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Abstract. Let R be a commutative Noetherian ring and M an R-
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general local cohomology modules with respect to a system of ideals of
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1 Introduction

Throughout this article, R is a commutative Noetherian ring with non-
zero identity and M is an R-module. By N0, we mean the set of non-
negative integers. Moreover, we use Mod(R) to denote the category of
all R-modules and R-homomorphisms and Max(R) to denote the set of
maximal ideals of R. Let Φ be a non-empty set of ideals of R. Recall
that Φ is a system of ideals of R if, for any a, b ∈ Φ, there is an ideal
c ∈ Φ such that c ⊆ ab. For an R-module M and an ideal a of R, the
i-th local cohomology module of M with respect to a is defined as

H i
a(M) ∼= lim−−→

n∈N
ExtiR (R/an,M) .

As a generalization of these modules, for a system of ideals Φ of R,
Bijanzadeh [6] defined the submodule ΓΦ(M) of M as follows:

ΓΦ(M) = {x ∈ M | ax = 0 for some a ∈ Φ}.

Then ΓΦ(−) is a covariant, R-linear and left exact functor from Mod(R)
to itself. The author [6] denoted the functor ΓΦ(−) by LΦ(−) and called
it as the “general local cohomology functor with respect to Φ”. For each
i ≥ 0, the i-th right derived functor of ΓΦ(−) is denoted by H i

Φ(−). For
an ideal a of R, if Φ = {ai|i > 0}, then the functor H i

Φ(−) coincides with
the ordinary local cohomology functor H i

a(−). From now on, we refer to
H i

Φ(M) as the general local cohomology module. For any unexplained
notation and terminology, we refer the reader to [5, 6, 7].

Grothendieck [10], proposed the following conjecture.
Grothendieck’s Conjecture. If R is a Noetherian ring, then for
any ideal a of R and any finitely generated R-module M , the module
HomR

(
R/a, H i

a(M)
)
is finitely generated for all i ≥ 0.

Hartshorne [11], showed that this conjecture is not true in general.
Furthermore, he defined an R-module M to be a-cofinite if Supp(M) ⊆
Var(a) and ExtjR(R/a,M) is finitely generated for all j ≥ 0.

Hartshorne refined Grothendieck’s conjecture and he asked:
Hartshorne’s Question. When the R-module H i

a(M) ia a-cofinite for
all i ≥ 0 ?
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Among the basic problems which is discussed by Huneke [13], we are
interested in determining the Artinianness and the finiteness of the set
of associated primes of R-module H i

a(M). It is well known that if M
is a finitely generated R-module of Krull dimension d, then Hd

a (M) is
Artinian for any ideal a of R, (see [16, Proposition 5.1]). Moreover, in
the case that R is local, Marley [15] showed that SuppR

(
Hd−1

a (M)
)
is a

finite set.
Concerning cofiniteness of local cohomology modules, Melkersson

[16, Theorem 2.1] showed that if (R,m) is a local ring of dimension
at most 2, then for every finitely generated R-module M , all local coho-
mology modules H i

a(M) are a-cofinite.
In this paper, we discuss about the Artinianness, finiteness of the

support and the associated prime ideals, and cofiniteness of local co-
homology modules. The finiteness of the Bass numbers and the Betti
numbers will be also studied. This paper is organized as follows:

In Section 2, we give some further contributions to verify the mem-
bership of Hn

Φ(M) in an arbitrary Serre subcategory S, for some n ∈ N,
(see for example Proposition 2.2 and Corollary 2.3). As important con-
sequences, we give some results on Artianness of HdimM−1

Φ (M), when
R is a local ring; and HdimM−1

a (M), when R is an arbitrary Noetherian
ring for an ideal a of R (see Corollaries 2.8, 2.12, and Proposition 2.9).

In Section 3, we study finiteness of the support and the associated
prime ideals of ordinary local cohomology modules. In Proposition 3.1,
as one of the important results of this paper, we prove that if R is an
arbitrary Noetherian ring of dimension n, then

SuppR(H
j
a (M)) ⊆ A

∗
(a) ∪ (∪n−j

i=1 Suppj+i
R (Hj

a (M))),

for any R-module M , any ideal a, and any j ≥ 0, where A
∗
(a) denotes⋃

n⩾0
AssR(R/ an ) and an denotes the integral closure of an. As some

applications of this, we get Corollary 3.3 and Proposition 3.6, which
are generalizations of [15, Corollaries 2.4 and 2.7]. We also show that
when R is a local ring of dimension n and M is a minimax module
such that Hn

a (M) ̸= 0, then SuppR(H
n−1
a (M)) ⊆ A

∗
(a) (see Corollary

3.4). Moreover, if R is a semi-local ring (a non-zero ring having only
finitely many maximal ideals) of dimension n and M is a ZD-module,

then SuppR(
Hn−2

a (M)

ajHn−2
a (M)

) is a finite set for all j ≥ 0 (see Corollary 3.5).
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In Section 4, we study the cofiniteness and the finiteness of the Bass
numbers and the Betti numbers of ordinary local cohomology modules.
Let R be a Noetherian ring, M be a finitely generated R-module with
dimM ≤ 3, and x be a non-zerodivisor on M such that xmH1

a (M) is
locally minimax for some m ∈ N0. Then Proposition 4.4 shows that
H i

a(M) is a-cofinite and consequently the Bass numbers and the Betti
numbers of H i

a(M) are finite for all i ≥ 0. In particular, all results
hold when amH1

a (M) is locally minimax for some m ∈ N0. Corollary
4.5 shows that, the conditions of Proposition 4.4 are available. Finally,
Theorem 4.7, as the last result in this paper, shows that if (R,m) is a
regular local ring of dimension d ≤ 3 and M is a minimax module, then
ExtjR

(
R/a, H i

a(M)
)
is minimax for all i, j ≥ 0.

