD is undirected if and only if S−1 = S. In this case, we denote
CD = CayD(G,S) by Σ = Cay(G,S).
A Cayley graph Σ = Cay(G,S) (digraph CD = CayD(G,S)) is called
normal if G⊴ Aut(Σ) (G⊴Aut(CD)).

in [13], Xu and Xu classified all arc-transitive Cayley graphs of va-
lency at most four on abelian groups, and in [14] Xu classified all one-
regular circulant graphs of valency four. Xu et al. [15] classified all
arc-transitive circulant graphs and digraphs of order pm, where p is an
odd prime. Chao [6], classified symmetric graphs of order a prime num-
ber p, and Berggren [5] simplified Chao’s proof and then Chao and Wells
[7] gave a classification of symmetric digraphs of order a prime number p.
A generalization of [14], is the classification of 2-arc-transitive circulant
graphs, which was given by Alspach et. al [3]. In [1] the first author clas-
sified all arc-transitive Cayley graphs with valency 5 of abelian groups.
The aim of this paper is to investigate the arc-transitive Cayley graphs
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with valency six on abelian groups. Recent research has classified Cay-
ley graphs of valency 6 and edge-transitive Cayley graphs in [9, 10] and
[8], respectively.
The group- and graph-theoretic notations and terminologies are stan-
dard; see [3, 4, 12] for example. We will denote the semi-directed product
of group H by K with H ·K.

Theorem 1.1. Let G be an abelian group and let S be a subset of
G such that 1G ̸∈ S and S = S−1. Suppose that Σ = Cay(G,S) is a
connected Cayley graph with valency six on group G with respect to S.
Then we have:

(a) If Σ is non-normal, then all arc-transitive Σ are as follows:

1. G = Z4 × Z4
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩

S = {λ, λ−1, µ, σ, θ, ϱ},Σ = C4 ×Q4 = Q6, Aut(Σ) = S2wrS6.

2. G = Z2
4 × Z2

2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨ϱ⟩, S = {λ, λ−1, µ, µ−1, σ, θ},
Σ = C4 ×Q4 = Q6, Aut(Σ) = S2wrS6.

3. G = Z4 × Z3
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,

S = {λ, λ−1, µ, σ, θ, λ2µσθ}, Σ = Qθ
5, Aut(Σ) = S5

2 .S6.

4. G = Z3
4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩,S = {λ, λ−1, µ, µ−1, σ, σ−1},

Σ = C4 × C4 × C4 = Q6, Aut(Σ) = S2wrS6.

5. G = Z3 × Z3 = ⟨λ⟩ × ⟨µ⟩, S = {λ, λ−1, µ, µ−1, λµ−1, λ−1µ},
Σ = K3,3,3.

6. G = Z4 × Z2 = ⟨λ⟩ × ⟨µ⟩, S1 = {µ, λ, λ−1, λµ, λ2µ, λ3µ},
S2 = {µ, λ, λ−1, λµ, λ2, λ3µ}, S3 = {λ, λ−1, λµ, λ2, λ2µ, λ3µ},
Σ = K8 − 8K2.

7. G = Z6 × Z2 = ⟨λ⟩ × ⟨µ⟩, S1 = {µ, λ, λ−1, λ3, λµ, λ2µ, λ4µ},
S2 = {λ, λ−1, λ3, λµ, λ3µ, λ5µ}, Σ = K6,6, Aut(Σ) = S6wrS2.

8. G = Z4 × Z2
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩, S = {λ, λ−1, λ2, µ, σ, µσ},

Σ = K4 ×K4, Aut(Σ) = S4 × S2.

9. G = Z4 × Z4 = ⟨λ⟩ × ⟨µ⟩, S = {λ, λ−1, λ2, µ, µ−1, µ2},
Σ = K4 ×K4, Aut(Σ) = S4 × S2.
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10. G = Z3
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩, S = {λ, µ, σ, λµ, λσ, λµσ},

Σ = K8 − 8K2.

11. G = Z4
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,

S = {λ, µ, σ, θ, λµσ, λµθ}.

12. G = Z14 = ⟨λ⟩, S = {λ, λ3, λ5, λ−1, λ−3, λ−5},
Σ = K7,7 − 7K2,Aut(Σ) = S7 × S2.

13. G = Z12 = ⟨λ⟩, S = {λ, λ2, λ5, λ7, λ10, λ11},
Σ = K4,4,4 − 12K2.

14. G = Z12 = ⟨λ⟩, S = {λ, λ3, λ5, λ7, λ9, λ11},
Σ = K6,6,Aut(Σ) = S6wrS2.

15. G = Z9 = ⟨λ⟩, S = {λ, λ2, λ4, λ5, λ7, λ8}, Σ = K3,3,3.

16. G = Z8 = ⟨λ⟩, S = {λ, λ2, λ3, λ5, λ6, λ7}, Σ = K8 − 8K2.

17. G = Z7 = ⟨λ⟩,S = {λ, λ2, λ3, λ4, λ5, λ6},
Σ = K7, Aut(Σ) = S7.

(b) If G is a non-cyclic abelian group and Σ is normal, then Σ is arc-
transitive if one of the following happens:

1. G = Z6
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩ × ⟨ξ⟩,

S = {λ, µ, σ, θ, ϱ, ξ},Σ = Q6.

2. G = Z5
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩,

S = {λ, µ, σ, θ, ϱ, λµσθϱ},Σ = Q+
5 .

3. G = Z4
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩, S = {λ, µ, σ, θ, λµ, σθ},

Σ = K4 ×K4.

4. Σ = Ac(n, n, n, 0, 0) for n ≥ 3 and n ̸= 4.

5. Σ = Ac(2m,m,m, 1, 0) for m ≥ 3.

6. Σ = Ac(2m,m,m, 1, 1) for m ≥ 3.

