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1 Introduction

In this paper, the vertex set, edge set and the full automorphism group of
a finite, simple and undirected graph ¥ are denoted by V(X), E(X), and
Aut(X), respectively. A graph ¥ is said to be vertez-transitive and edge-
transitive if Aut(X) acts transitively on V(X) and E(X), respectively.
For a positive integer s, an s-arc of ¥ is an (s + 1)-tuple (vg,v1,...,vs)
of vertices such that {v;_1,v;} € E(X) for 1 <i < s and if s > 2, then
vi—1 # vip1 for 1 < ¢ < s—1. A graph X is called s-arc-transitive if
Aut(X) acts transitively on V(X) and on the set of s-arcs and also it is
called s-transitive graph if ¥ is an s-arc-transitive but not (s + 1)-arc-
transitive. Note that for s = 1, we simply use A(X) to denote its 1-arc
set and l-arc-transitive graph is called arc-transitive. An arc-transitive
graph ¥ is said to be s-regular if for any two s-arcs in 3, there is a unique
automorphism of ¥ mapping one to the other. Also, an arc-transitive
graph ¥ is said to be one regular if |Aut(X)| = |A(X)].

Let G be a finite group and § C G such that 1 ¢ S. The Cayley di-
graphCD = Cayp(G,S) on G with respect to S is defined by V(CD) = G
and E(CD) = {(g,s9)|g € G, s € S}. The three obvious results follow
immediately from this definition: (1) The automorphism group of CD,
Aut(CD), contains the right regular representation Gr of G, and so
CD is vertex-transitive; (2) CD is connected if and only if G = (S);
(3) CD is undirected if and only if S™' = S. In this case, we denote
CD = Cayp(G,S) by ¥ = Cay(G,S).

A Cayley graph ¥ = Cay(G,S) (digraph CD = Cayp(G,S)) is called
normal if G Aut(X) (G < Aut(CD)).

in [13], Xu and Xu classified all arc-transitive Cayley graphs of va-
lency at most four on abelian groups, and in [141] Xu classified all one-
regular circulant graphs of valency four. Xu et al. [I15] classified all
arc-transitive circulant graphs and digraphs of order p™, where p is an
odd prime. Chao [0], classified symmetric graphs of order a prime num-
ber p, and Berggren [5] simplified Chao’s proof and then Chao and Wells
[7] gave a classification of symmetric digraphs of order a prime number p.
A generalization of [11], is the classification of 2-arc-transitive circulant
graphs, which was given by Alspach et. al [3]. In [I] the first author clas-
sified all arc-transitive Cayley graphs with valency 5 of abelian groups.
The aim of this paper is to investigate the arc-transitive Cayley graphs
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with valency six on abelian groups. Recent research has classified Cay-
ley graphs of valency 6 and edge-transitive Cayley graphs in [9, 10] and
[8], respectively.

The group- and graph-theoretic notations and terminologies are stan-
dard; see [3, 1, 12] for example. We will denote the semi-directed product
of group H by K with H - K.

Theorem 1.1. Let G be an abelian group and let S be a subset of
G such that 1 ¢ S and S = S~!. Suppose that ¥ = Cay(G,S) is a
connected Cayley graph with valency six on group G with respect to S.
Then we have:

(a) If ¥ is non-normal, then all arc-transitive ¥ are as follows:
1. G=2Z4xZ4=(\) x (u) x (0) x (0) x {0)
S={MA"11,0,0,00,3 =Cy x Qs = Qg, Aut(X) = SowrSe.
2 G =T 2= (\) x () % (0) x (0), S = AL i), 6},
Y= 04 X Q4 = QG, Aut(E) SQU)T’SG

3. G =Ly x L3 = () x (1) x (o) x <>,
S={MNA" 0,0, \2u00}, ¥ = Q% Aut(X) = S5.S56.

4. G =175 = (\) x (u) x (0),§ ={\ X"y, uo,07 1,
X =Cy x Cy x Cy = Qs, Aut(E) = SowrSg.

5 G = Z3 X Z3 = <A> X <,LL>, S = {Aa)\ilnu’a uilv Alu’ila )‘71/1/}7
Y =K333.

6. G =74 x Ty = (\) x (), St = {p, \, \75 Ay N2, A3},
Sy = {,U, A )\_17 AN) )\27 )\3/'1/}’ S3 = {)‘7 )\_17 )‘/-Lv )\27 )\21UH )\BM}’
Y = Kg — 8K».