2 General Local Cohomology Modules and Serre
Subcategories

In this section, we study the membership of the general local cohomol-
ogy modules in an arbitrary Serre subcategory and their common results
for Artinianness of local cohomology modules. Minimax modules have
been studied by Zink [23], Zöschinger [24, 25], and Rudlof [19]. Recall
that an R-module M is a minimax module if there exists a finitely gen-
erated submodule N of M in which M/N is Artinian. According to
[21], an R-module M is called an AF module if there exists an Artinian
submodule A of M in which M/A is finitely generated. It is easy to see
that the class of minimax modules contains the class of AF modules and
it contains finitely generated and Artinian R-modules, as well. Finally,
an R-module M is said to be an a-cominimax if the support of M is
contained in Var(a) and ExtiR(R/a,M) is minimax for all i ≥ 0. The
concept of a-cominimax modules were introduced in [4] as a generaliza-
tion of the important notion of a-cofinite modules.

We start with the following remark, which plays a main role for some
results of this paper.

Remark 2.1. Let Φ be a system of ideals of R and let M be an R-
module. Then following hold:
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(i) If dimM = d, then by Grothendieck’s Vanishing Theorem, H i
a(M) =

0, for all i > d and all a ∈ Φ. Hence, H i
Φ(M) = 0, for all i > d by [6,

Lemma 2.1].

(ii) If M is a minimax R-module, then there exists a short exact sequence

0 → N → M → A → 0,

of R-modules and R-homomorphisms, where N is a finitely generated
module and A is an Artinian module. This induces the exact sequence

0 → ΓΦ(N) → ΓΦ(M) → ΓΦ(A) → H1
Φ(N) → H1

Φ(M) → 0,

and H i
Φ(M) ∼= H i

Φ(N) for all i ≥ 2.

(iii) If M is an AF-module, then there exists a short exact sequence

0 → A → M → N → 0,

of R-modules and R-homomorphisms, where A is an Artinian module
and N is a finitely generated module. So, we get the exact sequence

0 → ΓΦ(A) → ΓΦ(M) → ΓΦ(N) → 0,

and H i
Φ(M) ∼= H i

Φ(N) for all i ≥ 1.

As the first result of this paper, we give the following proposition
which is a generalization of [3, Proposition 2.1] and also it will be useful
to prove next results.

Proposition 2.2. Let M be an R-module of finite dimension, Φ a sys-
tem of ideals of R, and S a Serre subcategory of Mod(R). Assume that

n ∈ N is such that H i
Φ(M) ∈ S for all i > n. Then

Hi
Φ(M)

xjHi
Φ(M)

∈ S for all

x /∈ ZdvR(M), all i ≥ n, and all j ≥ 0. Consequently, Hn
Φ(M) ∈ S if and

only if there exist x /∈ ZdvR(M) and m ≥ 0 such that xmHn
Φ(M) ∈ S.

Proof. Let x be an arbitrary non-zerodivisor on M . Note that it is
enough to prove the desired result only for i = n and j = 1. To do this,
we use induction on d := dimM . When d = 0, the result follows by
Remark 2.1 (i). So, suppose that d > 0 and the result has been proved
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for all R-modules with dimension of less than d. Considering the exact
sequence

H i
Φ(M)

.x→ H i
Φ(M) → H i

Φ(M/xM) → H i+1
Φ (M),

for all i ≥ 0, and the assumption, we have H i
Φ(M/xM) ∈ S for all i > n.

Thus, by the inductive hypothesis, we get

Hn
Φ(M/xM)

xHn
Φ(M/xM)

∈ S.

Now, the exact sequence

Hn
Φ(M)

.x→ Hn
Φ(M)

α→ Hn
Φ(M/xM)

β→ Hn+1
Φ (M),

induces the following exact sequences:

Hn
Φ(M)

.x→ Hn
Φ(M) → N := Im α → 0

and
0 → N → Hn

Φ(M/xM) → K := Im β → 0.

Thus, the following sequences

Hn
Φ(M)

xHn
Φ(M)

.x→
Hn

Φ(M)

xHn
Φ(M)

→ N

xN
→ 0 (1)

and

TorR1 (
R

xR
,K) → N

xN
→

Hn
Φ(M/xM)

xHn
Φ(M/xM)

→ K

xK
→ 0 (2)

are both exact. From the exact sequence (1), we get

N

xN
∼=

Hn
Φ(M)

xHn
Φ(M)

.

On the other hand, by [3, Proposition 2.1], we have TorR1 (
R

xR
,K) ∈ S.