7. Σ = Ac(2m, 2m,m, 0, 1) for m ≥ 3.
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8. Σ = Ac(2m, 2m,m, 1, 1) for m ≥ 3.

9. Σ = Ac(2m, 2m, p, 1, w
′
) with k

′ ≥ 3 and (w
′
)2 ≡ ±1 (mod k

′
).

10. Σ = Ac(m,m, p, 0, w
′
) with k

′ ≥ 3 and (w
′
)2 ≡ ±1 (mod k

′
).

11. Σ = Ac(n,m, p, w,w
′
) with k

′ ≥ 3, k ≥ 3, (w)2 ≡ ±1 (mod k)
and (w

′
)2 ≡ ±1 (mod k

′
).

2 Primary Analysis

Let Σ = Cay(G,S) be a Cayley graph on G with respect to S and let
Aut(G,S) = {α ∈ Aut(G)| Sα = S}. Clearly, G · Aut(G,S) ≤ Aut(Σ).
Also, we have the following:

Proposition 2.1. [13, 15] Let G be a finite group, S be a subset of G
non containing 1G and Σ = Cay(G,S) be a Cayley graph on G with
respect to S.
(1) NA(G) = G.Aut(G,S).
(2) A = G.Aut(G,S) is equivalent to G◁A.

Proposition 2.2. [14] A graph Σ is arc-transitive if and only if it is
vertex-transitive and the stabilizer Gu of a vertex u acts transitively on
the neighborhood Σ1(u) of u in Σ.

Proposition 2.3. Let Σ = Cay(G,S) be a normal Cayley graph on G
with relative to S. Then Σ is arc-transitive if and only if Aut(G,S) acts
transitively on the neighborhood Σ1(1) of 1 in Σ.

Now we introduce some graph products which are used in the paper.
Let X and Y be two graphs. The direct product X ×Y is defined as the
graph with vertex set V (X×Y) = V (X )×V (Y). Two vertices u = [§1, †1]
and v = [§2, †2] are adjacent whenever §1 = §2 and [†1, †2] ∈ E(Y) or
†1 = †2 and [§1, §2] ∈ E(X ). Two graphs are called relatively prime
if they have no nontrivial common direct factor. Another graph with
vertex set V (X ×Y) is the lexicographic product X [Y]. Two vertices u =
[§1, †1] and v = [§2, †2] in V (X [Y]), are adjacent, if either [§1, §2] ∈ E(X )
or §1 = §2 and [†1, †2] ∈ E(Y). Let V(Y ) = {†1, †2, . . . , †n}. Then there
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is a natural embedding of nX in X [Y], where for 1 ≤ i ≤ n, the ith copy
of X is the subgraph induced on the vertex subset {(§, †i)| § ∈ V (X )} in
X [Y]. The deleted lexicographic product X [Y]−nX is the graph obtained
by deleting all the edges of (this natural embedding of) nX from X [Y].

Let X be a graph, α be a permutation on V (X ) and Cn be a circuit
of length n. The twisted product X ×α Cn of X by Cn with respect to α
is defined as follows:

V (X ×α Cn) = V (X )× V (Cn) = { (§, i) | § ∈ V (X ),
i = 0, 1, . . . , n− 1},

E(X ×α Cn) = {[(§, i), (§, i+ 1)] | § ∈ V (X ), i = 0, 1, . . . , n− 2}
∪ {[(§, n− 1), (§α, 0)] | § ∈ V (X )}
∪ {[(§, i), (y, i)] | [§, †] ∈ E(X ), i = 0, 1, . . . , n− 1}.

Finally, we introduce some new graphs used in this paper. A circu-
lant graph C(n;n1, . . . , nd) is a graph with vertex set V C = {0, 1, . . . , n−
1} and edge set EC = {(i, j) | |j − i| = n1, . . . , nd−1 or nd (mod n)},
which has order n and valency 2d or 2d− 1. Thus Cn = C(n; 1). If n is
even then the graph C(n; 1, n/2) is of valency 3, denoted by Mn. The
graph Q+

d for d = 4, 5, denotes the graph obtained by connecting all the
long diagonal of d-cube Qd, that is connecting all vertices u and v in Qd

such that d(u, v) = d. The graph Km,m ×c Cn is the twisted product of
Km,m by Cn such that c is a cycle permutation on each part of the com-
plete bipartite graph Km,m. The graph Q3×dCn is the twisted product
of Q3 by Cn such that d transposes each pair of elements on the long
diagonals of Q3. The graph Cd

2m[2K1] is defined as the following:

V (Cd
2m[2K1]) = V (C2m[2K1]),

E(Cd
2m[2K1]) = E(C2m[2K1]) ∪ {[(§i, †j), (§i+m, †j)]|

i = 0, 1, . . . ,m− 1, j = 1, 2}

where V (C2m) = {§0, §1, . . . , §2m−1} and V (2K1) = {†1, †2}.
In the following theorem, all the non-normal Cayley graphs of valency

six on abelian groups are classified.

Theorem 2.4. [2] Let G be an abelian group and Σ = Cay(G,S) be a
connected Cayley graph on G with respect to S of degree 6. Then Σ is
normal unless one of the following cases holds:
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1. G = Z3
2 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨ϱ⟩ (m ≥ 3),

S = {λ, µ, σ, λµσθ, θ−1},Σ = K4,4 × Cm.

2. G = Z5
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩,

S = {λ, µ, σ, λµσ, θ, ϱ},Σ = C4 ×K4,4.

3. G = Z2
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩,

S = {λ, µ, λµ, σ2, σ, σ−1},Σ = K4 ×K4.

4. G = Z4
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩,

S = {λ, µ, σ, θ, ϱ, ϱ−1},Σ = C4 ×Q4 = Q6.