7. G=12Z¢ XLy = <)‘> X <:U'>7 S1= {/J'v A, )\717 )\37 A,U'a AQ/JH )‘4M}7
So = {3 A, M, Aud, X = Kgg, Aut(X) = SgwrSs.

8. G =17y x7Z%= (N x{(u)x (o), S={\A"172, u,0,uo},
¥ =Ky x Ky, Aut(E) =S4 X Ss.

9. G= Z4 X Z4 = <A> X <,U’>7 S = {)\,)\_17)\2,/,6,#_1,/112},
Y= K4 X K4, Aut(Z) = S4 X 52.
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G=173=\ x(ux (o), S={\ p,0, \ut, \o, \uo },
S — Ky — 8K,

G =7 = (N x (1) x (0} x (0),
S={\u,0,0,\uo, \ub}.

G=Tu= (), S={\N,A5 A1 A3 5],
Y= K777 - 7K2,Aut(2) = 57 x Ss.

G = Zl2 = <)‘>7 S= {)‘? )‘23 )‘57)\77)‘103 >‘11}7
Y = K47474 —12K5.

G =T =\, S={\N3 N5 A7, 29 A1

Y = Kg6, Aut(X) = SewrSs.

G=Zy=(N\), S= {/\,)\2,)\4,)\5, /\7,)\8}, Y = K333.

G=7s={(\), S={\A2 2 M 2621 S = Ky — 8K,
)

G =Zr = (\),S = {\, A2, A3, 3% A%, A6},
Y = Kr, Aut(X) =

If G is a non-cyclic abelian group and ¥ is normal, then X is arc-

transitive if one of the following happens:

1.

G =175 = () x () x (o) x (8) x (o) x (£),
S - {A7M70797Q7£}72 - QG'

G =175 = (\) x () x (o) x (8) x (o),
S={\pu,0,0,0 oo}, X =QF.

G=75=0\) x(ux (o) x (0), S={\ 0,0, \, 00},
Y= K4 X K4.

. ¥ = Ac¢(n,n,n,0,0) for n > 3 and n # 4.

Ac(2m,m, m,1,0) for m > 3.
Ac(2m,m, m,1,1) for m > 3.

¥ = Ac(2m,2m,m,0,1) for m > 3.
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8. ¥ = Ac(2m,2m,m,1,1) for m > 3.
9. ¥ = Ac(2m,2m,p,1,w’) with & > 3 and (w')? = £1 (mod k).
10. ¥ = Ac(m,m,p,0,w’) with & > 3 and (w')? = £1 (mod k).

11. ¥ = Ac(n,m,p,w,w’) with & >3, k>3, (w)? = =1 (mod k)
N2 =+1 (mod k.

2  Primary Analysis

Let ¥ = Cay(G,S) be a Cayley graph on G with respect to S and let
Aut(G,S) = {a € Aut(G)| §* = S}. Clearly, G - Aut(G,S) < Aut(X).
Also, we have the following:

Proposition 2.1. [/, 15] Let G be a finite group, S be a subset of G
non containing lg and ¥ = Cay(G,S) be a Cayley graph on G with
respect to S.

(1) Nao(G) = G.Aul(G, S).

(2) A= G.Aut(G,S) is equivalent to G < A.

Proposition 2.2. [1/] A graph X is arc-transitive if and only if it is
vertez-transitive and the stabilizer G, of a vertex uw acts transitively on
the neighborhood Y1 (u) of u in X.

Proposition 2.3. Let ¥ = Cay(G,S) be a normal Cayley graph on G
with relative to S. Then X is arc-transitive if and only if Aut(G,S) acts
transitively on the neighborhood X1(1) of 1 in X.

Now we introduce some graph products which are used in the paper.
Let X and Y be two graphs. The direct product X x Y is defined as the
graph with vertex set V(X' x)Y) = V(X)xV(Y). Two vertices u = [§1, t1]
and v = [§2, T2] are adjacent whenever §; = §5 and [f1,T2] € E(Y) or
T1 = f2 and [§1,82] € E(X). Two graphs are called relatively prime
if they have no nontrivial common direct factor. Another graph with
vertex set V(X x ) is the lexicographic product X[Y]. Two vertices u =
[81,11] and v = [§2, T2] in V(X[Y]), are adjacent, if either [§1,8§2] € E(X)
or § = §9 and [t1,T2] € E(Y). Let V(Y) = {t1,T2,...,Tn}. Then there
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is a natural embedding of nX in X'[)], where for 1 < i < n, the ith copy
of X is the subgraph induced on the vertex subset {(§, 1;)| § € V(X)} in
X[Y]. The deleted lexicographic product X[Y]—nX is the graph obtained
by deleting all the edges of (this natural embedding of) nX from X[)].