Therefore
N

xN
∈ S by the exact sequence (2) and this completes the

proof. For the last part, apply the following short exact sequence:
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0 → xmHn
Φ(M) → Hn

Φ(M) →
Hn

Φ(M)

xmHn
Φ(M)

→ 0. □

In [8], the authors introduced the concept of ZD-modules. An R-
module M is said to be a ZD-module (zerodivisor-module) if for any
submodule N of M , the set of zerodivisors of M/N is a union of finitely
many prime ideals in AssR(M/N). For the properties of this modules,
see [8]. As a consequence of Proposition 2.2, we obtain the following.

Corollary 2.3. Let M be an ZD-module of finite dimension and Φ a
system of ideals of R. Let n ∈ N be such that H i

Φ(M) ∈ S for all i > n.

Then
Hi

Φ(M)

ajHi
Φ(M)

∈ S for any a ∈ Φ, all i ≥ n and all j ≥ 0. Consequently,

Hn
Φ(M) ∈ S if and only if there exist a ∈ Φ and m ≥ 0 such that

amHn
Φ(M) ∈ S.

Proof. Let a ∈ Φ. Since H i
Φ(M) ∼= H i

Φ(M/ΓΦ(M)) for all i > 0, and
M/ΓΦ(M) is a Φ-torsion-free R-module, we may assume that ΓΦ(M) =
0 and so Γa(M) = 0. Since M is a ZD-module, the Prime Avoidance
Theorem, follows that there exists x ∈ a which x /∈ ZdvR(M) and so
Hi

Φ(M)

xjHi
Φ(M)

∈ S for all i ≥ n and all j ≥ 0, by Proposition 2.2. Now, the

assertion follows immediately from the epimorphism
R

xjR
→ R

aj
→ 0.

□
To achieve further results, we need Proposition 2.4, which is a gen-

eralization of [22, Proposition 3.1].

Proposition 2.4. ([20, Theorem3.1]) Let M be a finite dimensional R-
module, Φ be a system of ideals of R, and t ∈ N. Then the following
statements are equivalent:

(i) H i
Φ(M) = 0, for all i ≥ t;

(ii) H i
Φ(M) is finitely generated for all i ≥ t;

(iii) There exists a ∈ Φ such that a ⊆
√

(0 :R H i
Φ(M)) for all i ≥ t (or

equivalently, there exists b ∈ Φ such that bH i
Φ(M) = 0 for all i ≥ t).

Proof. (i) ⇒ (ii) ⇒ (iii) are clear.

For (iii)⇒ (i), assume that there exists a ∈ Φ such that a ⊆
√

(0 :R H i
Φ(M))
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for all i ≥ t. So there exists a non-negative integer m ∈ N such that
amH i

Φ(M) = 0 for all i ≥ t. To prove the assertion, it is sufficient for us
to prove that Ht

Φ(M) = 0. On the other hand, as any R-module is direct
limit of its finitely generated submodules, so we may assume that M is
finitely generated R-module, by [5, Proposition 2.4]. We use induction
on d := dimM . When d = 0, it is clear that H i

a(M) = 0 for all a ∈ Φ
and all i ≥ t. Now, suppose inductively that d > 0 and the result has
been proved for all finitely generated R-modules of dimension smaller

than d. Since, H i
Φ(M) ∼= H i

Φ(
M

ΓΦ(M)
) for all i ≥ 1, we may assume that

ΓΦ(M) = 0 and therefore Γa(M) = 0. Hence there exists x ∈ a which is
a non-zerodivisor on M. Now, consider the following long exact sequence

· · · → Ht
Φ(M)

.xm

→ Ht
Φ(M) → Ht

Φ(
M

xmM
) → Ht+1

Φ (M) → · · · . (3)

Thus a ⊆
√
(0 :R Ht

Φ(
M

xmM
)) for all i ≥ t, by [7, Lemma 9.1.1]. Since

dim
M

xmM
< d, by induction hypothesis, we have Ht

Φ(
M

xmM
) = 0. Now,

the long exact sequence (3) implies thatHt
Φ(M) = xmHt

Φ(M). Therefore
Ht

Φ(M) = 0, as required. □

Remark 2.5. By the proof of Proposition 2.4 (iii) ⇒ (i), we can replace

the condition (iii) with Rx ⊆
√
(0 :R H i

Φ(M)) for some x /∈ ZdvR(M)

and for all i ≥ t.

The following corollary is a generalization of [2, Proposition 2.3] for
a system of ideals of R.

Corollary 2.6. Let M be a finite dimensional R-module, Φ be a system
of ideals of R and t ∈ N. Then the following statements are equivalent:

(i) H i
Φ(M) is Artinian for all i ≥ t;

(ii) H i
Φ(M) is minimax for all i ≥ t;

(iii) xmH i
Φ(M) is minimax for some non-zerodivisor x on M , some n ∈

N, and all i ≥ t.

Proof. (i) ⇒ (ii) ⇒ (iii) are obvious.
(iii) ⇒ (ii) This follows easily from Proposition 2.2.
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(ii) ⇒ (i) First, we show that SuppR(H
i
Φ(M)) ⊆ Max(R) for all i ≥ t.