5. G = Z3
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩, S1 = {λ, µ, σ, θ2, θ, θ−1},

Σ = Q3 ×K4; S2 = {λ, µ, λµ, σ, θ, θ−1}, Σ = K4 ×K2 × C4;
S3 = {λ, µ, σ, λθ2, θ, θ−1}, Σ = K4,4 × C4.

6. G = Z2
2 × Z6 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩, S = {λ, µ, λµ, σ3, σ, σ−1},

Σ = K4 ×K3,3.

7. G = Z3
2 × Z6 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,

S = {λ, µ, σ, θ3, θ, θ−1},Σ = Q3 ×K3,3.

8. G = Z2 × Z6 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 3),
S = {λ, µ3, µ, µ−1, σ, σ−1},Σ = K2 ×K3,3 × Cm.

9. G = Z6 × Z2m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 2),
S = {λ3, µm, λ, λ−1, µ, µ−1},Σ = K3,3 ×M2m.

10. G = Z4 × Z2m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 2),
S = {λ, λ−1, λ2, µ, µ−1, µm},Σ = K4 ×M2m.

11. G = Z2 × Z4 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 3),
S1 = {λ, µ, µ−1, µ2, σ, σ−1},Σ = K2 ×K4 × Cm;
S2 = {λ, µ, µ−1, λµ2, σ, σ−1},Σ = K4,4 × Cm.

12. G = Z2 × Z4 × Z2m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),
S = {λ, µ, µ−1, σ, σ−1, σm},Σ = K2 × C4 ×M2m.

13. G = Z2
2 × Z4 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ (m ≥ 3),

S = {λ, µ, σ, σ−1, θ, θ−1}, C4 × C4 × Cm = Q4 × Cm.
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14. G = Z3
2 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ (m ≥ 3),

S = {λ, µ, σθ, σθ−1, θ, θ−1},Σ = C4 × Cm[2K1].

15. G = Z2
2 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m = 5, 10),

S = {λ, µ, σ, σ−1, σ3, σ−3},Σ = C4 ×K5 if m = 5 and
Σ = C4 ×K5,5 − 5K2 if m = 10.

16. G = Z2
2 × Z4m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),

S = {λ, µ, σ, σ−1, σ2m+1, σ2m−1},Σ = C4 × Cm[2K1].

17. G = Z4 × Z2m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 3, m is odd),
S = {λ, λ3, µ, µ−1, µm+1, µm−1},Σ = C4 × Cm[2K1].

18. G = Z2
4 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 3),

S = {λ, λ3, µ, µ3, σ, σ−1},Σ = C4 × C4 × Cm = Q4 × Cm.

19. G = Z2 × Zm × Zn = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 3, n ≥ 3),
S = {λµ, λµ−1, µ, µ−1, σ, σ−1}, Σ = Cm[2K1].

20. G = Zm × Zn = ⟨λ⟩ × ⟨µ⟩ (m = 5, 10, n ≥ 3),
S = {λ, λ−1, λ3, λ−3, µ, µ−1},Σ = K5 × Cn if m = 5
and Σ = K5,5 − 5K2 × Cn if m = 10.

21. G = Z4m × Zn = ⟨λ⟩ × ⟨µ⟩ (m ≥ 2, n ≥ 3),
S = {λ, λ−1, λ2m+1, λ2m−1, µ, µ−1},Σ = C2m[2K1]× Cn.

22. G = Z4
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,S = {λ, µ, λµ, σ, λµσ, θ},

Σ = K2 ×K2[2K2].

23. G = Z2
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩,

S = {λ, µ, λσ2, σ, σ−1, σ2},Σ = K2 ×K2[2K2].

24. G = Z3
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,

S = {λ, µ, σ, θ, θ−1, λµθ2},Σ = K2 ×Q+
4 .

25. G = Z2
2 × Z3m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 1),

S = {λ, µ, λσm, λσ2m, σ, σ−1}.

26. G = Z2 × Z10 = ⟨λ⟩ × ⟨µ⟩, S = {λ, µ, µ3, µ5, µ7, µ9},
Σ = K2 ×K5,5.
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27. G = Z2
2 × Z2m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),

S = {λσ, λσ−1, µ, σm, σ, σ−1},Σ = Cd
2m[2K1]×K2.

28. G = Z2 × Z4 × Z2m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),
S = {λ, µ2σm, µ, µ−1, σ, σ−1},Σ = K2 ×Q3 × Cm = Q4 × Cm.

29. G = Z2 × Z2m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 3),
S = {λ, µm, µ, µ−1, µm+1, µm−1},Σ = K2 × Cm[K2].

30. G = Z2
2 × Z2m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),

S = {λ, µ, λσ, λσ−1, σ, σ−1},Σ = K2 × C2m[K2].

31. G = Z2 × Z6m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 3, m is odd),
S = {λ, µ2, µ−2, µm, µ5m, µ3m},Σ = K2 ×K3,3 ×c Cm.

32. G = Z2
2 × Z6m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),

S = {λ, µσm, µσ3m, µσ5m, σ, σ−1},Σ = K2 ×K3,3 ×c C2m.

33. G = Z3
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩, S = {λ, µ, σ, λµ, λσ, λµσ},

Σ = K8 − 8K2.

34. G = Z4
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩, S = {λ, µ, σ, θ, λµσ, λµθ}.

35. G = Z2
2 × Z2m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 2),

S = {λ, µ, λσm, µσm, σ, σ−1}.

36. G = Z2
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩,

S1 = {λ, µ, λµ, λσ2, σ, σ−1},S2 = {a, b, ac2, abc2, c, c−1}.

37. G = Z3
2 × Z4 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,

S = {λ, µ, σ, θ, θ−1, λµσθ2},Σ = Q+
5 .