Let X be a graph, a be a permutation on V(X) and C,, be a circuit
of length n. The twisted product X x, Cy, of X by C, with respect to «
is defined as follows:

Finally, we introduce some new graphs used in this paper. A circu-
lant graph C'(n; nq,...,ng) is a graph with vertex set VC = {0,1,...,n—
1} and edge set EC = {(i,7) | |7 —i| = n1,...,n4-1 or ng (mod n)},
which has order n and valency 2d or 2d — 1. Thus C,, = C(n;1). If n is
even then the graph C(n;1,n/2) is of valency 3, denoted by M,,. The
graph Q; for d = 4,5, denotes the graph obtained by connecting all the
long diagonal of d-cube 4, that is connecting all vertices v and v in Qg
such that d(u,v) = d. The graph K, ,,, X, Cy, is the twisted product of
Ky,.m by €, such that c is a cycle permutation on each part of the com-
plete bipartite graph K, ,,,. The graph Q3 x4 C), is the twisted product
of @3 by C, such that d transposes each pair of elements on the long
diagonals of Q3. The graph CY, [2K7] is defined as the following:

V(C4,[2K1]) = V(Cam[2K1)),
E

E(CY,,[2K1)) (Com[2K1]) UA[(8is 15)s (Sistms T5)]]
i=0,1,....m—1, j=1,2}

where V(Cgm) = {§0, §1, ey §2m71} and V(2K1) = {1’1, J[Q}
In the following theorem, all the non-normal Cayley graphs of valency
six on abelian groups are classified.

Theorem 2.4. [2] Let G be an abelian group and ¥ = Cay(G,S) be a
connected Cayley graph on G with respect to S of degree 6. Then ¥ is
normal unless one of the following cases holds:
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G =T Ty = () % (1) x {0} % (0) (m > 3),
S= {A,M,O’, )\/LO’Q,Qil},E = K4,4 X Cpy.

. G =13 = (\) x (u) x (o) x (8) x (o),
S= {A,,LL,O', )\[,LO', 67 Q}uz = 04 X K4,4'

.G =173 xZy= (N x {u) x (o),
S={\uI,o? 0,071}, 8 =Ky x Ky.

G =T x B = () x () x {0) % {6) x (o),
S = {A,M,O’,H,Q, 971}72 = (4 X Q4 = QG-

LG =T x Ty = () x (u) x (o) x 0), S ={\ pu,0,0% 0,071},
Y =Q3x Kq; So = {\, pt, \it,0,0,071}, ¥ = Ky x Ko x Cy;
Sz = {)\,/,L,O', )\92,9,9_1}, Y= K474 x Cy.

-G = Z% X Ze = (A) x (u) x (o), §={\p, >‘:U’ao-3)0-70-_1}>
Y= K4 X K373.

LG =73 xZg= (N x {1

(A) x () x (o) x (0),
S={\p,o,030,0°1} % =
(

Q3 x K33.

. G =79 XL X Ly = (N\) x (u) x (o) (M >3),
S={\pd oo}, Y =Ky x K33 x Cpp.

L G =L X Loy = (N) x () (m > 2),
S= {AB,,U, )\ AT 1,M 1% 1} E:K373 XMQm.

LG = T X T = (V) x () (m > 2),
S= {)\,)\_17)\2,/L7M_1,/,Lm}, Y= K4 X MQm‘

. G =7%9 X L4y X Ly, = () X () X (o) (m > 3),
S = {>\7M>M_1»,U270a 0_1}72 = Ky X K4 x Cpy;
82 = {)‘7/'67”—1))‘”2’070—1}’ Y= K4,4 X Cm

. G =79 X Ly X Lom = (\) x {p) x (o) (m>2),
S={\u,pu oot 0m, Y =Ky x Cy X Moy,

-G =73 X Ly X Ly = (\) x () x (o) x (0) (m >3),
S={\p,0,0750,071, Cyx Cy x Cpy = Q4 x Chpy.
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) x {a) x (0) (m = 3),
71}, Y =0y x Cm[QKl]

G =72 % Ly = (\) x (1) x (o) (m =5,10),
S={\uo0,0 40303, 8=Cyx K5 if m=5 and
Y= 04 X K5’5 —5K2 me: 10.

G = 73 % Tam = () % (1) x {0) (m > 2),
S={\u,o,0 Pt g2m=1 s = Oy x Cp2K7].

G =74 X Lo, = (A) X (1) (m >3, m is odd),
S= {1 S = Oy x C 2K,

G =73 X L = (A\) x (u) x (o) (m > 3),
S={\Nu,p,0,0711, 8 =Cy x Oy x Cpy = Qq X Cpy.

G =73 XLy X Ly = (N\) X () X (o) (m >3,n>3),
S={Mu \uHup oo}, B =Cn2K].

G =T X L, = (A) X (u) (m =5,10, n > 3),
S={MAI A3 S = K5 x Cp if m=5
and Y = K575 —5K5 X Cn me = 10.