For this purpose, let p ∈ Spec(R) \Max(R) and i ≥ t. By assumption,
there exists a short exact sequence

0 −→ N −→ H i
Φ(M) −→ A −→ 0, (4)

in which N is a Noetherian module and A is an Artinian module. It
is easy to see that (H i

Φ(M))p is a finitely generated Rp-module for all
i ≥ t. Then by Proposition 2.4, (H i

Φ(M))p = 0 for all i ≥ t. Hence
SuppR(H

i
Φ(M)) ⊆ Max(R) for all i ≥ t. Considering the exact sequence

(4) and since N is Noetherian, there exists a finite set {m1, . . . ,mn} ⊆
Max(R) such that

Var(0 :
R
N) = SuppR(N) = AssR(N) = {m1, . . . ,mn}.

This deduces that N is Artinian and so H i
Φ(M) is Artinian for all i ≥ t.

□
Now, we are going to establish some results on top general local

cohomology modules.

Corollary 2.7. Let M be an R-module of dimension d ≥ 1 and Φ be a
system of ideals of R. Then the following statements hold:

(i) Hd
Φ(M) = xjHd

Φ(M) for any non-zerodivisor x on M and all j ≥ 0.

(ii) Hd
Φ(M) = 0 if and only if there exists a non-zerodivisor x on M and

m ∈ N such that xmHd
Φ(M) is a finitely generated R-module.

(iii) Hd
Φ(M) is an Artinian R-module if and only if there exist a non-

zerodivisor x on M and m ∈ N such that xmHd
Φ(M) is a minimax R-

module.

Proof. (i) Use Remark 2.1 (i) and Proposition 2.2 for the class of zero
modules.
(ii) It follows from part (i) and Proposition 2.4 for the class of finitely
generated modules.
(iii) Apply Corollary 2.6 and Proposition 2.2 for the class of Artinian
modules. □

Corollary 2.8. Let (R,m) be a local ring, M be a minimax R-module
of dimension d, and Φ be a system of ideals of R. Then
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(i) Hd
Φ(M) is an Artinian R-module.

(ii) If d > 1, then
Hd−1

Φ (M)

xjHd−1
Φ (M)

is an Artinian R-module for all x /∈

ZdvR(M) and all j ≥ 0. In particular, Hd−1
Φ (M) is Artinian if and only

if xmHd−1
Φ (M) is minimax for some x /∈ ZdvR(M) and some m ∈ N.

(iii) Suppose that d > 2. If there exists x /∈ ZdvR(M) and m ∈ N

such that xmHd−1
Φ (M) is minimax, then

Hd−2
Φ (M)

xjHd−2
Φ (M)

is Artinian for

all j ≥ 0.

Proof. (i) It follows easily from Remark 2.1 (ii) and [9, Theorem 2.6].
(ii) The result follows by part (i), Corollary 2.6, and Proposition 2.2.
(iii) This immediately follows from part (ii), Corollary 2.6, and Propo-
sition 2.2. □

Following, we present some applications of the previous results to
the ordinary local cohomology modules.

Proposition 2.9. Let M be a minimax R-module of dimension d and
a be an ideal of R. Then

(i) Hd
a (M) is an a-cofinite Artinian module.

(ii) If d > 1, then
Hd−1

a (M)

ajHd−1
a (M)

has finite length for all j ≥ 0.

(iii) If d > 2 and xmHd−1
a (M) is minimax module, for some x /∈ ZdvR(M)

and some m ∈ N, then
Hd−2

a (M)

xjHd−2
a (M)

is an Artinian module for all j ≥ 0.

Consequently,
Hd−2

a (M)

ajHd−2
a (M)

is Artinian for all j ≥ 0.

Proof. (i) It follows easily using Remark 2.1 (ii) for Φ = {ai|i ≥ 0} and
[17, Proposition 5.1].

(ii) Set X :=
Hd−1

a (M)

ajHd−1
a (M)

. In view of part (i), H i
a(M) is Artinian a-

cofinite R-module for all i > d − 1. Hence, using Corollary 2.3 for
Φ = {ai|i ≥ 0} and the class of a-cofinite minimax modules (which is a
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Serre subcategory by [17, Corollary 4.4]), we get that X is an a-cofinite
for all j ≥ 0. So, (0 :X a) = X is a finitely generated R-module. On the
other hand, using Corollary 2.3 for the class of Artinian R-modules, X
is Artinian and so has finite length.
(iii) By assumption, part (i) and Corollary 2.6, we deduce that H i

a(M)
is an Artinian R-module for all i > d − 2. Now, the assertion follows
from Proposition 2.2 and Corollary 2.3. □

Proposition 2.10. Let S be a Serre subcategory of Mod(R). Then the
following hold:

(i) S ≠ 0 if and only if R/m ∈ S for some m ∈ Max(R).

(ii) Let FL be the class of finite length R-modules. Then FL ⊆ S if and
only if R/m ∈ S for any m ∈ Max(R).

(iii) If (R,m) is a local ring and S ≠ 0, then FL ⊆ S.
(iv) If R/m ∈ S, for any m ∈ Max(R) and M is a finitely generated or
an Artinian R-module, then ExtjR(R/m,M) ∈ S for any m ∈ Max(R)
and all j ≥ 0.

(v) If R/m ∈ S for any m ∈ Max(R), and M is a minimax R-module,
then ExtjR(R/m,M) ∈ S for any m ∈ Max(R) and all j ≥ 0.

(vi) If (R,m) is a local ring, S ≠ 0, and M is a minimax R-module, then
ExtjR(R/m,M) ∈ S for all j ≥ 0.

