Journal of Mathematical Extension
Vol. 17, No. 9, (2023) (4)1-20
URL: https://doi.org/10.30495/JME.2023.2621
ISSN: 1735-8299
Original Research Paper

6-Valent Arc-Transitive Cayley Graphs on Abelian Groups

M. Alaeiyan*
Iran University of Science and Technology
M. Akbarizadeh
Iran University of Science and Technology
Z. Heydari
Iran University of Science and Technology

Abstract

Let G be a finite group and \mathcal{S} be a subset of G such that $1_{G} \notin \mathcal{S}$ and $\mathcal{S}^{-1}=\mathcal{S}$. The Cayley graph $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ on G with respect to \mathcal{S} is the graph with the vertex set G such that, for $\S, \dagger \in G$, the pair (\S, \dagger) is an arc in $\operatorname{Cay}(G, \mathcal{S})$ if and only if $\dagger \S^{-1} \in \mathcal{S}$. The graph Σ is said to be arc-transitive if its full automorphism group $\operatorname{Aut}(\Sigma)$ is transitive on its arc set. In this paper we give a classification for arc-transitive Cayley graphs with valency six on finite abelian groups which are non-normal. Moreover, we classify all normal Cayley graphs on non-cyclic abelian groups with valency 6 .

AMS Subject Classification: 05C25; 20B25
Keywords and Phrases: Cayley graph, normal Cayley graph, arctransitive graph

[^0]
1 Introduction

In this paper, the vertex set, edge set and the full automorphism group of a finite, simple and undirected graph Σ are denoted by $V(\Sigma), E(\Sigma)$, and $\operatorname{Aut}(\Sigma)$, respectively. A graph Σ is said to be vertex-transitive and edgetransitive if $\operatorname{Aut}(\Sigma)$ acts transitively on $V(\Sigma)$ and $E(\Sigma)$, respectively. For a positive integer s, an s-arc of Σ is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $\left\{v_{i-1}, v_{i}\right\} \in E(\Sigma)$ for $1 \leq i \leq s$ and if $s \geq 2$, then $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. A graph Σ is called s-arc-transitive if $\operatorname{Aut}(\Sigma)$ acts transitively on $V(\Sigma)$ and on the set of s-arcs and also it is called s-transitive graph if Σ is an s-arc-transitive but not $(s+1)$-arctransitive. Note that for $s=1$, we simply use $A(\Sigma)$ to denote its 1 -arc set and 1 -arc-transitive graph is called arc-transitive. An arc-transitive graph Σ is said to be s-regular if for any two s-arcs in Σ, there is a unique automorphism of Σ mapping one to the other. Also, an arc-transitive graph Σ is said to be one regular if $|\operatorname{Aut}(\Sigma)|=|A(\Sigma)|$.

Let G be a finite group and $\mathcal{S} \subset G$ such that $1_{G} \notin \mathcal{S}$. The Cayley digraph $\mathcal{C D}=\operatorname{Cay}_{\mathcal{D}}(G, \mathcal{S})$ on G with respect to \mathcal{S} is defined by $V(\mathcal{C D})=G$ and $E(\mathcal{C D})=\{(g, s g) \mid g \in G, s \in \mathcal{S}\}$. The three obvious results follow immediately from this definition: (1) The automorphism group of $\mathcal{C D}$, $\operatorname{Aut}(\mathcal{C D})$, contains the right regular representation G_{R} of G, and so $\mathcal{C D}$ is vertex-transitive; (2) $\mathcal{C D}$ is connected if and only if $G=\langle\mathcal{S}\rangle$; (3) $\mathcal{C D}$ is undirected if and only if $\mathcal{S}^{-1}=\mathcal{S}$. In this case, we denote $\mathcal{C D}=\operatorname{Cay}_{\mathcal{D}}(G, \mathcal{S})$ by $\Sigma=\operatorname{Cay}(G, \mathcal{S})$.
A Cayley graph $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ (digraph $\mathcal{C D}=\operatorname{Cay}_{\mathcal{D}}(G, \mathcal{S})$) is called normal if $G \unlhd \operatorname{Aut}(\Sigma)(G \unlhd \operatorname{Aut}(\mathcal{C D}))$.
in [13], Xu and Xu classified all arc-transitive Cayley graphs of valency at most four on abelian groups, and in [14] Xu classified all oneregular circulant graphs of valency four. Xu et al. [15] classified all arc-transitive circulant graphs and digraphs of order p^{m}, where p is an odd prime. Chao [6], classified symmetric graphs of order a prime number p, and Berggren [5] simplified Chao's proof and then Chao and Wells [7] gave a classification of symmetric digraphs of order a prime number p. A generalization of [14], is the classification of 2 -arc-transitive circulant graphs, which was given by Alspach et. al [3]. In [1] the first author classified all arc-transitive Cayley graphs with valency 5 of abelian groups. The aim of this paper is to investigate the arc-transitive Cayley graphs

6-VALENT ARC-TRANSITIVE CAYLEY GRAPHS ON ABELIAN GROUPS

with valency six on abelian groups. Recent research has classified Cayley graphs of valency 6 and edge-transitive Cayley graphs in $[9,10$] and [8], respectively.
The group- and graph-theoretic notations and terminologies are standard; see $[3,4,12]$ for example. We will denote the semi-directed product of group H by K with $H \cdot K$.
Theorem 1.1. Let G be an abelian group and let \mathcal{S} be a subset of G such that $1_{G} \notin \mathcal{S}$ and $\mathcal{S}=\mathcal{S}^{-1}$. Suppose that $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ is a connected Cayley graph with valency six on group G with respect to \mathcal{S}. Then we have:
(a) If Σ is non-normal, then all arc-transitive Σ are as follows:

1. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle$ $\mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu, \sigma, \theta, \varrho\right\}, \Sigma=C_{4} \times Q_{4}=Q_{6}, \operatorname{Aut}(\Sigma)=S_{2} w r S_{6}$.
2. $G=\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2}^{2}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\varrho\rangle, \mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu, \mu^{-1}, \sigma, \theta\right\}$, $\Sigma=C_{4} \times Q_{4}=Q_{6}, \operatorname{Aut}(\Sigma)=S_{2} w r S_{6}$.
3. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{3}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu, \sigma, \theta, \lambda^{2} \mu \sigma \theta\right\}, \Sigma=Q_{5}^{\theta}, \operatorname{Aut}(\Sigma)=S_{2}^{5} \cdot S_{6}$.
4. $G=\mathbb{Z}_{4}^{3}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle, \mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu, \mu^{-1}, \sigma, \sigma^{-1}\right\}$, $\Sigma=C_{4} \times C_{4} \times C_{4}=Q_{6}, \operatorname{Aut}(\Sigma)=S_{2} w r S_{6}$.
5. $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu, \mu^{-1}, \lambda \mu^{-1}, \lambda^{-1} \mu\right\}$, $\Sigma=K_{3,3,3}$.
6. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}_{1}=\left\{\mu, \lambda, \lambda^{-1}, \lambda \mu, \lambda^{2} \mu, \lambda^{3} \mu\right\}$, $\mathcal{S}_{2}=\left\{\mu, \lambda, \lambda^{-1}, \lambda \mu, \lambda^{2}, \lambda^{3} \mu\right\}, \mathcal{S}_{3}=\left\{\lambda, \lambda^{-1}, \lambda \mu, \lambda^{2}, \lambda^{2} \mu, \lambda^{3} \mu\right\}$, $\Sigma=K_{8}-8 K_{2}$.
7. $G=\mathbb{Z}_{6} \times \mathbb{Z}_{2}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}_{1}=\left\{\mu, \lambda, \lambda^{-1}, \lambda^{3}, \lambda \mu, \lambda^{2} \mu, \lambda^{4} \mu\right\}$, $\mathcal{S}_{2}=\left\{\lambda, \lambda^{-1}, \lambda^{3}, \lambda \mu, \lambda^{3} \mu, \lambda^{5} \mu\right\}, \Sigma=K_{6,6}, \operatorname{Aut}(\Sigma)=S_{6} w r S_{2}$.
8. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2}^{2}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle, \mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{2}, \mu, \sigma, \mu \sigma\right\}$, $\Sigma=K_{4} \times K_{4}, \operatorname{Aut}(\Sigma)=S_{4} \times S_{2}$.
9. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{2}, \mu, \mu^{-1}, \mu^{2}\right\}$, $\Sigma=K_{4} \times K_{4}, \operatorname{Aut}(\Sigma)=S_{4} \times S_{2}$.
10. $G=\mathbb{Z}_{2}^{3}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle, \mathcal{S}=\{\lambda, \mu, \sigma, \lambda \mu, \lambda \sigma, \lambda \mu \sigma\}$, $\Sigma=K_{8}-8 K_{2}$.
11. $G=\mathbb{Z}_{2}^{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle$, $\mathcal{S}=\{\lambda, \mu, \sigma, \theta, \lambda \mu \sigma, \lambda \mu \theta\}$.
12. $G=\mathbb{Z}_{14}=\langle\lambda\rangle, \mathcal{S}=\left\{\lambda, \lambda^{3}, \lambda^{5}, \lambda^{-1}, \lambda^{-3}, \lambda^{-5}\right\}$, $\Sigma=K_{7,7}-7 K_{2}, \operatorname{Aut}(\Sigma)=S_{7} \times S_{2}$.
13. $G=\mathbb{Z}_{12}=\langle\lambda\rangle, \mathcal{S}=\left\{\lambda, \lambda^{2}, \lambda^{5}, \lambda^{7}, \lambda^{10}, \lambda^{11}\right\}$, $\Sigma=K_{4,4,4}-12 K_{2}$.
14. $G=\mathbb{Z}_{12}=\langle\lambda\rangle, \mathcal{S}=\left\{\lambda, \lambda^{3}, \lambda^{5}, \lambda^{7}, \lambda^{9}, \lambda^{11}\right\}$, $\Sigma=K_{6,6}, \operatorname{Aut}(\Sigma)=S_{6} w r S_{2}$.
15. $G=\mathbb{Z}_{9}=\langle\lambda\rangle, \mathcal{S}=\left\{\lambda, \lambda^{2}, \lambda^{4}, \lambda^{5}, \lambda^{7}, \lambda^{8}\right\}, \Sigma=K_{3,3,3}$.
16. $G=\mathbb{Z}_{8}=\langle\lambda\rangle, \mathcal{S}=\left\{\lambda, \lambda^{2}, \lambda^{3}, \lambda^{5}, \lambda^{6}, \lambda^{7}\right\}, \Sigma=K_{8}-8 K_{2}$.
17. $G=\mathbb{Z}_{7}=\langle\lambda\rangle, \mathcal{S}=\left\{\lambda, \lambda^{2}, \lambda^{3}, \lambda^{4}, \lambda^{5}, \lambda^{6}\right\}$, $\Sigma=K_{7}, \operatorname{Aut}(\Sigma)=S_{7}$.
(b) If G is a non-cyclic abelian group and Σ is normal, then Σ is arctransitive if one of the following happens:
18. $G=\mathbb{Z}_{2}^{6}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle \times\langle\xi\rangle$, $\mathcal{S}=\{\lambda, \mu, \sigma, \theta, \varrho, \xi\}, \Sigma=Q_{6}$.
19. $G=\mathbb{Z}_{2}^{5}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle$, $\mathcal{S}=\{\lambda, \mu, \sigma, \theta, \varrho, \lambda \mu \sigma \theta \varrho\}, \Sigma=Q_{5}^{+}$.
20. $G=\mathbb{Z}_{2}^{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle, \mathcal{S}=\{\lambda, \mu, \sigma, \theta, \lambda \mu, \sigma \theta\}$, $\Sigma=K_{4} \times K_{4}$.
21. $\Sigma=A c(n, n, n, 0,0)$ for $n \geq 3$ and $n \neq 4$.
22. $\Sigma=A c(2 m, m, m, 1,0)$ for $m \geq 3$.
23. $\Sigma=A c(2 m, m, m, 1,1)$ for $m \geq 3$.
24. $\Sigma=A c(2 m, 2 m, m, 0,1)$ for $m \geq 3$.
25. $\Sigma=A c(2 m, 2 m, m, 1,1)$ for $m \geq 3$.
26. $\Sigma=A c\left(2 m, 2 m, p, 1, w^{\prime}\right)$ with $k^{\prime} \geq 3$ and $\left(w^{\prime}\right)^{2} \equiv \pm 1\left(\bmod k^{\prime}\right)$.
27. $\Sigma=A c\left(m, m, p, 0, w^{\prime}\right)$ with $k^{\prime} \geq 3$ and $\left(w^{\prime}\right)^{2} \equiv \pm 1\left(\bmod k^{\prime}\right)$.
28. $\Sigma=A c\left(n, m, p, w, w^{\prime}\right)$ with $k^{\prime} \geq 3, \quad k \geq 3, \quad(w)^{2} \equiv \pm 1(\bmod k)$ and $\left(w^{\prime}\right)^{2} \equiv \pm 1\left(\bmod k^{\prime}\right)$.

2 Primary Analysis

Let $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ be a Cayley graph on G with respect to \mathcal{S} and let $\operatorname{Aut}(G, \mathcal{S})=\left\{\alpha \in \operatorname{Aut}(G) \mid \mathcal{S}^{\alpha}=\mathcal{S}\right\}$. Clearly, $G \cdot \operatorname{Aut}(G, \mathcal{S}) \leq \operatorname{Aut}(\Sigma)$. Also, we have the following:

Proposition 2.1. [13, 15] Let G be a finite group, \mathcal{S} be a subset of G non containing 1_{G} and $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ be a Cayley graph on G with respect to \mathcal{S}.
(1) $N_{A}(G)=G \cdot \operatorname{Aut}(G, \mathcal{S})$.
(2) $A=G \cdot A u t(G, \mathcal{S})$ is equivalent to $G \triangleleft A$.

Proposition 2.2. [14] A graph Σ is arc-transitive if and only if it is vertex-transitive and the stabilizer G_{u} of a vertex u acts transitively on the neighborhood $\Sigma_{1}(u)$ of u in Σ.

Proposition 2.3. Let $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ be a normal Cayley graph on G with relative to \mathcal{S}. Then Σ is arc-transitive if and only if $\operatorname{Aut}(G, \mathcal{S})$ acts transitively on the neighborhood $\Sigma_{1}(1)$ of 1 in Σ.

Now we introduce some graph products which are used in the paper. Let \mathcal{X} and \mathcal{Y} be two graphs. The direct product $\mathcal{X} \times \mathcal{Y}$ is defined as the graph with vertex set $V(\mathcal{X} \times \mathcal{Y})=V(\mathcal{X}) \times V(\mathcal{Y})$. Two vertices $u=\left[\xi_{1}, \dagger_{1}\right]$ and $v=\left[\xi_{2}, \dagger_{2}\right]$ are adjacent whenever $\S_{1}=\S_{2}$ and $\left[\dagger_{1}, \dagger_{2}\right] \in E(\mathcal{Y})$ or $\dagger_{1}=\dagger_{2}$ and $\left[\S_{1}, \S_{2}\right] \in E(\mathcal{X})$. Two graphs are called relatively prime if they have no nontrivial common direct factor. Another graph with vertex set $V(\mathcal{X} \times \mathcal{Y})$ is the lexicographic product $\mathcal{X}[\mathcal{Y}]$. Two vertices $u=$ $\left[\xi_{1}, \dagger_{1}\right]$ and $v=\left[\xi_{2}, \dagger_{2}\right]$ in $V(\mathcal{X}[\mathcal{Y}])$, are adjacent, if either $\left[\xi_{1}, \S_{2}\right] \in E(\mathcal{X})$ or $\S_{1}=\S_{2}$ and $\left[\dagger_{1}, \dagger_{2}\right] \in E(\mathcal{Y})$. Let $\mathcal{V}(Y)=\left\{\dagger_{1}, \dagger_{2}, \ldots, \dagger_{n}\right\}$. Then there
is a natural embedding of $n \mathcal{X}$ in $\mathcal{X}[\mathcal{Y}]$, where for $1 \leq i \leq n$, the i th copy of \mathcal{X} is the subgraph induced on the vertex subset $\left\{\left(\S, \dagger_{i}\right) \mid \S \in V(\mathcal{X})\right\}$ in $\mathcal{X}[\mathcal{Y}]$. The deleted lexicographic product $\mathcal{X}[\mathcal{Y}]-n \mathcal{X}$ is the graph obtained by deleting all the edges of (this natural embedding of) $n \mathcal{X}$ from $\mathcal{X}[\mathcal{Y}]$.

Let \mathcal{X} be a graph, α be a permutation on $V(\mathcal{X})$ and C_{n} be a circuit of length n. The twisted product $\mathcal{X} \times{ }_{\alpha} C_{n}$ of \mathcal{X} by C_{n} with respect to α is defined as follows:

$$
\begin{aligned}
& V\left(\mathcal{X} \times{ }_{\alpha} C_{n}\right)= V(\mathcal{X}) \times V\left(C_{n}\right)=\{(\S, i) \mid \S \in V(\mathcal{X}), \\
&i=0,1, \ldots, n-1\}, \\
& E\left(\mathcal{X} \times{ }_{\alpha} C_{n}\right)=\{[(\S, i),(\S, i+1)] \mid \S \in V(\mathcal{X}), i=0,1, \ldots, n-2\} \\
& \cup\left\{\left[(\S, n-1),\left(\S^{\alpha}, 0\right)\right] \mid \S \in V(\mathcal{X})\right\} \\
& \cup\{[(\S, i),(y, i)] \mid[\S, \dagger] \in E(\mathcal{X}), i=0,1, \ldots, n-1\} .
\end{aligned}
$$