G = Ly X L, = (N) X {u) (m >2,n>3),
S = AL AL 2=t = s Oy 9] X O

G=74= ) x (u) x (o) x (0),8 = {\, u, A\, 0, Ao, 0},
Y= K2 X K2[2K2}

G =173 x Zy = () x {u) x (o),
S={\u, o2 0,071,062}, Y = Ky x K3[2K5)].

G =3 x Ty = () x (1) x o) x (6),
S={\pu,0,0,071 \ub?}, % = Ky x QF .

G = 73 x gy = () % (1) x {0} (m > 1),
S ={\u,Aa™ \o®" 0,071}

G - Z2 X Z10 = <)\> X <u>7 S - {)‘nu’u [,L3,,LL5,,M7,[,L9},
Y= K2 X K5’5.
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G = 73 % Ty = () x {1} x o) (m > 2),
S={No, o7t 0™ 0,071}, 8 = CY [2K1] x K.

G = Zo X Ly X Lam, = (X) X (1) X (o) (m > 2),
S={\pdo™ pu,p o071 E = Ky x Q3 X Cry = Q4 X Cpy.

G = 2o x Zay = () x 1) (m > 3),
S = {Ay,uma,u'aﬂ 17Mm+1vﬂm } = Kj x Cm[K2]
)

G= ZQXZQm—<>X<,U, X

(o) (m > 2),
S={\u o, ot o,07}, %

KQ X C2m[K2]

G =Zo X Zgm = (A\) x (1) (m >3, m is odd),
S={\p? u2 1™t Y = Ky x K3 X Cip.

G =73 X Zem = (\) x (u) x (o) (m >2),
S = {\ uo™, podm uo™ 0,071}, Y = Ko x Kz 3 X Com.

G=173=\) x(ux (o), S={\p,0,\ut, \o, \o },
S — Ky — 8K,

G=75=\) x(u) x (o) x(0), S={\p,0,0, \uc, \ud}.

G = 73  Tam = () % (1) x {0} (m > 2),
S ={\u, o™ po™, 0,0t

G =3 x Ty = (N) x (1) x (0),
S1={\, i, M, Ao? 0,071}, So = {a, b, ac?, abc?, e, ¢t}

G = 7 x = () x () x (o) x (0),
S={\u0,0,071 \uo6?}, 3 = QF .

G = T X Zgm = (A) % () (m > 2),
S = {2 A2 Aty

G =Ly X Lym = (A) x () (m = 1),
S = A A" AP Ay Y

G =74 X Lo = (A) % () (m > 2),
S={NA ™ N )
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G = T3 X Zum = () % () x {0) (m > 1),
S = {\ A o?™ uo™, podm, o071}

G =Ly x Zio = (\) x (), S ={\ ® pu, 1, i, i}

G:ZQ X ng = <)\> X <,u>,

St= {\ ™ ™ A, ApT 1y (m > 2),

Sy = {A\ A ,MMI)\/M)\M 1}( > 2),
S5 = {)‘,u >,ua )‘:uv } (m > )
Si={\, /\um,u,u‘l,um“ 1) (m > 3),
Ss = {A\ p, = ™ A A > 3),

m
So = {\ A s RNV 1} (m > 3),
St = {" =t ™ AT ™Y (m> 3).

G =73 x T = (N (1) % (o),
S1={\ 0,07 Ao, \po~ 1}( >

Sy = {\ p, 0,071 AoF T Aok~ }(m:2k, k> 3),
S3={\ 0,0 = /\/,Lak‘H Apok—11

Sy = {\, po, po =t Aok o0 (m=2k, k> 2),
85:{)\,uak+1,uak 1 ak P
Se = {\, oL, pok- s Yo N
Sr={\u,o0,0” 1,)\0,)\0 1}( =2k—1, k>2).

G =Zam = (N) (m =2 2), &= {AA7H ™ A7m \2mHL \Zm=1y,

G =Zom = (\) (m>4),

S={ AL A ML AR AR (2<kE<m—2), (mk) =1, if
l>207“l—2f0rm—42+2 (k = 2i, with i odd or k = 2i + 2,
with © even).

G =Zy X Ly = (N) x (1) (m>5),
St= {2 <5 <), (myj)=p>2,
= (t+1)p,
Sy = {, A A A2 <G <), (m, ) =p > 2,
m = (t+1)p.

G= Z2 X ZS = <A> X <:U’>7 Sl = {)‘N7 )‘/’L_17H),U’_17,u3),u’_3}7
Sy = { A, At gy A A3
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49. G =Zop X L, = (N\) X (1) (m>2, n>3),
S = A A XM, 1y,

50. G = Zom X Lan = (A) X (p) (m >3, n>2),
8 = (A AL AL X 1y,

9l. G = Z6m = <)‘> (m 2 2)7 Sl = {)‘> )‘_15 )\37 )\_37 )\3m+17 )\3m—1}7
82 — {)\’ Afl’ )\3m+1, )\Smfl, )\3m+37 )\3m73}.