Proof. (i) (⇒) Since S ≠ 0, there exists a non-zero R-module L in
S. Let 0 ̸= x ∈ L. Then (0 :R x) ⊆ m for some m ∈ Max(R). Now,
since Rx ∈ S, the assertion follows from the natural epimorphism Rx ∼=
R/(0 :R x) → R/m.
(⇐) It is clear.
(ii) Let FL ⊆ S and m ∈ Max(R). Since ℓR(R/m) < ∞, R/m ∈ S.
Conversely, let N ∈ FL and set l := ℓR(N). Hence, there is a chain of
R-submodules of N as follows:

0 = N0 ⊆ N1 ⊆ ... ⊆ Nl = N,

in which Nj/Nj−1
∼= R/m for all 1 ≤ j ≤ l and some m ∈ Max(R). Now,

the assertion is followed by induction on l.
(iii) The result follows from parts (i) and (ii).
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(iv) Let m ∈ Max(R) and j ≥ 0. Let M be a finitely generated or an
Artinian R-module. Since ExtjR(R/m,M) is annihilated by m, it has
finite length. Therefore it belongs to S, by part (ii).
(v) Since M is minimax, there exists a short exact sequence

0 → N → M → A → 0,

where N is a finitely generated R-module and A is Artinian R-module.
This induces the long exact sequence

· · · → ExtjR(R/m, N) → ExtjR(R/m,M) → ExtjR(R/m, A) → · · · .

Now, apply part (iv).
(vi) The result is a consequence of parts (i) and (v). □

Corollary 2.11. Let S be a Serre subcategory of Mod(R), M be a min-
imax R-module of dimension d ̸= 1, and a be an ideal of R. Then the
following hold:

(i) If R/m ∈ S for any m ∈ Max(R), then
Hd−1

a (M)

ajHd−1
a (M)

∈ S for all j ≥ 0.

(ii) If (R,m) be a local ring and S ̸= {0}, then Hd−1
a (M)

ajHd−1
a (M)

∈ S for all

j ≥ 0.

Proof. Each both parts immediately follow from Propositions 2.9 and
2.10. □

Corollary 2.12. Let M be a minimax R-module of dimension d ̸= 1.
Then Hd−1

a (M) is an Artinian R-module if and only if there exists a
non-zerodivisor x on M and n ∈ N such that xnHd−1

a (M) is minimax.

Proof. Use Corollary 2.6 for t = d− 1 and Φ = {ai|i ≥ 0}.
□

Remark and Examples 2.13.

(i) The assertions of Corollary 2.12, may not be hold when dimM =
1. For example, let M be a finitely generated a-torsion R-module of
dimension d=1. Then, it is clear that Hd−1

a (M) = M is not Artinian.
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(ii) In Proposition 2.9 (iii),
Hd−2

a (M)

ajHd−2
a (M)

does not have necessary finite

length. To see this, let k be a field and R = k[[X1, X2, X3, X4]], I =
⟨X1, X2⟩, J = ⟨X3, X4⟩, and a = I ∩J . By the Mayer-Vietoris sequence,
we get H2

a (R) ∼= H2
I (R)⊕H2

J(R) and so,

H2
a (R)

aH2
a (R)

∼=
H2

I (R)

aH2
I (R)

⊕
H2

J(R)

aH2
J(R)

∼= H2
I (R/a)⊕H2

J(R/a).

SinceH2
I (R/a) ̸= 0, by the Lichtenbaum-Hartshorne Vanishing Theorem

[7, Theorem 8.2.1], we have cd(I,R/a) = 2. On the other hand, H2
I (R/a)

is not a finitely generated R-module by [12, Remark 2.5]. Thus,
H2

a (R)

aH2
a (R)

is not, too. However, note that it is an Artinian R-module.

Corollary 2.14. Let M be a minimax R-module of dimension d ̸= 1
and a ⊆ Jac(R) be an ideal of R. Suppose that for some non-negative
integer m, the R-module amHd−1

a (M) is finitely generated. Then the
following hold:

(i) Hd−1
a (M) has finite length and so there exists a non-negative integer

n, such that anHd−1
a (M) = 0.

(ii) If S is a Serre subcategory of Mod(R) such that R/m ∈ S for all
m ∈ Max(R), then Hd−1

a (M) ∈ S.

(iii) If (R,m) is a local ring and S ≠ {0}, then Hd−1
a (M) ∈ S.

Proof. (i) Let amHd−1
a (M) be a finitely generated R-module for some

non-negative integer m. Consider the exact sequence

0 → amHd−1
a (M) → Hd−1

a (M) → Hd−1
a (M)

amHd−1
a (M)

→ 0.

By Proposition 2.9 (ii) and Corollary 2.12, the R-module Hd−1
a (M) has

finite length.
(ii) It follows from part (i) and Proposition 2.10 (ii) .
(iii) This follows immediately by part (i) and Proposition 2.10 (iii). □
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3 Finiteness of Support and Associated Prime
Ideals

As it is mentioned in the Introduction, for an ideal a of R, let A
∗
(a)

denote
⋃
n⩾0

AssR(R/ an ), where an denotes the integral closure of an.