38. G = Z2 × Z6m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 2),
S = {λ, µ3m, λµ2m, λµ4m, µ, µ−1}.

39. G = Z2 × Z4m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 1),
S = {λ, λµm, λµ2m, λµ3m, µ, µ−1}.

40. G = Z4 × Z2m = ⟨λ⟩ × ⟨µ⟩ (m ≥ 2),
S = {λ, λ−1, µm, λ2µm, µ, µ−1}.
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41. G = Z2
2 × Z4m = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 1),

S = {λ, λσ2m, µσm, µσ3m, σ, σ−1}.

42. G = Z2 × Z10 = ⟨λ⟩ × ⟨µ⟩, S = {λ, λµ5, µ, µ9, µ3, µ7}.

43. G = Z2 × Z2m = ⟨λ⟩ × ⟨µ⟩,
S1 = {λ, µ, µ−1, µm, λµ, λµ−1} (m ≥ 2),
S2 = {λ, λµm, µ, µ−1, λµ, λµ−1} (m ≥ 2),
S3 = {λµm, µm, µ, µ−1, λµ, λµ−1} (m ≥ 2),
S4 = {λ, λµm, µ, µ−1, µm+1, µm−1} (m ≥ 3),
S5 = {λ, µ, µ−1, µm, λµm+1, λµm−1} (m ≥ 3),
S6 = {λ, λµm, µ, µ−1, λµm+1, λµm−1} (m ≥ 3),
S7 = {λµm, µ, µ−1, µm, λµm+1, λµm−1} (m ≥ 3).

44. G = Z2
2 × Zm = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩,

S1 = {λ, µ, σ, σ−1, λµσ, λµσ−1}(m ≥ 3),
S2 = {λ, µ, σ, σ−1, λσk+1, λσk−1} (m = 2k, k ≥ 3),
S3 = {λ, µ, σ, σ−1, λµσk+1, λµσk−1} (m = 2k, k ≥ 3),
S4 = {λ, µσ, µσ−1, λσk, σ, σ−1} (m = 2k, k ≥ 2),
S5 = {λ, µσk+1, µσk−1, σk, σ, σ−1} (m = 2k, k ≥ 3),
S6 = {λ, µσk+1, µσk−1, λσk, σ, σ−1} (m = 2k, k ≥ 3),
S7 = {λ, µ, σ, σ−1, λσ, λσ−1} (m = 2k − 1, k ≥ 2).

45. G = Z4m = ⟨λ⟩ (m ≥ 2), S = {λ, λ−1, λm, λ−m, λ2m+1, λ2m−1}.

46. G = Z2m = ⟨λ⟩ (m ≥ 4),
S = {λ, λ−1, λm+1, λm−1, λk, λ−k} (2 ≤ k ≤ m− 2), (m, k) = l, if
l > 2 or l = 2 for m = 4i + 2; (k = 2i, with i odd or k = 2i + 2,
with i even).

47. G = Z2 × Zm = ⟨λ⟩ × ⟨µ⟩ (m ≥ 5),
S1 = {λµ, λµ−1, µ, µ−1, µj , µ−j}(2 ≤ j < m

2 ), (m, j) = p > 2,
m = (t+ 1)p,
S2 = {λµ, λµ−1, µ, µ−1, λµj , λµ−j}(2 ≤ j < m

2 ), (m, j) = p > 2,
m = (t+ 1)p.

48. G = Z2 × Z8 = ⟨λ⟩ × ⟨µ⟩, S1 = {λµ, λµ−1, µ, µ−1, µ3, µ−3},
S2 = {λµ, λµ−1, µ, µ−1, λµ3, λµ−3}.
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49. G = Z2m × Zn = ⟨λ⟩ × ⟨µ⟩ (m ≥ 2, n ≥ 3),
S = {λ, λ−1, λmµ, λmµ−1, µ, µ−1}.

50. G = Z2m × Z2n = ⟨λ⟩ × ⟨µ⟩ (m ≥ 3, n ≥ 2),
S = {λ, λ−1, λm+1µn, λm−1µn, µ, µ−1}.

51. G = Z6m = ⟨λ⟩ (m ≥ 2), S1 = {λ, λ−1, λ3, λ−3, λ3m+1, λ3m−1},
S2 = {λ, λ−1, λ3m+1, λ3m−1, λ3m+3, λ3m−3}.

52. G = Zm = ⟨λ⟩ (m = 7, 14), S = {λ, λ−1, λ3, λ−3, λ5, λ−5},
Σ = K7 if m = 7 and Σ = K7,7 − 7K2 if m = 14.

53. G = Z3m = ⟨λ⟩ (m ≥ 3),
S = {λ, λ−1, λm−1, λm+1, λ2m−1, λ2m+1}.

54. G = Z16m−4 = ⟨λ⟩ (m ≥ 1),
S = {λ, λ−1, λ4m−2, λ12m−2, λ8m−3, λ8m−1}.

55. G = Z16m+4 = ⟨λ⟩ (m ≥ 1),
S = {λ, λ−1, λ4m+2, λ12m+2, λ8m+1, λ8m+3}.

56. G = Z3 × Z3 = ⟨λ⟩ × ⟨µ⟩, S = {λ, λ2, µ, µ2, λ2µ, λµ2},
Σ = K3,3,3.

57. G = Z2
4 × Z2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ (m ≥ 3),

S = {λ, λ−1, µ, µ−1, σ, λ2µ2c}.

3 The Proof of Theorem 1.1

Here, we will give all non-normal arc-transitive Cayley graphs on abelian
groups of degree six. Moreover, we will characterize all normal arc-
transitive Cayley graphs on the non-cyclic abelian groups. First, we will
introduce a family of graphs of valency 6, the Cayley graph
Cay(G,Sww′ ), on a non-cyclic abelian group G.