Finally, we introduce some new graphs used in this paper. A circulant graph $C\left(n ; n_{1}, \ldots, n_{d}\right)$ is a graph with vertex set $V C=\{0,1, \ldots, n-$ $1\}$ and edge set $E C=\left\{(i, j)| | j-i \mid=n_{1}, \ldots, n_{d-1}\right.$ or $\left.n_{d}(\bmod n)\right\}$, which has order n and valency $2 d$ or $2 d-1$. Thus $C_{n}=C(n ; 1)$. If n is even then the graph $C(n ; 1, n / 2)$ is of valency 3 , denoted by M_{n}. The graph Q_{d}^{+}for $d=4,5$, denotes the graph obtained by connecting all the long diagonal of d-cube Q_{d}, that is connecting all vertices u and v in Q_{d} such that $d(u, v)=d$. The graph $K_{m, m} \times_{c} C_{n}$ is the twisted product of $K_{m, m}$ by C_{n} such that c is a cycle permutation on each part of the complete bipartite graph $K_{m, m}$. The graph $Q_{3} \times{ }_{d} C_{n}$ is the twisted product of Q_{3} by C_{n} such that d transposes each pair of elements on the long diagonals of Q_{3}. The graph $C_{2 m}^{d}\left[2 K_{1}\right]$ is defined as the following:

$$
\begin{aligned}
V\left(C_{2 m}^{d}\left[2 K_{1}\right]\right)= & V\left(C_{2 m}\left[2 K_{1}\right]\right), \\
E\left(C_{2 m}^{d}\left[2 K_{1}\right]\right)= & E\left(C_{2 m}\left[2 K_{1}\right]\right) \cup\left\{\left[\left(\S_{i}, \dagger_{j}\right),\left(\S_{i+m}, \dagger_{j}\right)\right] \mid\right. \\
& i=0,1, \ldots, m-1, j=1,2\}
\end{aligned}
$$

where $V\left(C_{2 m}\right)=\left\{\S_{0}, \S_{1}, \ldots, \S_{2 m-1}\right\}$ and $V\left(2 K_{1}\right)=\left\{\dagger_{1}, \dagger_{2}\right\}$.
In the following theorem, all the non-normal Cayley graphs of valency six on abelian groups are classified.

Theorem 2.4. [2] Let G be an abelian group and $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ be a connected Cayley graph on G with respect to \mathcal{S} of degree 6. Then Σ is normal unless one of the following cases holds:

1. $G=\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\varrho\rangle(m \geq 3)$, $\mathcal{S}=\left\{\lambda, \mu, \sigma, \lambda \mu \sigma \theta, \theta^{-1}\right\}, \Sigma=K_{4,4} \times C_{m}$.
2. $G=\mathbb{Z}_{2}^{5}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle$,
$\mathcal{S}=\{\lambda, \mu, \sigma, \lambda \mu \sigma, \theta, \varrho\}, \Sigma=C_{4} \times K_{4,4}$.
3. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle$,
$\mathcal{S}=\left\{\lambda, \mu, \lambda \mu, \sigma^{2}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{4} \times K_{4}$.
4. $G=\mathbb{Z}_{2}^{4} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle$,
$\mathcal{S}=\left\{\lambda, \mu, \sigma, \theta, \varrho, \varrho^{-1}\right\}, \Sigma=C_{4} \times Q_{4}=Q_{6}$.
5. $G=\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle, \mathcal{S}_{1}=\left\{\lambda, \mu, \sigma, \theta^{2}, \theta, \theta^{-1}\right\}$,
$\Sigma=Q_{3} \times K_{4} ; \mathcal{S}_{2}=\left\{\lambda, \mu, \lambda \mu, \sigma, \theta, \theta^{-1}\right\}, \Sigma=K_{4} \times K_{2} \times C_{4} ;$
$\mathcal{S}_{3}=\left\{\lambda, \mu, \sigma, \lambda \theta^{2}, \theta, \theta^{-1}\right\}, \quad \Sigma=K_{4,4} \times C_{4}$.
6. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{6}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle, \mathcal{S}=\left\{\lambda, \mu, \lambda \mu, \sigma^{3}, \sigma, \sigma^{-1}\right\}$, $\Sigma=K_{4} \times K_{3,3}$.
7. $G=\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{6}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle$,
$\mathcal{S}=\left\{\lambda, \mu, \sigma, \theta^{3}, \theta, \theta^{-1}\right\}, \Sigma=Q_{3} \times K_{3,3}$.
8. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 3)$, $\mathcal{S}=\left\{\lambda, \mu^{3}, \mu, \mu^{-1}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{2} \times K_{3,3} \times C_{m}$.
9. $G=\mathbb{Z}_{6} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda^{3}, \mu^{m}, \lambda, \lambda^{-1}, \mu, \mu^{-1}\right\}, \Sigma=K_{3,3} \times M_{2 m}$.
10. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{2}, \mu, \mu^{-1}, \mu^{m}\right\}, \Sigma=K_{4} \times M_{2 m}$.
11. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 3)$,
$\mathcal{S}_{1}=\left\{\lambda, \mu, \mu^{-1}, \mu^{2}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{2} \times K_{4} \times C_{m} ;$
$\mathcal{S}_{2}=\left\{\lambda, \mu, \mu^{-1}, \lambda \mu^{2}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{4,4} \times C_{m}$.
12. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$, $\mathcal{S}=\left\{\lambda, \mu, \mu^{-1}, \sigma, \sigma^{-1}, \sigma^{m}\right\}, \Sigma=K_{2} \times C_{4} \times M_{2 m}$.
13. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle(m \geq 3)$, $\mathcal{S}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \theta, \theta^{-1}\right\}, C_{4} \times C_{4} \times C_{m}=Q_{4} \times C_{m}$.
14. $G=\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle(m \geq 3)$, $\mathcal{S}=\left\{\lambda, \mu, \sigma \theta, \sigma \theta^{-1}, \theta, \theta^{-1}\right\}, \Sigma=C_{4} \times C_{m}\left[2 K_{1}\right]$.
15. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m=5,10)$, $\mathcal{S}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \sigma^{3}, \sigma^{-3}\right\}, \Sigma=C_{4} \times K_{5}$ if $m=5$ and $\Sigma=C_{4} \times K_{5,5}-5 K_{2}$ if $m=10$.
16. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \sigma^{2 m+1}, \sigma^{2 m-1}\right\}, \Sigma=C_{4} \times C_{m}\left[2 K_{1}\right]$.
17. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 3$, m is odd $)$,
$\mathcal{S}=\left\{\lambda, \lambda^{3}, \mu, \mu^{-1}, \mu^{m+1}, \mu^{m-1}\right\}, \Sigma=C_{4} \times C_{m}\left[2 K_{1}\right]$.
18. $G=\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 3)$,
$\mathcal{S}=\left\{\lambda, \lambda^{3}, \mu, \mu^{3}, \sigma, \sigma^{-1}\right\}, \Sigma=C_{4} \times C_{4} \times C_{m}=Q_{4} \times C_{m}$.
19. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{m} \times \mathbb{Z}_{n}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 3, n \geq 3)$, $\mathcal{S}=\left\{\lambda \mu, \lambda \mu^{-1}, \mu, \mu^{-1}, \sigma, \sigma^{-1}\right\}, \Sigma=C_{m}\left[2 K_{1}\right]$.
20. $G=\mathbb{Z}_{m} \times \mathbb{Z}_{n}=\langle\lambda\rangle \times\langle\mu\rangle(m=5,10, n \geq 3)$, $\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{3}, \lambda^{-3}, \mu, \mu^{-1}\right\}, \Sigma=K_{5} \times C_{n}$ if $m=5$ and $\Sigma=K_{5,5}-5 K_{2} \times C_{n}$ if $m=10$.
21. $G=\mathbb{Z}_{4 m} \times \mathbb{Z}_{n}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 2, n \geq 3)$, $\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{2 m+1}, \lambda^{2 m-1}, \mu, \mu^{-1}\right\}, \Sigma=C_{2 m}\left[2 K_{1}\right] \times C_{n}$.
22. $G=\mathbb{Z}_{2}^{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle, \mathcal{S}=\{\lambda, \mu, \lambda \mu, \sigma, \lambda \mu \sigma, \theta\}$, $\Sigma=K_{2} \times K_{2}\left[2 K_{2}\right]$.
23. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle$,
$\mathcal{S}=\left\{\lambda, \mu, \lambda \sigma^{2}, \sigma, \sigma^{-1}, \sigma^{2}\right\}, \Sigma=K_{2} \times K_{2}\left[2 K_{2}\right]$.
24. $G=\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle$,
$\mathcal{S}=\left\{\lambda, \mu, \sigma, \theta, \theta^{-1}, \lambda \mu \theta^{2}\right\}, \Sigma=K_{2} \times Q_{4}^{+}$.
25. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{3 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 1)$, $\mathcal{S}=\left\{\lambda, \mu, \lambda \sigma^{m}, \lambda \sigma^{2 m}, \sigma, \sigma^{-1}\right\}$.
26. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}=\left\{\lambda, \mu, \mu^{3}, \mu^{5}, \mu^{7}, \mu^{9}\right\}$, $\Sigma=K_{2} \times K_{5,5}$.
27. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda \sigma, \lambda \sigma^{-1}, \mu, \sigma^{m}, \sigma, \sigma^{-1}\right\}, \Sigma=C_{2 m}^{d}\left[2 K_{1}\right] \times K_{2}$.
28. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda, \mu^{2} \sigma^{m}, \mu, \mu^{-1}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{2} \times Q_{3} \times C_{m}=Q_{4} \times C_{m}$.
29. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 3)$,
$\mathcal{S}=\left\{\lambda, \mu^{m}, \mu, \mu^{-1}, \mu^{m+1}, \mu^{m-1}\right\}, \Sigma=K_{2} \times C_{m}\left[K_{2}\right]$.
30. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda, \mu, \lambda \sigma, \lambda \sigma^{-1}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{2} \times C_{2 m}\left[K_{2}\right]$.
31. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{6 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 3$, m is odd $)$, $\mathcal{S}=\left\{\lambda, \mu^{2}, \mu^{-2}, \mu^{m}, \mu^{5 m}, \mu^{3 m}\right\}, \Sigma=K_{2} \times K_{3,3} \times{ }_{c} C_{m}$.
32. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{6 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda, \mu \sigma^{m}, \mu \sigma^{3 m}, \mu \sigma^{5 m}, \sigma, \sigma^{-1}\right\}, \Sigma=K_{2} \times K_{3,3} \times{ }_{c} C_{2 m}$.
33. $G=\mathbb{Z}_{2}^{3}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle, \mathcal{S}=\{\lambda, \mu, \sigma, \lambda \mu, \lambda \sigma, \lambda \mu \sigma\}$,
$\Sigma=K_{8}-8 K_{2}$.
34. $G=\mathbb{Z}_{2}^{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle, \mathcal{S}=\{\lambda, \mu, \sigma, \theta, \lambda \mu \sigma, \lambda \mu \theta\}$.
35. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 2)$,
$\mathcal{S}=\left\{\lambda, \mu, \lambda \sigma^{m}, \mu \sigma^{m}, \sigma, \sigma^{-1}\right\}$.
36. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle$,
$\mathcal{S}_{1}=\left\{\lambda, \mu, \lambda \mu, \lambda \sigma^{2}, \sigma, \sigma^{-1}\right\}, \mathcal{S}_{2}=\left\{a, b, a c^{2}, a b c^{2}, c, c^{-1}\right\}$.
37. $G=\mathbb{Z}_{2}^{3} \times \mathbb{Z}_{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle$,
$\mathcal{S}=\left\{\lambda, \mu, \sigma, \theta, \theta^{-1}, \lambda \mu \sigma \theta^{2}\right\}, \Sigma=Q_{5}^{+}$.
38. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{6 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 2)$, $\mathcal{S}=\left\{\lambda, \mu^{3 m}, \lambda \mu^{2 m}, \lambda \mu^{4 m}, \mu, \mu^{-1}\right\}$.
39. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 1)$, $S=\left\{\lambda, \lambda \mu^{m}, \lambda \mu^{2 m}, \lambda \mu^{3 m}, \mu, \mu^{-1}\right\}$.
40. $G=\mathbb{Z}_{4} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 2)$, $\mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu^{m}, \lambda^{2} \mu^{m}, \mu, \mu^{-1}\right\}$.
41. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4 m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 1)$,
$\mathcal{S}=\left\{\lambda, \lambda \sigma^{2 m}, \mu \sigma^{m}, \mu \sigma^{3 m}, \sigma, \sigma^{-1}\right\}$.
42. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{10}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}=\left\{\lambda, \lambda \mu^{5}, \mu, \mu^{9}, \mu^{3}, \mu^{7}\right\}$.
43. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2 m}=\langle\lambda\rangle \times\langle\mu\rangle$,
$\mathcal{S}_{1}=\left\{\lambda, \mu, \mu^{-1}, \mu^{m}, \lambda \mu, \lambda \mu^{-1}\right\}(m \geq 2)$,
$\mathcal{S}_{2}=\left\{\lambda, \lambda \mu^{m}, \mu, \mu^{-1}, \lambda \mu, \lambda \mu^{-1}\right\}(m \geq 2)$,
$\mathcal{S}_{3}=\left\{\lambda \mu^{m}, \mu^{m}, \mu, \mu^{-1}, \lambda \mu, \lambda \mu^{-1}\right\}(m \geq 2)$,
$\mathcal{S}_{4}=\left\{\lambda, \lambda \mu^{m}, \mu, \mu^{-1}, \mu^{m+1}, \mu^{m-1}\right\}(m \geq 3)$,
$\mathcal{S}_{5}=\left\{\lambda, \mu, \mu^{-1}, \mu^{m}, \lambda \mu^{m+1}, \lambda \mu^{m-1}\right\}(m \geq 3)$,
$\mathcal{S}_{6}=\left\{\lambda, \lambda \mu^{m}, \mu, \mu^{-1}, \lambda \mu^{m+1}, \lambda \mu^{m-1}\right\}(m \geq 3)$,
$\mathcal{S}_{7}=\left\{\lambda \mu^{m}, \mu, \mu^{-1}, \mu^{m}, \lambda \mu^{m+1}, \lambda \mu^{m-1}\right\}(m \geq 3)$.
44. $G=\mathbb{Z}_{2}^{2} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle$,
$\mathcal{S}_{1}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \lambda \mu \sigma, \lambda \mu \sigma^{-1}\right\}(m \geq 3)$,
$\mathcal{S}_{2}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \lambda \sigma^{k+1}, \lambda \sigma^{k-1}\right\}(m=2 k, k \geq 3)$,
$\mathcal{S}_{3}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \lambda \mu \sigma^{k+1}, \lambda \mu \sigma^{k-1}\right\}(m=2 k, k \geq 3)$,
$\mathcal{S}_{4}=\left\{\lambda, \mu \sigma, \mu \sigma^{-1}, \lambda \sigma^{k}, \sigma, \sigma^{-1}\right\}(m=2 k, k \geq 2)$,
$\mathcal{S}_{5}=\left\{\lambda, \mu \sigma^{k+1}, \mu \sigma^{k-1}, \sigma^{k}, \sigma, \sigma^{-1}\right\}(m=2 k, k \geq 3)$,
$\mathcal{S}_{6}=\left\{\lambda, \mu \sigma^{k+1}, \mu \sigma^{k-1}, \lambda \sigma^{k}, \sigma, \sigma^{-1}\right\}(m=2 k, k \geq 3)$,
$\mathcal{S}_{7}=\left\{\lambda, \mu, \sigma, \sigma^{-1}, \lambda \sigma, \lambda \sigma^{-1}\right\}(m=2 k-1, k \geq 2)$.
45. $G=\mathbb{Z}_{4 m}=\langle\lambda\rangle(m \geq 2), \mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{m}, \lambda^{-m}, \lambda^{2 m+1}, \lambda^{2 m-1}\right\}$.
46. $G=\mathbb{Z}_{2 m}=\langle\lambda\rangle(m \geq 4)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{m+1}, \lambda^{m-1}, \lambda^{k}, \lambda^{-k}\right\}(2 \leq k \leq m-2),(m, k)=l$, if
$l>2$ or $l=2$ for $m=4 i+2 ; \quad(k=2 i$, with i odd or $k=2 i+2$, with i even).
47. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{m}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 5)$,
$\mathcal{S}_{1}=\left\{\lambda \mu, \lambda \mu^{-1}, \mu, \mu^{-1}, \mu^{j}, \mu^{-j}\right\}\left(2 \leq j<\frac{m}{2}\right),(m, j)=p>2$,
$m=(t+1) p$,
$\mathcal{S}_{2}=\left\{\lambda \mu, \lambda \mu^{-1}, \mu, \mu^{-1}, \lambda \mu^{j}, \lambda \mu^{-j}\right\}\left(2 \leq j<\frac{m}{2}\right),(m, j)=p>2$,
$m=(t+1) p$.
48. $G=\mathbb{Z}_{2} \times \mathbb{Z}_{8}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}_{1}=\left\{\lambda \mu, \lambda \mu^{-1}, \mu, \mu^{-1}, \mu^{3}, \mu^{-3}\right\}$, $\mathcal{S}_{2}=\left\{\lambda \mu, \lambda \mu^{-1}, \mu, \mu^{-1}, \lambda \mu^{3}, \lambda \mu^{-3}\right\}$.
49. $G=\mathbb{Z}_{2 m} \times \mathbb{Z}_{n}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 2, n \geq 3)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{m} \mu, \lambda^{m} \mu^{-1}, \mu, \mu^{-1}\right\}$.
50. $G=\mathbb{Z}_{2 m} \times \mathbb{Z}_{2 n}=\langle\lambda\rangle \times\langle\mu\rangle(m \geq 3, n \geq 2)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{m+1} \mu^{n}, \lambda^{m-1} \mu^{n}, \mu, \mu^{-1}\right\}$.
51. $G=\mathbb{Z}_{6 m}=\langle\lambda\rangle(m \geq 2), \mathcal{S}_{1}=\left\{\lambda, \lambda^{-1}, \lambda^{3}, \lambda^{-3}, \lambda^{3 m+1}, \lambda^{3 m-1}\right\}$,
$\mathcal{S}_{2}=\left\{\lambda, \lambda^{-1}, \lambda^{3 m+1}, \lambda^{3 m-1}, \lambda^{3 m+3}, \lambda^{3 m-3}\right\}$.
52. $G=\mathbb{Z}_{m}=\langle\lambda\rangle(m=7,14), \mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{3}, \lambda^{-3}, \lambda^{5}, \lambda^{-5}\right\}$,
$\Sigma=K_{7}$ if $m=7$ and $\Sigma=K_{7,7}-7 K_{2}$ if $m=14$.
53. $G=\mathbb{Z}_{3 m}=\langle\lambda\rangle(m \geq 3)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{m-1}, \lambda^{m+1}, \lambda^{2 m-1}, \lambda^{2 m+1}\right\}$.
54. $G=\mathbb{Z}_{16 m-4}=\langle\lambda\rangle(m \geq 1)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{4 m-2}, \lambda^{12 m-2}, \lambda^{8 m-3}, \lambda^{8 m-1}\right\}$.
55. $G=\mathbb{Z}_{16 m+4}=\langle\lambda\rangle(m \geq 1)$,
$\mathcal{S}=\left\{\lambda, \lambda^{-1}, \lambda^{4 m+2}, \lambda^{12 m+2}, \lambda^{8 m+1}, \lambda^{8 m+3}\right\}$.
56. $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}=\langle\lambda\rangle \times\langle\mu\rangle, \mathcal{S}=\left\{\lambda, \lambda^{2}, \mu, \mu^{2}, \lambda^{2} \mu, \lambda \mu^{2}\right\}$, $\Sigma=K_{3,3,3}$.
57. $G=\mathbb{Z}_{4}^{2} \times \mathbb{Z}_{2}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle(m \geq 3)$, $\mathcal{S}=\left\{\lambda, \lambda^{-1}, \mu, \mu^{-1}, \sigma, \lambda^{2} \mu^{2} c\right\}$.