Ratliff in [18] showed that, if R is Noetherian, then A
∗
(a) is a finite set

for all ideal a. Using this idea, Marley in [15, Corollary 2.7] showed
that if (R,m) is a local ring and M is a finitely generated R-module of
dimension at most three, then the set of AssR(H

i
a(M)) is finite for each

ideal a of R and all i ≥ 0.

In this section, the first result will play a crucial role. Consequently,
we obtain a generalization of [15, Corollary 2.7], whenever R is a semi-
local ring and M is a minimax R-module. For an R-module M and
j ≥ 0, we set SuppjR(M) := {p ∈ SuppR(M)| htp = j}.

Proposition 3.1. Let dimR = n. Then

SuppR(H
j
a (M)) ⊆ A

∗
(a)

⋃
(

n−j⋃
i=1

Suppi+j
R (Hj

a (M))),

for all R-modules M , all ideals a of R, and all j ≥ 0.

Proof. Let j ≥ 0 and p ∈ SuppR(H
j
a (M)). Hence htp ≥ j, by [7,

Lemma 6.3.1]. Now, if htp > j, then p ∈
⋃n−j

i=1 Suppj+i
R (Hj

a (M)) and

when htp = j, we get p ∈ SuppjR(H
j
a (M)) ⊆ A

∗
(a), by [15, Proposition

2.3]. □

Remark 3.2. For an R-module M and j ≥ 0, set

(SuppR(H
j
a (M)))<j := {p ∈ SuppR(H

j
a (M))| htp < j}

and

(SuppR(H
j
a (M)))≥j := {p ∈ SuppR(H

j
a (M))| htp ≥ j}.

In view of the proof of Proposition 3.1, we have SuppR(H
j
a (M)) =

(SuppR(H
j
a (M)))≥j . Therefore SuppR(H

j
a (M)) is a finite set if and only

if (SuppR(H
j
a (M)))>j is a finite set.
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An immediate consequence of Proposition 3.1 is the following, which
is a generalization of [15, Corollaries 2.4 and 2.5].

Corollary 3.3. Let R be a semi-local ring of dimension n. Then for
any ideal a of R and any R-module M , SuppR(H

n
a (M)) ⊆ A

∗
(a) and

SuppR(H
n−1
a (M)) ⊆ A

∗
(a)∪Max(R). Consequently, AssR(H

n
a (M)) and

AssR(H
n−1
a (M)) are finite sets. In particular, the assertion holds in any

local ring R.

Corollary 3.4. Let (R,m) be a local ring of dimension n, a be an ideal
of R, and M be a minimax R-module such that Hn

a (M) ̸= 0. Then
SuppR(H

n−1
a (M)) ⊆ A

∗
(a).

Proof. According to Corollary 2.7 (i), Hn
a (M) is an Artinian R-module

and so SuppR(H
n
a (M)) = {m}. Now, the assertion follows from Corol-

lary 3.3. □

Corollary 3.5. Let R be a semi-local ring of dimension n and M be a

ZD-module. Then for all j ≥ 0, SuppR(
Hn−2

a (M)

ajHn−2
a (M)

) is a finite set.

Proof. By Corollary 3.3, H i
a(M) has finite support for all i > n − 2.

Now, the assertion is deduced from Corollary 2.3 for the class of R-
modules with finite support. □

The following, as the last result of this section is a generalization of
[15, Corollary 2.7], in the case that R is a semi-local ring and M is a
minimax module.

Proposition 3.6. Let R be a semi-local ring and M a minimax R-
module of dimension at most three. Then AssR(H

i
a(M)) is a finite set

for all i ≥ 0.

Proof. We first considerM as a finitely generatedR-module. Therefore,
by replacing R with R/(0 :R M), we can assume that dimR ≤ 3. For
i = 2, 3, the assertion follows from Corollary 3.3. For i = 0, 1, the result
is also clear from [15, Proposition 1.1]. Now, suppose M is a minimax
R-module. Then, for i = 0, 2, 3, the result follows easily from Remark
2.1 (ii). Also, for i = 1, the assertion follows from the exact sequence

Γa(A)
g→ H1

a (N)
f→ H1

a (M) → 0, which is mentioned in Remark 2.1 (ii),
and the fact that AssR(H

1
a (M)) ⊆ AssR(H

1
a (N)) ∪ SuppR(Kerf). □
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4 Finiteness of Bass Numbers and Betti Num-
bers

In this section, we show that Hartshorne’s question is true in some spe-
cial cases. First of all, in Proposition 4.2, we show that these discussions
are established for minimax modules of dimension at most 2, which is a
summary of main results in [14]. To this end, we begin by the following
lemma.

Lemma 4.1. Let M be a finitely generated R-module such that dimM ≤
2. Then the R-module H i

a(M) is a-cofinite for all i ≥ 0.

Proof. This is clear for i = 0. Moreover, for i ≥ 2, the assertion fol-
lows from [17, Proposition 5.1] and Grothendieck’s Vanishing Theorem.
Finally, for i = 1, we apply [17, Proposition 3.11]. □

Proposition 4.2. Let M be a minimax R-module and suppose that one
of the following cases holds:

(a) dimM ⩽ 2,

(b) dimR ⩽ 2,

(c) dim(R/a) = 1,

(d) cd(a,M) ⩽ 1,

(e) cd(a, R) ⩽ 1.
Then

(i) H i
a(M) is a-cofinite for all i ≥ 1 and it is a-cominimax for all i ≥ 0.