Lemma 3.1. Let n,m, p, k, k
′
, w and w

′
be positive integers with m|n,

n = mk, p|m, m = pk
′
, n ≥ 3, m ≥ 3, p ≥ 1, gcd(w, k) = 1,

gcd(w
′
, k

′
) = 1, 0 ≤ w ≤ k− 1 and 0 ≤ w

′ ≤ k
′ − 1. Let G = Zn×Zm×

Zp = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩, and Sww′ = {λ, λ−1, λwµ, λ−wµ−1, λwµw
′
σ,
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λ−wµ−w
′
σ−1}. The Cayley graph Cay(G,Sww′ ) := Ac(n,m, p, w,w

′
)

is a regular graph of degree 6 and we have:

(1) Ac(n,m, p, w,w
′
) is non-normal if and only if one of the following

happens:

(i) (n,m, p, w,w
′
) = (4, 4, 4, 0, 0) .

(ii) n,m(≥ 4) are even, p = 2 and w
′
= ±1.

(2) Suppose that Ac(n,m, p, w,w
′
) is normal. Then, Ac(n,m, p, w,w

′
)

is arc-transitive if and only if one of the following holds:

(i) k ≤ 2 and k
′ ≤ 2.

(ii) k ≤ 2, k
′ ≥ 3 and (w

′
)2 ≡ ±1(mod k

′
).

(iii) k ≥ 3, k
′ ≥ 3, w2 ≡ ±1(mod k) and (w

′
)2 ≡ ±1(mod k).

Proof. (1) This is a straightforward result of Theorem 2.4.

(2) Since G = ⟨λ, λwµ, λwµw
′
σ⟩, Aut(G,Sww′ ) acts on Sww′ faithfully.

Thus Aut(G,Sww′ ) is isomorphic to a subgroup of S6. Now by Propo-

sition 2.3, Ac(n,m, p, w,w
′
) is arc-transitive if and only if Aut(G,Sww′ )

acts transitively on Sww′ . So, all elements of Sww′ have the same order.
□

Now we are ready to prove the Theorem 1.1. Set A = Aut(Σ).
Proof. (a) All non-normal Cayley graphs with valency six are classified
in Theorem 2.4 Now we investigate which of them are arc-transitive. In
the cases (1), (2), (5) for S = S3 and (11) for S = S2, we have
Σ = Cm ×K4,4. Let V (Cm) = {1, . . . ,m} and
V (K4,4) = {§1, §2, §3, §4, §

′
1, §

′
2, §

′
3, §

′
4} such that (§i, §

′
j) ∈ E(K4,4) for

1 ≤ i, j ≤ 4. One can see that there is no f ∈ A(1,§1) such that f(1, §′1) =
(4, §1), which implies that Σ is not arc-transitive.
In (5) for S = S1, let V (K4) = {†1, †2, †3, †4} and Q3 contain two circuits
C4, C

′
4 with V (C4) = {§1, §2, §3, §4} and V (C

′
4) = {§′1, §

′
2, §

′
3, §

′
4} such

that (§i, §
′
i) ∈ E(Q3) for 1 ≤ i ≤ 4. Note that the edge [(§i, †j)(§i, †j+1)]

is contained in a cycle of length 3 in Σ, but the edge [(§i, †j)(§i+1, †j)]
is not containedin any cycle, for 1 ≤ i, j ≤ 3. Therefore, Σ is not edge
transitive and then is not
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arc-transitive. In (6), let V (K4) = {†1, †2, †3, †4} and
V (K3,3) = {§1, §2, §3, §

′
1, §

′
2, §

′
3} such that (§i, §

′
j) ∈ E(K3,3) for

1 ≤ i, j ≤ 3. Note that the edge [(†j , §i)(†j+1, §i)] is contained in any
cycle of length 3 in Σ, but [(†j , §i)(†j , §

′
k)] is not contained in any cycle,

for 1 ≤ j ≤ 3 and for any 1 ≤ i, k ≤ 4. Therefore, Σ is not edge transitive
and then is not arc-transitive. In (7), let Q3 contain two circuits C4, C

′
4

respectively with the set of vertices V (C4) = {§1, §2, §3, §4} and V (C
′
4) =

{§′1, §
′
2, §

′
3, §

′
4} such that (§i, §

′
i) ∈ E(Q3) for 1 ≤ i ≤ 4 and V (K3,3) =

{†1, †2, †3, †
′
1, †

′
2, †

′
3} such that (†i, †

′
j) ∈ E(K3,3) for

1 ≤ i, j ≤ 3. One can see that there is no f ∈ A(§1,†1) such that

f(§1, †
′
1) = (§2, †1). Thus Σ is not arc-transitive. In (8), let

V (K3,3) = {§1, §2, §3, §
′
1, §

′
2, §

′
3} such that (§i, §

′
j) ∈ E(K3,3) for

1 ≤ i, j ≤ 3 and V (M2m) = {1, . . . , 2m}. One can see that there is no
f ∈ A(§1,1) such that f(§′1, 1) = (§1, 2). So, Σ is not arc-transitive.