3 The Proof of Theorem 1.1

Here, we will give all non-normal arc-transitive Cayley graphs on abelian groups of degree six. Moreover, we will characterize all normal arctransitive Cayley graphs on the non-cyclic abelian groups. First, we will introduce a family of graphs of valency 6 , the Cayley graph $\operatorname{Cay}\left(G, \mathcal{S}_{w w^{\prime}}\right)$, on a non-cyclic abelian group G.

Lemma 3.1. Let $n, m, p, k, k^{\prime}, w$ and w^{\prime} be positive integers with $m \mid n$, $n=m k, p \mid m, m=p k^{\prime}, n \geq 3, m \geq 3, p \geq 1, \operatorname{gcd}(w, k)=1$, $\operatorname{gcd}\left(w^{\prime}, k^{\prime}\right)=1,0 \leq w \leq k-1$ and $0 \leq w^{\prime} \leq k^{\prime}-1$. Let $G=\mathbb{Z}_{n} \times \mathbb{Z}_{m} \times$ $\mathbb{Z}_{p}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle$, and $\mathcal{S}_{w w^{\prime}}=\left\{\lambda, \lambda^{-1}, \lambda^{w} \mu, \lambda^{-w} \mu^{-1}, \lambda^{w} \mu^{w^{\prime}} \sigma\right.$,
$\left.\lambda^{-w} \mu^{-w^{\prime}} \sigma^{-1}\right\}$. The Cayley graph $\operatorname{Cay}\left(G, \mathcal{S}_{w w^{\prime}}\right):=A c\left(n, m, p, w, w^{\prime}\right)$ is a regular graph of degree 6 and we have:
(1) $A c\left(n, m, p, w, w^{\prime}\right)$ is non-normal if and only if one of the following happens:
(i) $\left(n, m, p, w, w^{\prime}\right)=(4,4,4,0,0)$.
(ii) $n, m(\geq 4)$ are even, $p=2$ and $w^{\prime}= \pm 1$.
(2) Suppose that $\operatorname{Ac}\left(n, m, p, w, w^{\prime}\right)$ is normal. Then, $A c\left(n, m, p, w, w^{\prime}\right)$ is arc-transitive if and only if one of the following holds:
(i) $k \leq 2$ and $k^{\prime} \leq 2$.
(ii) $k \leq 2, k^{\prime} \geq 3$ and $\left(w^{\prime}\right)^{2} \equiv \pm 1\left(\bmod k^{\prime}\right)$.
(iii) $k \geq 3, k^{\prime} \geq 3, w^{2} \equiv \pm 1(\bmod k)$ and $\left(w^{\prime}\right)^{2} \equiv \pm 1(\bmod k)$.

Proof. (1) This is a straightforward result of Theorem 2.4.
(2) Since $G=\left\langle\lambda, \lambda^{w} \mu, \lambda^{w} \mu^{w^{\prime}} \sigma\right\rangle$, $\operatorname{Aut}\left(G, \mathcal{S}_{w w^{\prime}}\right)$ acts on $\mathcal{S}_{w w^{\prime}}$ faithfully. Thus $\operatorname{Aut}\left(G, \mathcal{S}_{w w^{\prime}}\right)$ is isomorphic to a subgroup of S_{6}. Now by Proposition 2.3, $\operatorname{Ac}\left(n, m, p, w, w^{\prime}\right)$ is arc-transitive if and only if $\operatorname{Aut}\left(G, \mathcal{S}_{w w^{\prime}}\right)$ acts transitively on $\mathcal{S}_{w w^{\prime}}$. So, all elements of $\mathcal{S}_{w w^{\prime}}$ have the same order.

Now we are ready to prove the Theorem 1.1. Set $A=\operatorname{Aut}(\Sigma)$.
Proof. (a) All non-normal Cayley graphs with valency six are classified in Theorem 2.4 Now we investigate which of them are arc-transitive. In the cases (1), (2), (5) for $\mathcal{S}=S_{3}$ and (11) for $\mathcal{S}=S_{2}$, we have $\Sigma=C_{m} \times K_{4,4}$. Let $V\left(C_{m}\right)=\{1, \ldots, m\}$ and $V\left(K_{4,4}\right)=\left\{\S_{1}, \S_{2}, \S_{3}, \S_{4}, \S_{1}^{\prime}, \S_{2}^{\prime}, \S_{3}^{\prime}, \S_{4}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{j}^{\prime}\right) \in E\left(K_{4,4}\right)$ for $1 \leq i, j \leq 4$. One can see that there is no $f \in A_{\left(1, \S_{1}\right)}$ such that $f\left(1, \S_{1}^{\prime}\right)=$ $\left(4, \S_{1}\right)$, which implies that Σ is not arc-transitive.
In (5) for $\mathcal{S}=S_{1}$, let $V\left(K_{4}\right)=\left\{\dagger_{1}, \dagger_{2}, \dagger_{3}, \dagger_{4}\right\}$ and Q_{3} contain two circuits C_{4}, C_{4}^{\prime} with $V\left(C_{4}\right)=\left\{\S_{1}, \S_{2}, \S_{3}, \S_{4}\right\}$ and $V\left(C_{4}^{\prime}\right)=\left\{\S_{1}^{\prime}, \S_{2}^{\prime}, \S_{3}^{\prime}, \S_{4}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{i}^{\prime}\right) \in E\left(Q_{3}\right)$ for $1 \leq i \leq 4$. Note that the edge $\left[\left(\S_{i}, \dagger_{j}\right)\left(\S_{i}, \dagger_{j+1}\right)\right]$ is contained in a cycle of length 3 in Σ, but the edge $\left[\left(\S_{i}, \dagger_{j}\right)\left(\S_{i+1}, \dagger_{j}\right)\right]$ is not containedin any cycle, for $1 \leq i, j \leq 3$. Therefore, Σ is not edge transitive and then is not