Thus, ExtjR(R/a, H i
a(M)) is a minimax R- module for all i, j ≥ 0.

(ii) TorRj (R/a, H i
a(M)) is a finitely generated R-module for all j ≥ 0 and

all i ≥ 1. Thus, TorRj (R/a, H i
a(M)) is a minimax R- module for all

i, j ≥ 0.

(iii) The Bass numbers and the Betti numbers of H i
a(M) are finite for all

i ≥ 0.

Moreover, if HomR(R/a,M) is finitely generated, then all of the state-
ments hold for all i, j ≥ 0.
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Proof. (i) Let the situation be as in (a). In view of the notation of
Remark 2.1 (ii), we have the exact sequence

0 → Γa(N) → Γa(M) → Γa(A) → H1
a (N)

f→ H1
a (M) → 0,

where N is a finitely generated module and H i
a(M) ∼= H i

a(N) for all
i ≥ 2. Hence, by lemma 4.1, H i

a(M) is a-cofinite for all i ≥ 2. Now, it
remains to prove the result for i = 1. To do this, set L := Kerf . Again,
by Lemma 4.1, H1

a (N) is a-cofinite. Thus (0 :L a) has finite length.
Now, in view of [17, Proposition 4.1], we deduce that L is a-cofinite. On
the other hand, the long exact sequence

· · · → ExtiR(R/a, H1
a (N)) → ExtiR(R/a, H1

a (M)) → Exti+1
R (R/a, L) → · · · ,

yields that H1
a (M) is a-cofinite. By the fact that M is minimax, we

conclude that H i
a(M) is a-cominimax for all i ≥ 0.

In the case (b), the assertion clearly holds, because dimM ≤ dimR ≤ 1.
In the case (c), since dimR/a = 1, the claim concludes by [14, Theorem
2.4].
In the case (d), if cd(a,M) = 0, then there is nothing to prove. If
cd(a,M) = 1, then, H i

a(M) = 0 for all i ≥ 2. So, it is sufficient to verify
the assertion for H1

a (M). To do this, note that cd(a, N) ≤ cd(a,M) ≤ 1,
by Remark 2.1 (ii). If cd(a, N) = 0, then H1

a (M) = 0. Let cd(a, N) = 1.
Similar to the method of the proof of case (a), it is easy to see that
H1

a (M) is a-cofinite.
Finally, in the case (e), the assertion follows from the fact that cd(a,M) ≤
cd(a, R).
(ii) This follows from part (i) and [17, Theorem 2.5].
(iii) This follows from parts (i), (ii), and the fact that the Bass numbers
and the Betti numbers of the minimax modules are finite. □

Recall that anR-moduleM is said locally minimax, ifMm is minimax
for any m ∈ Max(R). It is clear that the class of finitely generated,
Artinian, minimax and AF modules, whole are locally minimax.

Proposition 4.3. Let M be an AF module and a be an ideal of R. Let
x be a non-zerodivisor on M such that xmH1

a (M) is locally minimax for
some m ∈ N0. Then H1

a (M) is minimax and so the Bass numbers and
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the Betti numbers of H i
a(M) are finite for all i ≤ 1. In particular, the

results hold when amH1
a (M) is locally minimax for some m ∈ N0.

Proof. Let x /∈ ZdvR(M) and m ∈ N0 be such that xmH1
a (M) is

locally minimax. By Remark 2.1 (iii), we may assume that M is a
finitely generated R-module and grade(a,M) ≥ 1. Let E be the injective
envelope of M and put T := E/M . Then Γa(E) = 0. Now, by the
exact sequence 0 → M → E → T → 0, we have HomR(R/a, T ) ∼=
Ext1R(R/a,M) and Γa(T ) ∼= H1

a (M). Since (0 :T a) = (0 :Γa(T ) a) ∼=
(0 :H1

a (M) a) is finitely generated, (0 :xmH1
a (M) (M) is finitely generated,

too. Thus xmH1
a (M) is minimax, by [2, Theorem 2.6]. Now, from the

long exact sequence

· · · → Γa(M/xM) → H1
a (M) → xmH1

a (M) → · · · ,

we conclude that H i
a(M) is minimax and so the Bass numbers and the

Betti numbers of H i
a(M) are finite for all i ≤ 1, by Proposition 2.10 (v)

and [17, Theorem 2.1]. □
Melkersson in [16, Theorem 2.2] showed that Grothendieck’s conjec-

ture and Hartshorne’s question is not true in general for the rings of
Krull dimensions 3, even if the ring is local. The next result is about
a-cofiniteness of local cohomology modules over Noetherian rings (not
necessarily local) and finitely generated modules of Krull dimensions at
most 3.

Proposition 4.4. Let R be a Noetherian ring and M be a finitely gen-
erated R-module with dimM ≤ 3. Let x be a non-zerodivisor on M such
that xmH1

a (M) is locally minimax for some m ∈ N0. Then H i
a(M) is

a-cofinite and so the Bass numbers and the Betti numbers of H i
a(M) are

finite for all i ≥ 0. In particular, the results hold when amH1
a (M) is

locally minimax for some m ∈ N0.