In (9), let V (K2) = {§1, §2}, V (K3,3) = {†1, †2, †3, †
′
1, †

′
2, †

′
3} such that

(†i, †
′
j) ∈ E(K3,3) for 1 ≤ i, j ≤ 3 and V (Cm) = {1, . . . ,m}. One can see

that there is no f ∈ A(§1,†1,1) such that f(§1, †
′
1, 1) = (§2, †1, 1). Thus

from Proposition 2.2, we conclude that Σ is not arc-transitive.
In (10), let V (K4) = {†1, †2, †3, †4} and V (M2m) = {1, . . . , 2m} for
m ̸= 2. Note that the edge [(†i, j)(†i+1, j)] is contained in a cycle of
length 3 in Σ, but the edge [(†i, j)(†i, j+m)] is not contained in any cycle,
for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2m − 1. Therefore, Σ is not edge transitive
and then is not arc-transitive. In (11) for S = S1 and (5) for S = S2, we
have Σ = K2 ×K4 × Cn. Let V (K2) = {§1, §2}, V (K4) = {†1, †2, †3, †4}
and V (Cn) = {1, . . . , n}. Note that the edge [(§i, †j , k)(§i, †j+1, k)] is
contained in a cycle of length 3 but the edge [(§i, †j , k)(§i, †j , k + 1)] is
not, for i = {1, 2}, 1 ≤ j ≤ 4 and 1 ≤ k ≤ n, n ̸= 4. Now, if n = 4, the
edge [(§1, †j , k)(§2, †j , k)] is contained in a cycle of length 3 but the edge
[(§i, †i, k)(§i, †i, k + 1)] is not contained in any cycle, for
i = {1, 2}, 1 ≤ j ≤ 4 and 1 ≤ k ≤ 4. Then, in both cases, Σ is not
arc-transitive. In (12), let V (K2) = {§1, §2}, V (C4) = {†1, . . . , †4} and
V (M2m) = {1, 2, . . . , 2m} for m ≥ 3. One can see that there is no
f ∈ A(§1,†1,1) such that f(§1, †

′
1, 1) = (§2, †1, 1), which implies that Σ is

not arc-transitive. In (13), (18) for m ̸= 4 and (28), let Q4 contain two
graphs Q3, Q

′
3 with set of vertices

V (Q3) = {§1, . . . , §4, §
′
1, . . . , §

′
4} such that (§i, §

′
i) ∈ E(Q3) for
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1 ≤ i ≤ 4 and V (Q
′
3) = {†1, . . . , †4, †

′
1, . . . , †

′
1} such that (†i, †

′
i) ∈ E(Q

′
3)

for 1 ≤ i ≤ 4. One can see that there is no f ∈ A(§1,1) such that
f(§2, 1) = (§1,m). So, by Proposition 2.2, Σ is not arc-transitive.
In (14), (16), (17), (19) and (20), we have Σ = Cn × Cm[2k1]. Let
V (Cn) = {1, . . . , n}, V (Cm) = {1, . . . ,m} and V (2k1) = {†1, †2} such
that [(§i, †j)(§i+1, †k)] ∈ E(Cm[2k1]) for k, j = {1, 2} and 1 ≤ i ≤ m.
Note that there is no f ∈ A(1,§1,†1) such that f(2, §1, †1) = (1, §2, y2). So
by the note on Proposition 2.2, Σ is not arc-transitive.
In (15) for m = 10 and (21) for [m = 10, n ≥ 4], let V (Cn) = {1, . . . , n}
and V (K5,5 − 5K2) = {§1, §2, . . . , §5, §

′
1, §

′
2, . . . , §

′
5} such that (§i, §

′
j) ∈

E(K5,5 − 5K2) for i ̸= j, 1 ≤ i, j ≤ 5. One can see that there is no
f ∈ A(1,§1) such that f(2, §1) = (1, y2), which means Σ is not arc-
transitive. Now suppose that [m = 10 and n = 3]. Note that the
edge [(i, §j)(i + 1, §j)] is contained in a cycle of length 3 in Σ, but the
edge [(i, §j)(i, §

′
k)] is not, for 1 ≤ i ≤ 3 and 1 ≤ j, k ≤ 5. Therefore, Σ is

not arc-transitive.
In (15) for m = 5 and (21) for [m = 5, n ≥ 4], we have Σ = Cn × K5.
Let V (Cn) = {1, . . . , n} and V (K5) = {§1, . . . , §5}. Note that the edge
[(i, §j)(i, §j+1)] is contained in a cycle of length 3 in Σ , but the edge
[(i, §j)(i+1, §j)] is not, for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. Therefore, Σ is not
arc-transitive.
In (22), the edge (λ, λµ) is contained in a cycle of length 3, but the edge
(λ, λµ) is not. Therefore, Σ is not arc-transitive.
In (23), the edge (λ, σ2) is contained in a cycle of length 3, but the edge
(λ, λµ) is not. Therefore, Σ is not arc-transitive.
In (25), one can see there is no f ∈ Aλ such that f(λµ) = (σm). So,
Σ is not arc-transitive.
In (26), let V (K2) = {§1, §2} and
V (K5,5) = {§1, §2, . . . , §5, §

′
1, §

′
2, . . . , §

′
5}, such that (§i, §

′
j) ∈ E(K5,5) for

1 ≤ i, j ≤ 5. One can see that there is no f ∈ A(§1,†1) such that

f(§1, †
′
1) = (§2, †1). It follows that Σ is not arc-transitive.

In (27), we have Σ = Cd
2m[2k1] × K2. Let V (C2m) = {1, . . . , 2m},

V (2K1) = {§1, §2} and V (K2) = {†1, †2}. One can see that there is
no f ∈ A1,§1,†1 such that f(1, §1, †2) = (2m, §2, †1). So, by Proposition
2.2, Σ is not arc-transitive.
In (29), note that the edge (µm, µm+1) is contained in a cycle of length
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3, but the edge (1, λ) is not. Then, Σ is not arc-transitive.
In (30) and (43) for S = S7, note that the edge (λ, σ) is contained in
a cycle of length 3, but the edge (λ, λµ) is not. Then Σ is not arc-
transitive.
In (31) and (32), one can see that there is no f ∈ Aµ2 such that f(λµ2) =
(µm+2). Hence Σ is not arc-transitive.
In (34), Γ is a bipartite graph of diameter three and girth four. Therefore
by [4, Proposition 17.2], Γ is at most 3-transitive. Hence by [11], there
are 4 symmetric graphs of order 16.
In (35), one can see that there is no f ∈ Aλ such that f(λµ) = (λσ).
So, by Proposition 2.2, Σ is not arc-transitive.
In (36) for [S = S1, S2], note that the edge (λ, µ) is contained in a cycle
of length 3, but the edges (λ, λµ) and (σ, σ2) are not contained in a cycle
of length 3. Then Σ is not arc-transitive.
In (38) and (39), one can see that there is no f ∈ Aλ such that
f(λµ) = (µ2m) and also in the cases (40), (41) and (42), one can see that
there is no f ∈ Aλ such that f(λ2) = (λµ), f(λσ) = (σ2m) and f(λµ) =
(µ5), respectively. So, by Proposition 2.2, Σ is not arc-transitive.
In (43) for [S = S1,m ≥ 3] and [S = S5,m ≥ 4], one can see that
there is no f ∈ Aλ such that f(λµ) = (λµm). For [S = S2,m ≥ 4] and
[S = S4, S3,m ≥ 3], there is no f ∈ Aλ such that f(λµ) = (µm). Also,
for [S = S3,m ≥ 4] there is no f ∈ Aλ such that f(λ) = (µm+1). Finally,
for [S = S7,m ≥ 3] there is no f ∈ Aλ such that f(λµm+1) = (µm+1).
So, by Proposition 2.2, Σ is not arc-transitive.
In (44) for [S = S1, S2, S3,m ≥ 3], one can see that there is no f ∈ Aλ