52. G="Tpm =N\ (m="7,14), S = { AL A3 A3 N5 A7),
Y=Krifm="Tand ¥ = Kr7—TK> if m = 14.

53. G = Lgm = (\) (m>3),
S = {)\’)\—1’)\m—l})\m+1’)\2m—l7)\2m+l}.

54. G = Zlﬁm74 = <)\> (m Z 1),
S = {A, )\—17 )\4m—27 )\12m—27 )\8m—37 )\Sm—l}'

5. G = Zlﬁm+4 = <)\> (m Z 1),
S = {)\’ )\—1’ )\4m+2’ )\12m+2’ )\8m+1, )\8m+3}.

56. G =173 x 73 = (XN x {n), S={N N2, u,p?, N, \u?},
Y = K333.

57. G =73 x 7Ly = (\) x (u) x (o) (m > 3),
S={MAppt o, A2 e}

3 The Proof of Theorem 1.1

Here, we will give all non-normal arc-transitive Cayley graphs on abelian
groups of degree six. Moreover, we will characterize all normal arc-
transitive Cayley graphs on the non-cyclic abelian groups. First, we will
introduce a family of graphs of valency 6, the Cayley graph
Cay(G,S,,, ), on a non-cyclic abelian group G.

Lemma 3.1. Let n,m,p,k, k/,w and w' be positive integers with m|n,
n = mk, plm, m = pk', n >3, m >3, p>1, ged(w, k) = 1,
ged(w ) =1,0<w<k—1and0<w <k —1. Let G = Zp, X Ly, X
Zyp = (\) x (u) x (o), and S,,,r = {ANAL A, A0 A ) o,
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’

)\_w/,t_wla_l}. The Cayley graph Cay(G,S,,, ) = Ac(n,m,p, w, w
s a regular graph of degree 6 and we have:

)

(1) Ac(n,m,p,w,w/) is mon-normal if and only if one of the following
happens:

(i) (n,m,p,w,w’) = (4,4,4,0,0) .
(ii) n,m(>4) are even, p =2 and w' = +1.

(2) Suppose that Ac(n,m,p,w,w/) is normal. Then, Ac(n,m,p,w,wl)
s arc-transitive if and only if one of the following holds:

(i) k<2 and k' <2.
(i) k<2, k' >3 and (w')? = +1(mod k).
(iii) k>3, k' >3, w? = +1(mod k) and (w')? = £1(mod k).

Proof. (1) This is a straightforward result of Theorem 2.4.
(2) Since G = (A, \¥pu, )\wa'U>’ Aut(G,S,,,/) acts on S, faithfully.
Thus Aut(G,S,,,’) is isomorphic to a subgroup of Ss. Now by Propo-
sition 2.3, Ac(n, m,p, w,w’) is arc-transitive if and only if Aut(G,S,,,/)
acts transitively on S, /. So, all elements of S, - have the same order.
Il

Now we are ready to prove the Theorem 1.1. Set A = Aut(X).
Proof. (a) All non-normal Cayley graphs with valency six are classified
in Theorem 2.4 Now we investigate which of them are arc-transitive. In
the cases (1), (2), (5) for S = S3 and (11) for S = S5, we have
Y =0Cp x Kg4. Let V(Cyp,) ={1,...,m} and
V(K1) = {81,52, 83, 84,81, 8, 83, 84} such that (§;,8;) € E(Kqa) for
1 <4,j < 4. One can see that there is no f € A g, such that f(1, §/1) =
(4,81), which implies that ¥ is not arc-transitive.
In (5) for S = Sy, let V(K4) = {1, T2, T3, T4} and Q3 contain two circuits
C1,Cy with V(Ca) = {81,582, 83,84} and V(C}) = {§;,55, 85,83} such
that (§;,8;) € E(Q3) for 1 <1i < 4. Note that the edge [(8,T;) (8, Tj+1)]
is contained in a cycle of length 3 in ¥, but the edge [(§i, T;)(8i+1,T5)]
is not containedin any cycle, for 1 < i,5 < 3. Therefore, ¥ is not edge
transitive and then is not
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arc-transitive. In (6), let V(K4) = {f1, T2, t3, T4} and

V(K33) = {§1,82, 83,81, 82, §5} such that (§;,§;) € E(K33) for

1 <i,j < 3. Note that the edge [(1;,8i)(1j+1,8:)] is contained in any
cycle of length 3 in X, but [(1;, §)(1;, §;€)] is not contained in any cycle,
for1 < j < 3andforany 1 <,k < 4. Therefore, ¥ is not edge transitive
and then is not arc-transitive. In (7), let Q3 contain two circuits Cy, C:l
respectively with the set of vertices V(Cy) = {81, §2, §3, 84} and V(C}) =
{81,865, 85,6, } such that (§;,§;) € E(Q3) for 1 <i < 4 and V(K33) =
{f1, 12, 3, 11, T2 T3} such that (1, 1)) € E(Ks3) for