6-VALENT ARC-TRANSITIVE CAYLEY GRAPHS ON ABELIAN GROUPS

arc-transitive. In (6), let $V\left(K_{4}\right)=\left\{\dagger_{1}, \dagger_{2}, \dagger_{3}, \dagger_{4}\right\}$ and
$V\left(K_{3,3}\right)=\left\{\S_{1}, \S_{2}, \S_{3}, \S_{1}^{\prime}, \S_{2}^{\prime}, \S_{3}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{j}^{\prime}\right) \in E\left(K_{3,3}\right)$ for
$1 \leq i, j \leq 3$. Note that the edge $\left[\left(\dagger_{j}, \S_{i}\right)\left(\dagger_{j+1}, \S_{i}\right)\right]$ is contained in any cycle of length 3 in Σ, but $\left[\left(\dagger_{j}, \S_{i}\right)\left(\dagger_{j}, \S_{k}^{\prime}\right)\right]$ is not contained in any cycle, for $1 \leq j \leq 3$ and for any $1 \leq i, k \leq 4$. Therefore, Σ is not edge transitive and then is not arc-transitive. In (7), let Q_{3} contain two circuits C_{4}, C_{4}^{\prime} respectively with the set of vertices $V\left(C_{4}\right)=\left\{\S_{1}, \S_{2}, \S_{3}, \S_{4}\right\}$ and $V\left(C_{4}^{\prime}\right)=$ $\left\{\S_{1}^{\prime}, \S_{2}^{\prime}, \S_{3}^{\prime}, \S_{4}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{i}^{\prime}\right) \in E\left(Q_{3}\right)$ for $1 \leq i \leq 4$ and $V\left(K_{3,3}\right)=$ $\left\{\dagger_{1}, \dagger_{2}, \dagger_{3}, \dagger_{1}^{\prime}, \dagger_{2}^{\prime}, \dagger_{3}^{\prime}\right\}$ such that $\left(\dagger_{i}, \dagger_{j}^{\prime}\right) \in E\left(K_{3,3}\right)$ for
$1 \leq i, j \leq 3$. One can see that there is no $f \in A_{\left(\S_{1}, \dagger_{1}\right)}$ such that $f\left(\S_{1}, \dagger_{1}^{\prime}\right)=\left(\S_{2}, \dagger_{1}\right)$. Thus Σ is not arc-transitive. In (8), let
$V\left(K_{3,3}\right)=\left\{\S_{1}, \S_{2}, \S_{3}, \S_{1}^{\prime}, \S_{2}^{\prime}, \S_{3}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{j}^{\prime}\right) \in E\left(K_{3,3}\right)$ for
$1 \leq i, j \leq 3$ and $V\left(M_{2 m}\right)=\{1, \ldots, 2 m\}$. One can see that there is no $f \in A_{\left(\S_{1}, 1\right)}$ such that $f\left(\S_{1}^{\prime}, 1\right)=\left(\S_{1}, 2\right)$. So, Σ is not arc-transitive.
In (9), let $V\left(K_{2}\right)=\left\{\S_{1}, \S_{2}\right\}, V\left(K_{3,3}\right)=\left\{\dagger_{1}, \dagger_{2}, \dagger_{3}, \dagger_{1}^{\prime}, \dagger_{2}^{\prime}, \dagger_{3}^{\prime}\right\}$ such that $\left(\dagger_{i}, \dagger_{j}^{\prime}\right) \in E\left(K_{3,3}\right)$ for $1 \leq i, j \leq 3$ and $V\left(C_{m}\right)=\{1, \ldots, m\}$. One can see that there is no $f \in A_{\left(\S_{1}, \dagger_{1}, 1\right)}$ such that $f\left(\S_{1}, \dagger_{1}^{\prime}, 1\right)=\left(\S_{2}, \dagger_{1}, 1\right)$. Thus from Proposition 2.2, we conclude that Σ is not arc-transitive.
In (10), let $V\left(K_{4}\right)=\left\{\dagger_{1}, \dagger_{2}, \dagger_{3}, \dagger_{4}\right\}$ and $V\left(M_{2 m}\right)=\{1, \ldots, 2 m\}$ for $m \neq 2$. Note that the edge $\left[\left(\dagger_{i}, j\right)\left(\dagger_{i+1}, j\right)\right]$ is contained in a cycle of length 3 in Σ, but the edge $\left[\left(\dagger_{i}, j\right)\left(\dagger_{i}, j+m\right)\right]$ is not contained in any cycle, for $1 \leq i \leq 4$ and $1 \leq j \leq 2 m-1$. Therefore, Σ is not edge transitive and then is not arc-transitive. In (11) for $\mathcal{S}=S_{1}$ and (5) for $\mathcal{S}=S_{2}$, we have $\Sigma=K_{2} \times K_{4} \times C_{n}$. Let $V\left(K_{2}\right)=\left\{\S_{1}, \S_{2}\right\}, V\left(K_{4}\right)=\left\{\dagger_{1}, \dagger_{2}, \dagger_{3}, \dagger_{4}\right\}$ and $V\left(C_{n}\right)=\{1, \ldots, n\}$. Note that the edge $\left[\left(\S_{i}, \dagger_{j}, k\right)\left(\S_{i}, \dagger_{j+1}, k\right)\right]$ is contained in a cycle of length 3 but the edge $\left[\left(\S_{i}, \dagger_{j}, k\right)\left(\S_{i}, \dagger_{j}, k+1\right)\right]$ is not, for $i=\{1,2\}, 1 \leq j \leq 4$ and $1 \leq k \leq n, n \neq 4$. Now, if $n=4$, the edge $\left[\left(\S_{1}, \dagger_{j}, k\right)\left(\S_{2}, \dagger_{j}, k\right)\right]$ is contained in a cycle of length 3 but the edge [$\left.\left(\S_{i}, \dagger_{i}, k\right)\left(\S_{i}, \dagger_{i}, k+1\right)\right]$ is not contained in any cycle, for
$i=\{1,2\}, 1 \leq j \leq 4$ and $1 \leq k \leq 4$. Then, in both cases, Σ is not arc-transitive. In (12), let $V\left(K_{2}\right)=\left\{\S_{1}, \S_{2}\right\}, V\left(C_{4}\right)=\left\{\dagger_{1}, \ldots, \dagger_{4}\right\}$ and $V\left(M_{2 m}\right)=\{1,2, \ldots, 2 m\}$ for $m \geq 3$. One can see that there is no $f \in A_{\left(\S_{1}, \dagger_{1}, 1\right)}$ such that $f\left(\S_{1}, \dagger_{1}^{\prime}, 1\right)=\left(\S_{2}, \dagger_{1}, 1\right)$, which implies that Σ is not arc-transitive. In (13), (18) for $m \neq 4$ and (28), let Q_{4} contain two graphs Q_{3}, Q_{3}^{\prime} with set of vertices
$V\left(Q_{3}\right)=\left\{\S_{1}, \ldots, \S_{4}, \S_{1}^{\prime}, \ldots, \S_{4}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{i}^{\prime}\right) \in E\left(Q_{3}\right)$ for
$1 \leq i \leq 4$ and $V\left(Q_{3}^{\prime}\right)=\left\{\dagger_{1}, \ldots, \dagger_{4}, \dagger_{1}^{\prime}, \ldots, \dagger_{1}^{\prime}\right\}$ such that $\left(\dagger_{i}, \dagger_{i}^{\prime}\right) \in E\left(Q_{3}^{\prime}\right)$ for $1 \leq i \leq 4$. One can see that there is no $f \in A_{\left(\S_{1}, 1\right)}$ such that $f\left(\S_{2}, 1\right)=\left(\S_{1}, m\right)$. So, by Proposition $2.2, \Sigma$ is not arc-transitive.
In (14), (16), (17), (19) and (20), we have $\Sigma=C_{n} \times C_{m}[2 k 1]$. Let $V\left(C_{n}\right)=\{1, \ldots, n\}, V\left(C_{m}\right)=\{1, \ldots, m\}$ and $V(2 k 1)=\left\{\dagger_{1}, \dagger_{2}\right\}$ such that $\left[\left(\S_{i}, \dagger_{j}\right)\left(\S_{i+1}, \dagger_{k}\right)\right] \in E\left(C_{m}[2 k 1]\right)$ for $k, j=\{1,2\}$ and $1 \leq i \leq m$. Note that there is no $f \in A_{\left(1, \S_{1}, \dagger_{1}\right)}$ such that $f\left(2, \S_{1}, \dagger_{1}\right)=\left(1, \S_{2}, y_{2}\right)$. So by the note on Proposition $2.2, \Sigma$ is not arc-transitive.
In (15) for $m=10$ and (21) for $[m=10, n \geq 4]$, let $V\left(C_{n}\right)=\{1, \ldots, n\}$ and $V\left(K_{5,5}-5 K_{2}\right)=\left\{\S_{1}, \S_{2}, \ldots, \S_{5}, \S_{1}^{\prime}, \S_{2}^{\prime}, \ldots, \S_{5}^{\prime}\right\}$ such that $\left(\S_{i}, \S_{j}^{\prime}\right) \in$ $E\left(K_{5,5}-5 K_{2}\right)$ for $i \neq j, 1 \leq i, j \leq 5$. One can see that there is no $f \in A_{\left(1, \S_{1}\right)}$ such that $f\left(2, \S_{1}\right)=\left(1, y_{2}\right)$, which means Σ is not arctransitive. Now suppose that $[m=10$ and $n=3]$. Note that the edge $\left[\left(i, \S_{j}\right)\left(i+1, \S_{j}\right)\right]$ is contained in a cycle of length 3 in Σ, but the edge $\left[\left(i, \S_{j}\right)\left(i, \S_{k}^{\prime}\right)\right]$ is not, for $1 \leq i \leq 3$ and $1 \leq j, k \leq 5$. Therefore, Σ is not arc-transitive.
In (15) for $m=5$ and (21) for $[m=5, n \geq 4]$, we have $\Sigma=C_{n} \times K_{5}$. Let $V\left(C_{n}\right)=\{1, \ldots, n\}$ and $V\left(K_{5}\right)=\left\{\S_{1}, \ldots, \S_{5}\right\}$. Note that the edge $\left[\left(i, \S_{j}\right)\left(i, \S_{j+1}\right)\right]$ is contained in a cycle of length 3 in Σ, but the edge $\left[\left(i, \S_{j}\right)\left(i+1, \S_{j}\right)\right]$ is not, for $1 \leq i \leq 4$ and $1 \leq j \leq 5$. Therefore, Σ is not arc-transitive.
In (22), the edge $(\lambda, \lambda \mu)$ is contained in a cycle of length 3 , but the edge $(\lambda, \lambda \mu)$ is not. Therefore, Σ is not arc-transitive.
In (23), the edge $\left(\lambda, \sigma^{2}\right)$ is contained in a cycle of length 3 , but the edge $(\lambda, \lambda \mu)$ is not. Therefore, Σ is not arc-transitive.
In (25), one can see there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=\left(\sigma^{m}\right)$. So, Σ is not arc-transitive.
In (26), let $V\left(K_{2}\right)=\left\{\S_{1}, \S_{2}\right\}$ and
$V\left(K_{5,5}\right)=\left\{\S_{1}, \S_{2}, \ldots, \S_{5}, \S_{1}^{\prime}, \S_{2}^{\prime}, \ldots, \S_{5}^{\prime}\right\}$, such that $\left(\S_{i}, \S_{j}^{\prime}\right) \in E\left(K_{5,5}\right)$ for $1 \leq i, j \leq 5$. One can see that there is no $f \in A_{\left(\S_{1}, \dagger_{1}\right)}$ such that $f\left(\S_{1}, \dagger_{1}^{\prime}\right)=\left(\S_{2}, \dagger_{1}\right)$. It follows that Σ is not arc-transitive.
In (27), we have $\Sigma=C_{2 m}^{d}\left[2 k_{1}\right] \times K_{2}$. Let $V\left(C_{2 m}\right)=\{1, \ldots, 2 m\}$, $V\left(2 K_{1}\right)=\left\{\S_{1}, \S_{2}\right\}$ and $V\left(K_{2}\right)=\left\{\dagger_{1}, \dagger_{2}\right\}$. One can see that there is no $f \in A_{1, \S_{1}, \dagger_{1}}$ such that $f\left(1, \S_{1}, \dagger_{2}\right)=\left(2 m, \S_{2}, \dagger_{1}\right)$. So, by Proposition $2.2, \Sigma$ is not arc-transitive.
In (29), note that the edge $\left(\mu^{m}, \mu^{m+1}\right)$ is contained in a cycle of length