such that f(λµ) = (λσ). Also, for [S = S4,m ≥ 2] there is no f ∈ Aλ

such that f(λµ) = (µσ). For [S = S5,m ≥ 3,m = 2k], there is no f ∈ Aλ

such that f(λµσk+1) = (λσk). Finally, for [S = S6,m ≥ 3,m = 2k],
there is no f ∈ Gλ such that f(λµσk+1) = (σk). So, by Proposition 2.2,
Σ is not arc-transitive. In (45), one can see that there is no f ∈ Gλ such
that f(λ2) = (λm+1). Thus, by Proposition 2.2, Σ is not arc-transitive.
In (46), there is no f ∈ Aλ such that f(λm) = (λm+2). So, Proposition
2.2 implies that Σ is not arc-transitive.
In (47), for S = S1, there is no f ∈ Aµ such that f(µ) = (λµj) and for
S = S2, f ̸∈ Aµ such that f(µ) = (µj). Therefore, by Proposition 2.2 Σ
is not arc-transitive.
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In (48) for S = S1 and S = S2, there is no f ∈ Aλ such that f(µ) = (λµ3)
and f(µ) = (λµ), respectively, which implies Σ is not arc-transitive.
In (49) and (50), there is no f ∈ Aλ such that f(λ2) = (λµ). So, by
Proposition 2.2, Σ is not arc-transitive.
In (51), (53), (54) and (55), for [S = S1, S2], there is no f ∈ Aλ such
that f(λ2) = (λ3m), (λ2m), (λ4m−1) and (λ4m+3), repectively. So Σ is
not arc-transitive.
In (57), since there is no f ∈ Aλ such that f(λµ) = (λσ), Σ is not
arc-transitive.
In (4), we have Σ = K2 × Q5 ≃ C4 × Q4. Since Q4 is arc-transitive, Σ
is arc-transitive.
The cases (13) and (18) for m = 4 are similarly as the case (4).
In (24), we have Σ = K2 × Q+

4 . Note that [4, Proposition 17.2] tells
us that the Cayley graph is at most 3-transitive. Let [α] be a 3-arc
in Σ. Then there are automorphisms g1, . . . , g5 such that gi[α] = [β(i)]
(1 ≤ i ≤ 5), so that each [β(i)] is a successor of [α]. Then Aut(Σ) is
transitive on 3-arcs and Σ is vertex-transitive. So, Σ is 2-transitive and
1-transitive. Therefore, the graph Σ = K2 ×Q+

4 is arc-transitive.
In (37), we have the graph Σ = Q+

5 , which is arc-transitive.
In (52) for m = 7 and m = 14, we have Σ = K7 and Σ = K7,7 − 7K2

respectively, which are arc-transitive.
In (51) for m = 2, (53) for m = 4, (54) for m = 1, (45) for m = 3 and
(43) for [S = S3,m = 3] and [S = S5,m = 3], we have Σ = K6,6, which
is arc-transitive.
In (45) for m = 2, (46) for m = 4, (39) for m = 1, (33) and (43) for
[S = S1, S2, S3,m = 2], we have Σ = K8 − 8K2, which is arc-transitive.
In (53) for m = 3 and (56), we have Σ = K3,3,3, which is arc-transitive.
Now the proof of Theorem 1.1 (a) is completed.
(b) Assume G is a non-cyclic group, and Σ = Cay(G,S) is a normal
Cayley graph of valency six. Since the order of all elements of S is equal
to n, we investigate two deferent cases n = 2 and n > 2. If n = 2, then S
contains six involutions and up to an isomorphism, one of the following
cases happens:

1. G = Z3
2 = ⟨λ⟩×⟨µ⟩×⟨σ⟩,S = {λ, µ, σ, λµ, λσ, λµσ},Σ = K8−8K2.

2. G = Z4
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩,
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S1 = {λ, µ, σ, θ, λµ, λµσ},Σ = K2 ×K2[2K2],
S2 = {λ, µ, σ, θ, λµ, σθ}, Σ = K4 ×K4,
S3 = {λ, µ, σ, θ, λµσ, λµθ}, S4 = {λ, µ, σ, θ, λµ, λµσθ},
S5 = {λ, µ, σ, θ, λµσ, λµσθ}, S6 = {λ, µ, σ, θ, λθ, λµσ}.

3. G = Z5
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩,

S1 = {λ, µ, σ, θ, ϱ, λµ}, Σ = K4 ×Q3,
S2 = {λ, µ, σ, θ, ϱ, λµσ}, Σ = C4 ×Q+

3 ,
S3 = {λ, µ, σ, θ, ϱ, λµσθ}, Σ = K2 ×Q+

4 ,
S4 = {lambda, µ, σ, θ, ϱ, λµσθϱ}, Σ = Q+

5 .