1 < 4,7 < 3. One can see that there is no f € A, ;,) such that
f(81,11) = (82,11). Thus X is not arc-transitive. In (8), let

V(K33) = {81,582, 83,81, 8, §3} such that (§;,§;) € E(K33) for

1 <i,j <3and V(M) ={1,...,2m}. One can see that there is no
f € A1) such that f(§/1, 1) = (8§1,2). So, ¥ is not arc-transitive.

In (9), let V(K3) = {§1,82}, V(K33) = {t1, 12,13, 11, T2, T3} such that
(ti, ;) € BE(K3,3) for 1 <4, <3 and V(Cy,) = {1,...,m}. One can see
that there is no f € A, 1, 1) such that f(§1,1;,1) = (§2,11,1). Thus
from Proposition 2.2, we conclude that 3 is not arc-transitive.

In (10), let V(K4) = {f1,12,13, T4} and V(Ma,) = {1,...,2m} for
m # 2. Note that the edge [(1i,7)(i+1,)] is contained in a cycle of
length 3 in X, but the edge [(ti,7)(1i, 7+m)] is not contained in any cycle,
for 1 <i<4and 1< j<2m — 1. Therefore, ¥ is not edge transitive
and then is not arc-transitive. In (11) for § = S; and (5) for S = S, we
have ¥ = K9 x K4 x C,,. Let V(KQ) = {§1, §2}, V(K4) = {]Ll,]LQ,]Lg,]L4}
and V(Cp) = {1,...,n}. Note that the edge [(8, T, k)(8i, Tj+1,k)] is
contained in a cycle of length 3 but the edge [(8;,T;,k)(8, T;,k + 1)] is
not, for i = {1,2}, 1 <j<4and 1 <k <n,n#4. Now,if n =4, the
edge (81,15, %)(82,1;, k)] is contained in a cycle of length 3 but the edge
[(8, Ti, k) (8, T, k + 1)] is not contained in any cycle, for

i=41,2}, 1 <j<4and 1l <k < 4. Then, in both cases, ¥ is not
arc-transitive. In (12), let V(K2) = {81,852}, V(C4) = {t1,..., T4} and
V(Mam) = {1,2,...,2m} for m > 3. One can see that there is no
f € Ags, 4,.1) such that f(§1,17,1) = (82,11,1), which implies that 3 is
not arc-transitive. In (13), (18) for m # 4 and (28), let Q4 contain two
graphs @3, Q;) with set of vertices

V(Qs) = {81,...,84,8,...,54} such that (§;,8;) € E(Q3) for

13
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1<i<4and V(Q3) = {f1,.., 14,11, -, 1} such that (1;,1;) € B(Q3)
for 1 < ¢ < 4. One can see that there is no f € A, 1) such that

f(82,1) = (§1,m). So, by Proposition 2.2, ¥ is not arc-transitive.
In (14), (16), (17), (19) and (20), we have ¥ = C,, x Cy,[2k1]. Let
V(Cy) ={1,...,n}, V(Cy) ={1,...,m} and V(2k1) = {f1, 2} such
that [(§27T])(§2+17Tk)] € E(Cm[le]) for k,j = {1,2} and 1 <7 < m.
Note that there is no f € A5, +,) such that f(2,81,11) = (1,82,%2). So
by the note on Proposition 2.2, ¥ is not arc-transitive.
In (15) for m = 10 and (21) for [m = 10,n > 4], let V(C,,) ={1,...,n}
and V(K55 — 5K2) = {§1,82,-.,85,81,89,.--,85} such that (§Z,§J) €
E(Ks5 — 5K>) for i # j,1 < 4,7 < 5. One can see that there is no
f € Aqg,) such that f(2,81) = (1,32), which means X is not arc-
transitive. Now suppose that [m = 10 and n = 3|. Note that the
edge [(7,8;)( + 1,§;)] is contained in a cycle of length 3 in X, but the
edge [(4,8;)(i,8,)] is not, for 1 <4 < 3 and 1 < j,k < 5. Therefore, ¥ is
not arc-transitive.
In (15) for m = 5 and (21) for [m = 5,n > 4], we have ¥ = C,, x K.
Let V(Cy,) ={1,...,n} and V(K5) = {§1,...,85}. Note that the edge
[(4,8;) (4, 8541)] is contained in a cycle of length 3 in ¥ , but the edge
[(4,8;)(i+1,8;)] is not, for 1 <¢ <4 and 1 < j < 5. Therefore, ¥ is not
arc-transitive.
In (22), the edge (A, A\u) is contained in a cycle of length 3, but the edge
()\ Ap) is not. Therefore, ¥ is not arc-transitive.