3 , but the edge $(1, \lambda)$ is not. Then, Σ is not arc-transitive.
In (30) and (43) for $\mathcal{S}=S_{7}$, note that the edge (λ, σ) is contained in a cycle of length 3 , but the edge $(\lambda, \lambda \mu)$ is not. Then Σ is not arctransitive.
In (31) and (32), one can see that there is no $f \in A_{\mu_{2}}$ such that $f\left(\lambda \mu_{2}\right)=$ $\left(\mu^{m+2}\right)$. Hence Σ is not arc-transitive.
In (34), Γ is a bipartite graph of diameter three and girth four. Therefore by [4, Proposition 17.2], Γ is at most 3 -transitive. Hence by [11], there are 4 symmetric graphs of order 16 .
In (35), one can see that there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=(\lambda \sigma)$. So, by Proposition $2.2, \Sigma$ is not arc-transitive.
In (36) for $\left[\mathcal{S}=S_{1}, S_{2}\right]$, note that the edge (λ, μ) is contained in a cycle of length 3 , but the edges $(\lambda, \lambda \mu)$ and $\left(\sigma, \sigma_{2}\right)$ are not contained in a cycle of length 3 . Then Σ is not arc-transitive.
In (38) and (39), one can see that there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=\left(\mu^{2 m}\right)$ and also in the cases (40), (41) and (42), one can see that there is no $f \in A_{\lambda}$ such that $f\left(\lambda^{2}\right)=(\lambda \mu), f(\lambda \sigma)=\left(\sigma^{2 m}\right)$ and $f(\lambda \mu)=$ $\left(\mu^{5}\right)$, respectively. So, by Proposition $2.2, \Sigma$ is not arc-transitive.
In (43) for $\left[\mathcal{S}=S_{1}, m \geq 3\right]$ and $\left[\mathcal{S}=S_{5}, m \geq 4\right]$, one can see that there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=\left(\lambda \mu^{m}\right)$. For $\left[\mathcal{S}=S_{2}, m \geq 4\right]$ and [$\mathcal{S}=S_{4}, S_{3}, m \geq 3$], there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=\left(\mu^{m}\right)$. Also, for $\left[\mathcal{S}=S_{3}, m \geq 4\right]$ there is no $f \in A_{\lambda}$ such that $f(\lambda)=\left(\mu^{m+1}\right)$. Finally, for $\left[\mathcal{S}=S_{7}, m \geq 3\right]$ there is no $f \in A_{\lambda}$ such that $f\left(\lambda \mu^{m+1}\right)=\left(\mu^{m+1}\right)$. So, by Proposition $2.2, \Sigma$ is not arc-transitive.
In (44) for $\left[\mathcal{S}=S_{1}, S_{2}, S_{3}, m \geq 3\right.$], one can see that there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=(\lambda \sigma)$. Also, for $\left[\mathcal{S}=S_{4}, m \geq 2\right]$ there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=(\mu \sigma)$. For $\left[\mathcal{S}=S_{5}, m \geq 3, m=2 k\right]$, there is no $f \in A_{\lambda}$ such that $f\left(\lambda \mu \sigma^{k+1}\right)=\left(\lambda \sigma^{k}\right)$. Finally, for $\left[\mathcal{S}=S_{6}, m \geq 3, m=2 k\right]$, there is no $f \in G_{\lambda}$ such that $f\left(\lambda \mu \sigma^{k+1}\right)=\left(\sigma^{k}\right)$. So, by Proposition 2.2, Σ is not arc-transitive. In (45), one can see that there is no $f \in G_{\lambda}$ such that $f\left(\lambda^{2}\right)=\left(\lambda^{m+1}\right)$. Thus, by Proposition 2.2, Σ is not arc-transitive. In (46), there is no $f \in A_{\lambda}$ such that $f\left(\lambda^{m}\right)=\left(\lambda^{m+2}\right)$. So, Proposition 2.2 implies that Σ is not arc-transitive.

In (47), for $\mathcal{S}=S_{1}$, there is no $f \in A_{\mu}$ such that $f(\mu)=\left(\lambda \mu^{j}\right)$ and for $\mathcal{S}=S_{2}, f \notin A_{\mu}$ such that $f(\mu)=\left(\mu^{j}\right)$. Therefore, by Proposition 2.2Σ is not arc-transitive.

In (48) for $\mathcal{S}=S_{1}$ and $\mathcal{S}=S_{2}$, there is no $f \in A_{\lambda}$ such that $f(\mu)=\left(\lambda \mu^{3}\right)$ and $f(\mu)=(\lambda \mu)$, respectively, which implies Σ is not arc-transitive.
In (49) and (50), there is no $f \in A_{\lambda}$ such that $f\left(\lambda^{2}\right)=(\lambda \mu)$. So, by Proposition 2.2, Σ is not arc-transitive.
In (51), (53), (54) and (55), for $\left[\mathcal{S}=S_{1}, S_{2}\right]$, there is no $f \in A_{\lambda}$ such that $f\left(\lambda^{2}\right)=\left(\lambda^{3 m}\right),\left(\lambda^{2 m}\right),\left(\lambda^{4 m-1}\right)$ and $\left(\lambda^{4 m+3}\right)$, repectively. So Σ is not arc-transitive.
In (57), since there is no $f \in A_{\lambda}$ such that $f(\lambda \mu)=(\lambda \sigma), \Sigma$ is not arc-transitive.
In (4), we have $\Sigma=K_{2} \times Q_{5} \simeq C_{4} \times Q_{4}$. Since Q_{4} is arc-transitive, Σ is arc-transitive.
The cases (13) and (18) for $m=4$ are similarly as the case (4).
In (24), we have $\Sigma=K_{2} \times Q_{4}^{+}$. Note that [4, Proposition 17.2] tells us that the Cayley graph is at most 3 -transitive. Let $[\alpha]$ be a 3 -arc in Σ. Then there are automorphisms g_{1}, \ldots, g_{5} such that $g_{i}[\alpha]=\left[\beta^{(i)}\right]$ $(1 \leq i \leq 5)$, so that each $\left[\beta^{(i)}\right]$ is a successor of $[\alpha]$. Then $\operatorname{Aut}(\Sigma)$ is transitive on 3 -arcs and Σ is vertex-transitive. So, Σ is 2 -transitive and 1-transitive. Therefore, the graph $\Sigma=K_{2} \times Q_{4}^{+}$is arc-transitive.
In (37), we have the graph $\Sigma=Q_{5}^{+}$, which is arc-transitive.
In (52) for $m=7$ and $m=14$, we have $\Sigma=K_{7}$ and $\Sigma=K_{7,7}-7 K_{2}$ respectively, which are arc-transitive.
In (51) for $m=2$, (53) for $m=4$, (54) for $m=1$, (45) for $m=3$ and (43) for $\left[\mathcal{S}=S_{3}, m=3\right]$ and $\left[\mathcal{S}=S_{5}, m=3\right]$, we have $\Sigma=K_{6,6}$, which is arc-transitive.
In (45) for $m=2$, (46) for $m=4$, (39) for $m=1$, (33) and (43) for [$\mathcal{S}=S_{1}, S_{2}, S_{3}, m=2$], we have $\Sigma=K_{8}-8 K_{2}$, which is arc-transitive. In (53) for $m=3$ and (56), we have $\Sigma=K_{3,3,3}$, which is arc-transitive. Now the proof of Theorem 1.1 (a) is completed.
(b) Assume G is a non-cyclic group, and $\Sigma=\operatorname{Cay}(G, \mathcal{S})$ is a normal Cayley graph of valency six. Since the order of all elements of \mathcal{S} is equal to n, we investigate two deferent cases $n=2$ and $n>2$. If $n=2$, then S contains six involutions and up to an isomorphism, one of the following cases happens:

1. $G=\mathbb{Z}_{2}^{3}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle, \mathcal{S}=\{\lambda, \mu, \sigma, \lambda \mu, \lambda \sigma, \lambda \mu \sigma\}, \Sigma=K_{8}-8 K_{2}$.
2. $G=\mathbb{Z}_{2}^{4}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle$,

$$
\begin{aligned}
& \mathcal{S}_{1}=\{\lambda, \mu, \sigma, \theta, \lambda \mu, \lambda \mu \sigma\}, \Sigma=K_{2} \times K_{2}\left[2 K_{2}\right] \\
& \mathcal{S}_{2}=\{\lambda, \mu, \sigma, \theta, \lambda \mu, \sigma \theta\}, \Sigma=K_{4} \times K_{4} \\
& \mathcal{S}_{3}=\{\lambda, \mu, \sigma, \theta, \lambda \mu \sigma, \lambda \mu \theta\}, \mathcal{S}_{4}=\{\lambda, \mu, \sigma, \theta, \lambda \mu, \lambda \mu \sigma \theta\} \\
& \mathcal{S}_{5}=\{\lambda, \mu, \sigma, \theta, \lambda \mu \sigma, \lambda \mu \sigma \theta\}, \mathcal{S}_{6}=\{\lambda, \mu, \sigma, \theta, \lambda \theta, \lambda \mu \sigma\}
\end{aligned}
$$

3. $G=\mathbb{Z}_{2}^{5}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle$,
$\mathcal{S}_{1}=\{\lambda, \mu, \sigma, \theta, \varrho, \lambda \mu\}, \Sigma=K_{4} \times Q_{3}$,
$\mathcal{S}_{2}=\{\lambda, \mu, \sigma, \theta, \varrho, \lambda \mu \sigma\}, \Sigma=C_{4} \times Q_{3}^{+}$,
$\mathcal{S}_{3}=\{\lambda, \mu, \sigma, \theta, \varrho, \lambda \mu \sigma \theta\}, \Sigma=K_{2} \times Q_{4}^{+}$,
$\mathcal{S}_{4}=\{l a m b d a, \mu, \sigma, \theta, \varrho, \lambda \mu \sigma \theta \varrho\}, \Sigma=Q_{5}^{+}$.
4. $G=\mathbb{Z}_{2}^{6}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle \times\langle\theta\rangle \times\langle\varrho\rangle \times\langle\xi\rangle$,
$\mathcal{S}=\{\lambda, \mu, \sigma, \theta, \varrho, \xi\}, \Sigma=Q_{6}$.
Note that by part (a) of Theorem 1.1, the graphs of the cases (1), (2) for $\left[\mathcal{S}=\mathcal{S}_{1}, \mathcal{S}_{3}\right]$, (3) for $\left[\mathcal{S}=\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}\right]$ are non-normal. Also, the graphs $Q_{6}, K_{4} \times K_{4}$ and Q_{5}^{+}are arc-transitive.
If $n>2$, we suppose that $\mathcal{S}=\left\{\S, \S^{-1}, \dagger, \dagger^{-1}, \ddagger, \ddagger^{-1}\right\}$, where $o(\S)=o(\dagger)=$ $o(\ddagger)=n \geq 3$. Then, G is an abelian group generated by δ, \dagger and \ddagger, so $G \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m} \times \mathbb{Z}_{p}=\langle\lambda\rangle \times\langle\mu\rangle \times\langle\sigma\rangle$, where $m \mid n$ and $p \mid m$ (i.e., $n=m k$, $\left.m=p k^{\prime}\right)$. Note that $\operatorname{Aut}(G)$ acts transitively on the set of elements of G with the highest order. So, we can take $\S=\lambda, \dagger=\lambda^{w} \mu^{j}$, and $\ddagger=$ $\lambda^{w} \mu^{w^{\prime}} \sigma^{i}$ such that $\mu \in\left\langle\mu^{j}\right\rangle$ and $\sigma \in\left\langle\sigma^{i}\right\rangle$. One can see that the orders of $\lambda^{w} \mu^{j}$ and $\lambda^{w} \mu^{w} \sigma^{i}$ are n. Therefore, $\operatorname{gcd}(j, m)=1$ and $\operatorname{gcd}(p, i)=1$. So, we may also take $\dagger=\lambda^{w} \mu$ and $\ddagger=\lambda^{w} \mu^{w} \sigma$, under the action of a suitable automorphism of G. Since the mapping $\lambda \mapsto \lambda, \mu \mapsto \lambda^{k} \mu$ and $\sigma \mapsto \lambda^{k} \mu^{k^{\prime}} \sigma$ is an automorphism of G, without loss of generality, we can assume that $0 \leq w \leq k-1$ and $0 \leq w^{\prime} \leq k^{\prime}-1$. Now, since $o(\dagger)=o(\ddagger)=n$, we have $\operatorname{gcd}(w, k)=1$ and $\operatorname{gcd}\left(w^{\prime}, k^{\prime}\right)=1$. However, G is not cyclic and then $m \geq 2$ and $p \geq 2$. Thus $\Sigma \cong A c\left(n, m, p, w, w^{\prime}\right)$. Now, by Lemma 3.1, the proof of Theorem 1.1 (b) is complete.

4 Conclusion

In this paper, we have studied the arc-transitive Cayley graphs with valency six on finite abelian groups. We have shown that there are only finitely many such graphs that are non-normal, and we have classified
them completely. We have also classified all normal Cayley graphs on non-cyclic abelian groups with valency six, and we have given some examples of such graphs. Our results extend and generalize some previous works on arc-transitive Cayley graphs of low valency.

References

[1] M. Alaeiyan, Arc-transiyive and s-regular Cayley graph of valency five on abelian groups, Discussiones Mathematica Graph Theory, 26, 2006, 359-368.
[2] M. Alaeiyan, Normal 6-valent Cayley graph of abelian groups, International Journal of Engineering Science, 19(1-2), 2008, 1-11.
[3] B. Alspach, M. Conder, D. Marusic and Ming-Yao Xu, A classification of 2-arc-transitive circulant, Journal of Algebraic Combinatorics, 5, 1996, 83-86.
[4] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.
[5] J. L. Berggren, An algebraic characterization of symmetric graph with p point, Bulletin of the Australian Mathematical Society, 158, 1971, 247-256.
[6] C. Y. Chao, On the classification of symmetric graph with a prime number of vertices, Transactions of the American Mathematical Society, 158, 1971, 247-256.
[7] C. Y. Chao, and J. G. Wells, A class of vertex-transitive di-graphs, Journal of Combinatorial Theory, Series B, 14, 1973, 246-255.
[8] M. Conder, J. X. Zhou, Y. Q. Feng and M.M. Zhang, Edgetransitive bi-Cayley graphs, Journal of Combinatorial Theory, Series $B, 145,2020,264-306$.
[9] X. Fang, P. Niu, and J. Wang, On Automorphism Groups of Symmetric Cayley Graphs of Finite Simple Groups with Valency Six, Algebra Colloquium, 17, 1, 2010, . 161-172.
[10] M. Hashemian and M. Alaeiyan, Novel Conditions on the NonNormal Cayley Graphs of Valency Six, Indian Journal of Science and Technology, 8, 2015.
[11] N. J. A. Sloane, Sequences A286280 in The On-Line Encyclopedia of Integer Sequences.
[12] H. Wielandt, Finit Permutation Group, Academic Press, New York, 1964.
[13] M. Y. Xu and J. Xu, Arc-transitive Cayley graph of valency at most four on abelian groups, Southeast Asian Bulletin of Mathematics, 25, 2001, 355-363.
[14] M. Y. Xu, A note on one-regular graphs of valency four, Chinese Science Bulletin, 45, 2000, 2160-2162.
[15] M. Y. Xu, H. S. Sim and Y. G. Baik, Arc-transitive circulant digraphs of odd prime-power order, Discrete Mathematics, 287(1-3), 2004, 113-119.
[16] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Mathematics, 182, 1998, 309-319.

Mehdi Alaeiyan

Professor of Mathematics
School of Mathematics
Iran University of Science and Technology
Tehran, Iran
E-mail: alaeiyan@iust.ac.ir

Masoumeh Akbarizadeh

PhD of Mathematics
School of Mathematics
Iran University of Science and Technology
Tehran, Iran
E-mail: masoumeh.akbarizadeh@gmail.com

Zahra Heydari

M.S. in Mathematics

School of Mathematics
Iran University of Science and Technology
Tehran, Iran

[^0]: Received: July 2023; Accepted: December 2023

 * Corresponding Author