4. G = Z6
2 = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩ × ⟨θ⟩ × ⟨ϱ⟩ × ⟨ξ⟩,

S = {λ, µ, σ, θ, ϱ, ξ},Σ = Q6.

Note that by part (a) of Theorem 1.1, the graphs of the cases (1),
(2) for [S = S1,S3], (3) for [S = S1,S2,S3] are non-normal. Also, the
graphs Q6, K4 ×K4 and Q+

5 are arc-transitive.
If n > 2, we suppose that S = {§, §−1, †, †−1, ‡, ‡−1}, where o(§) = o(†) =
o(‡) = n ≥ 3. Then, G is an abelian group generated by §, † and ‡, so
G ∼= Zn ×Zm ×Zp = ⟨λ⟩ × ⟨µ⟩ × ⟨σ⟩, where m|n and p|m (i.e., n = mk,
m = pk

′
). Note that Aut(G) acts transitively on the set of elements of

G with the highest order. So, we can take § = λ, † = λwµj , and ‡ =

λwµw
′
σi such that µ ∈ ⟨µj⟩ and σ ∈ ⟨σi⟩. One can see that the orders

of λwµj and λwµw
′
σi are n. Therefore, gcd(j,m) = 1 and gcd(p, i) = 1.

So, we may also take † = λwµ and ‡ = λwµw
′
σ, under the action of

a suitable automorphism of G. Since the mapping λ 7→ λ, µ 7→ λkµ

and σ 7→ λkµk
′
σ is an automorphism of G, without loss of generality,

we can assume that 0 ≤ w ≤ k − 1 and 0 ≤ w
′ ≤ k

′ − 1. Now, since
o(†) = o(‡) = n, we have gcd(w, k) = 1 and gcd(w

′
, k

′
) = 1. However,

G is not cyclic and then m ≥ 2 and p ≥ 2. Thus Σ ∼= Ac(n,m, p, w,w
′
).

Now, by Lemma 3.1, the proof of Theorem 1.1 (b) is complete. □

4 Conclusion

In this paper, we have studied the arc-transitive Cayley graphs with
valency six on finite abelian groups. We have shown that there are only
finitely many such graphs that are non-normal, and we have classified
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them completely. We have also classified all normal Cayley graphs on
non-cyclic abelian groups with valency six, and we have given some ex-
amples of such graphs. Our results extend and generalize some previous
works on arc-transitive Cayley graphs of low valency.

References

[1] M. Alaeiyan, Arc-transiyive and s-regular Cayley graph of valency
five on abelian groups, Discussiones Mathematica Graph Theory,
26, 2006, 359-368.

[2] M. Alaeiyan, Normal 6-valent Cayley graph of abelian groups, In-
ternational Journal of Engineering Science, 19(1-2), 2008, 1-11.

[3] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classifi-
cation of 2-arc-transitive circulant, Journal of Algebraic Combina-
torics, 5, 1996, 83-86.

[4] N. Biggs, Algebraic Graph Theory, Cambridge University Press,
1974.

[5] J. L. Berggren, An algebraic characterization of symmetric graph
with p point, Bulletin of the Australian Mathematical Society, 158,
1971, 247-256.

[6] C. Y. Chao, On the classification of symmetric graph with a prime
number of vertices, Transactions of the American Mathematical So-
ciety, 158, 1971, 247-256.

[7] C. Y. Chao, and J. G. Wells, A class of vertex-transitive di-graphs,
Journal of Combinatorial Theory, Series B, 14, 1973, 246-255.

[8] M. Conder, J. X. Zhou, Y. Q. Feng and M.M. Zhang, Edge-
transitive bi-Cayley graphs, Journal of Combinatorial Theory, Se-
ries B, 145, 2020, 264-306.

[9] X. Fang, P. Niu, and J. Wang, On Automorphism Groups of Sym-
metric Cayley Graphs of Finite Simple Groups with Valency Six,
Algebra Colloquium, 17, 1, 2010, . 161-172.



6-VALENT ARC-TRANSITIVE CAYLEY GRAPHS ON ABELIAN
GROUPS 19

[10] M. Hashemian and M. Alaeiyan, Novel Conditions on the Non-
Normal Cayley Graphs of Valency Six, Indian Journal of Science
and Technology, 8, 2015.

[11] N. J. A. Sloane, Sequences A286280 in The On-Line Encyclopedia
of Integer Sequences.

[12] H. Wielandt, Finit Permutation Group, Academic Press, New York,
1964.

[13] M. Y. Xu and J. Xu, Arc-transitive Cayley graph of valency at most
four on abelian groups, Southeast Asian Bulletin of Mathematics,
25, 2001, 355-363.

[14] M. Y. Xu, A note on one-regular graphs of valency four, Chinese
Science Bulletin, 45, 2000, 2160-2162.

[15] M. Y. Xu, H. S. Sim and Y. G. Baik, Arc-transitive circulant di-
graphs of odd prime-power order, Discrete Mathematics, 287(1-3),
2004, 113-119.

[16] M. Y. Xu, Automorphism groups and isomorphisms of Cayley di-
graphs, Discrete Mathematics, 182, 1998, 309-319.

Mehdi Alaeiyan
Professor of Mathematics
School of Mathematics
Iran University of Science and Technology
Tehran, Iran

E-mail: alaeiyan@iust.ac.ir

Masoumeh Akbarizadeh
PhD of Mathematics
School of Mathematics
Iran University of Science and Technology
Tehran, Iran

E-mail: masoumeh.akbarizadeh@gmail.com

Zahra Heydari
M.S. in Mathematics



20 M. ALAEIYAN, M. AKBARIZADEH AND Z. HEYDARI

School of Mathematics
Iran University of Science and Technology
Tehran, Iran


	1 Introduction
	2  Primary Analysis 
	3 The Proof of Theorem 1.1
	4 Conclusion
	References