In (23), the edge (), 0?) is contained in a cycle of length 3, but the edge
(A, Ap) is not. Therefore, ¥ is not arc-transitive.
In (25), one can see there is no f € Ay such that f(Au) = (¢™). So,
Y’ is not arc-transitive.
In (26), let V(K32) = {81, 82} and
V(Ks5) = {81,82,- -, 85,81, 82, - - -, 85}, such that (§;,§;) € E(K55) for
1 < 4,7 < 5. One can see that there is no f € A(§17T1) such that
f(81,11) = (82, 11). It follows that ¥ is not arc-transitive.
n (27), we have X = CY [2k1] x Ko. Let V(Cap) = {1,...,2m},
V(2K1) = {§1,82} and V(K32) = {f1,T2}. One can see that there is
no f € Ayg, 1, such that f(1,81,f2) = (2m,82,11). So, by Proposition
2.2, X is not arc-transitive.
In (29), note that the edge (u™, u™*!) is contained in a cycle of length
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3, but the edge (1, \) is not. Then, ¥ is not arc-transitive.

In (30) and (43) for S = S7, note that the edge (A, o) is contained in
a cycle of length 3, but the edge (A, Ap) is not. Then X is not arc-
transitive.

In (31) and (32), one can see that there is no f € A, such that f(Au2) =
(u™*2). Hence X is not arc-transitive.

In (34), I is a bipartite graph of diameter three and girth four. Therefore
by [4, Proposition 17.2], " is at most 3-transitive. Hence by [I1], there
are 4 symmetric graphs of order 16.

In (35), one can see that there is no f € Ay such that f(Au) = (Ao).
So, by Proposition 2.2, ¥ is not arc-transitive.

In (36) for [S = S, S2], note that the edge (A, i) is contained in a cycle
of length 3, but the edges (A, \) and (o, 02) are not contained in a cycle
of length 3. Then X is not arc-transitive.

In (38) and (39), one can see that there is no f € Ay such that

f(\u) = (4*™) and also in the cases (40), (41) and (42), one can see that
there is no f € Ay such that f(\%) = (Au), f(Ao) = (¢2™) and f(A\u) =
(u?), respectively. So, by Proposition 2.2, ¥ is not arc-transitive.

In (43) for [S = Si1,m > 3] and [S = S5, m > 4], one can see that
there is no f € A such that f(Ap) = (Au™). For [S = Sz, m > 4] and
[S = S4, S3,m > 3], there is no f € Ay such that f(Au) = (u™). Also,
for [S = S3,m > 4] there isno f € Ay such that f(\) = (u™T!). Finally,
for [S = S7,m > 3] there is no f € A, such that f(Au™ ) = (pm™+1).
So, by Proposition 2.2, ¥ is not arc-transitive.

In (44) for [S = 51,52, 53, m > 3|, one can see that there is no f € A,
such that f(Au) = (Ao). Also, for [S = Sy, m > 2] there is no f € Ay
such that f(Au) = (o). For [S = S5,m > 3, m = 2k], thereisno f € Ay
such that f(Auc**1) = (A\o¥). Finally, for [S = Sg,m > 3,m = 2k,
there is no f € G such that f(Auc*+1) = (¢*). So, by Proposition 2.2,
Y is not arc-transitive. In (45), one can see that there is no f € G such
that f(A2?) = (A™*1). Thus, by Proposition 2.2, ¥ is not arc-transitive.
In (46), there is no f € Ay such that f(A™) = (A™*2). So, Proposition
2.2 implies that X is not arc-transitive.

In (47), for S = Sy, there is no f € A, such that f(u) = (Au’) and for
8§ =29,, f & A, such that f(u) = (/). Therefore, by Proposition 2.2 ¥
is not arc-transitive.

15
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In (48) for S = S1 and S = Sy, thereisno f € A such that f(u) = (A\u?)
and f(p) = (M), respectively, which implies 3 is not arc-transitive.

In (49) and (50), there is no f € Ay such that f(A?) = (Au). So, by
Proposition 2.2, 3 is not arc-transitive.

In (51), (53), (54) and (55), for [S = 57, S2], there is no f € A such
that f(A2) = (A%™), (A2™), (A*™~1) and (A*™*3), repectively. So ¥ is
not arc-transitive.

In (57), since there is no f € Ay such that f(Au) = (o), ¥ is not
arc-transitive.

In (4), we have ¥ = Ky x Q5 ~ C4 X Q4. Since Q4 is arc-transitive, ¥
is arc-transitive.