Proof. By Proposition 4.2, we may assume that dimM = 3. By the
same method of the proof of Proposition 4.3, we get (0 :H1

a (M) a) is

finitely generated. Hence, H1
a (M) is a-cofinite minimax, by [17, Propo-

sition 4.3] and Proposition 4.3. Consequently, H i
a(M) is a-cofinite for

i ̸= 2, by [17, Proposition 5.1] and Grothendieck’s Vanishing Theorem.
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Now, the assertion follows from [17, Proposition 3.11]. □

The next corollary shows that, the conditions of Proposition 4.4 are
available.

Corollary 4.5. Let M be a finitely generated R-module with dimM ≤ 3.
Then H i

a(M) is a-cofinite for all i ≥ 0 if one of the following conditions
holds:

(i) SuppR(Ext
i
R(R/a,M)) ⊆ Max(R) for i = 0, 1;

(ii) SuppR(Ext
1
R(R/a,M/Γa(M))) ⊆ Max(R);

(iii) SuppR(Ext
1
R(R/a,M)) and Supp(Ext2R(R/a,Γa(M))) are contained

in Max(R).

Proof. In view of Proposition 4.4, it is enough to show that H1
a (M) is

an Artinian module.
First, assume that the condition (i) occurs. Since ExtiR(R/a,M)

is a finitely generated module and its support is contained in Max(R),
implies that ExtiR(R/a,M) is an Artinian module for i = 0, 1. Now, we
show that H1

a (M) is Artinian. By [7, Lemma 2.1.1], we can assume that
Γa(M) = 0. Let E be the injective envelope of M and put T := E/M .
Then Γa(E) = 0. Therefore the exact sequence 0 → M → E → T → 0,
implies that Γa(T ) ∼= H1

a (M) and HomR(R/a, T ) ∼= Ext1R(R/a,M). It
follows that (0 :T a) and thus (0 :Γa(T ) a) are Artinian. Now, the
assertion follows from [7, Theorem 7.1.2].

Now, let the condition (ii) happens. Set X := M/Γa(M). By [7,
Corollary 2.1.7 and Lemma 2.1.1], t := grade(a, X) ≥ 1 and H1

a (M) ∼=
H1

a (X). If t > 1, then there is nothing to prove. Let t = 1. Hence,
similar to the method of the proof of part (i), we get

Ext1R(R/a, X) ∼= HomR(R/a, H1
a (X)) ∼= HomR(R/a, H1

a (M)).

Now, Artinianness of Ext1R(R/a, X) and [7, Theorem 7.1.2], imply that
H1

a (M) is an Artinian module.
Finally, in the case (iii), we use the exact sequence

Ext1R
(
R/a,M

)
→Ext1R

(
R/a,M/Γa(M)

)
→Ext2R

(
R/a,Γa(M)

)
,

and part (ii). □
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Theorem 4.7 as the last result of this paper, is a generalization of [1,
Theorem 2.12] for minimax modules. To prove it, we need Lemma 4.6,
as follows.

Lemma 4.6. Let (R,m) be a regular local ring of dimension d ≤ 3
and M be a finitely generated R-module. Then ExtjR

(
R/a, H i

a(M)
)
is

minimax for all i, j ≥ 0.

Proof. As ExtjR
(
R/a, H i

a(M)
)
is a-torsion module for all i, j ≥ 0, the

assertion follows easily from [1, Theorem 2.12] and [4, Remark 2.2 (ii)].
□

Theorem 4.7. Let (R,m) be a regular local ring of dimension d ≤ 3 and
let M be a minimax R-module. Then ExtjR

(
R/a, H i

a(M)
)
is minimax

for all i, j ≥ 0.

Proof. Using the notations of Remark 2.1 (i), we get the exact sequence

0 → Γa(N) → Γa(M)
α

−→Γa(A)−→H1
a (N)

β
−→H1

a (M) → 0,

and H i
a(M) ∼= H i

a(N) for all i ≥ 2. Hence, the assertion follows from
Lemma 4.6 for any i ≥ 2. Now, suppose that i = 0. The exact sequence
0→Γa(N)→Γa(M)→ Imα→0 induces the long exact sequence

· · ·→ExtjR
(
R/a,Γa(N)

)
→ExtjR

(
R/a,Γa(M)

)
→ExtjR

(
R/a, Imα

)
→· · · ,

for all j ≥ 0. On the other hand, Γa(N) and Γa(A) are minimax, hence
ExtjR

(
R/a,Γa(M)) is minimax, for all j ≥ 0, by [3, Lemma 2.1] for

the class of minimax R-modules. Finally, for i = 1, we consider the
short exact sequence 0 → Kerβ → H1

a (N) → H1
a (M) → 0. The facts

that Kerβ is Artinian and (0 :H1
a(N)

a) is finitely generated, imply that

(0 :Kerβ a) has finite length. Thus Kerβ is a-cofinite, by [17, Proposition
4.1]. Now, the assertion follows from Lemma 4.6 and the long exact
sequence

· · ·→ExtjR
(
R/a, H1

a (N)
)
→ExtjR

(
R/a, H1

a (M)
)
→

Extj+1
R

(
R/a,Kerβ

)
→· · · .

□
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schen Ring, Math. Nachr., 64 (1974), 239-252, (in German).
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