The cases (13) and (18) for m = 4 are similarly as the case (4).

In (24), we have ¥ = K2 x Qf. Note that [/, Proposition 17.2] tells
us that the Cayley graph is at most 3-transitive. Let [a] be a 3-arc
in ¥. Then there are automorphisms gi,...,gs such that g;[a] = 3]
(1 < i < 5), so that each [3%)] is a successor of [a]. Then Aut(X) is
transitive on 3-arcs and X is vertex-transitive. So, X is 2-transitive and
1-transitive. Therefore, the graph ¥ = Ko x QI is arc-transitive.

In (37), we have the graph ¥ = @7, which is arc-transitive.

In (52) for m = 7 and m = 14, we have ¥ = K7 and ¥ = K77 — TK>
respectively, which are arc-transitive.

In (51) for m = 2, (53) for m = 4, (54) for m = 1, (45) for m = 3 and
(43) for [S = S3,m = 3] and [S = S5, m = 3|, we have ¥ = K, which
is arc-transitive.

In (45) for m = 2, (46) for m = 4, (39) for m = 1, (33) and (43) for
[S = S, S2, 53, m = 2], we have ¥ = Kg — 8K», which is arc-transitive.
In (53) for m = 3 and (56), we have ¥ = K3 3 3, which is arc-transitive.
Now the proof of Theorem 1.1 (a) is completed.

(b) Assume G is a non-cyclic group, and ¥ = Cay(G,S) is a normal
Cayley graph of valency six. Since the order of all elements of S is equal
to n, we investigate two deferent casesn = 2 and n > 2. If n = 2, then S
contains six involutions and up to an isomorphism, one of the following
cases happens:

L. G=27Z3= (N x(u)x(0),S = {\ i, 0, \t, \o, \uo }, ¥ = Kg—8Ko.

2. G =24 = () x () x () x (0),
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S1={\ 0,0, \u, \po }, ¥ = Ko X Ko[2Ks),

82 = {/\,/L,O’,H,)\M,J(g}, Y= K4 X K4,

S3 = {\, 0,0, \uo, \ub}, Sy ={\, pu,0,0, A\, \pob},
S5 = {\, 1, 0,0, \po, \po0}, S¢ = { A\, p, 0,0, 0, \po}.

3G =75 = () x () x (o) x (0) x {a),
S = {)‘7M70797 0, )‘N}v Y= K4 X Qs,
Sy = {)‘7M>070>Q7 )\Ma}a Y=0Cy % Q;—;
Ss = {\ p,0,0,0 Mo}, ¥ =Ko x Qf,
84 = {lambda, K, 0, 07 0, A/LJQQ}v Y= 625+

1 G=Z§= (M) x (1) x (o) x (6) x () x (&),
S = {A7/~L70'797Q7§}7E = Qs-

Note that by part (a) of Theorem 1.1, the graphs of the cases (1),

(2) for [S = S1,83], (3) for [S = Sy, 82,83 are non-normal. Also, the
graphs Qg, K4 x K4 and Qgr are arc-transitive.
If n > 2, we suppose that S = {§,§71, 1,171, 1,171}, where 0(§) = o(f) =
o(f) =n > 3. Then, G is an abelian group generated by §, 1 and 1, so
G =2 Ly X Ly X Ly = (A) X (i) X (o), where m|n and p|m (i.e., n = mk,
m = pk’). Note that Aut(G) acts transitively on the set of elements of
G Wit/h the highest order. So, we can take § = A\, t = A%/, and § =
Ap® o' such that pu € (@) and o € (o%). One can see that the orders
of A/ and )\wuw/ai are n. Therefore, ged(j,m) = 1 and ged(p,i) = 1.
So, we may also take { = A%y and I = )\“’uw/a, under the action of
a suitable auto/morphisrn of G. Since the mapping X\ — X, u — Nu
and 0 — M\u¥ o is an automorphism of G, without loss of generality,
we can assume that 0 < w < k—1 and 0 < w < K —1. Now, since
o(t) = o(f) = n, we have ged(w, k) = 1 and ged(w', k') = 1. However,
G is not cyclic and then m > 2 and p > 2. Thus ¥ = Ac(n, m, p, w, w/).
Now, by Lemma 3.1, the proof of Theorem 1.1 (b) is complete. O

4 Conclusion

In this paper, we have studied the arc-transitive Cayley graphs with
valency six on finite abelian groups. We have shown that there are only
finitely many such graphs that are non-normal, and we have classified
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them completely. We have also classified all normal Cayley graphs on
non-cyclic abelian groups with valency six, and we have given some ex-
amples of such graphs. Our results extend and generalize some previous
works on arc-transitive Cayley graphs of low valency.
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