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Abstract.Fractional calculus is a branch of classical mathematics, which
deals with the generalization of fractional order derivative and integral
operator. Recently, a great deal of research has been carried out on the
use of fractional calculus to study the phenomena associated with fractal
structures and processes. Fractals have a fractional dimension and oc-
cur naturally in non-linear and imbalanced phenomena in various forms
and contexts. In recent years, various types of derivatives and frac-
tional and fractal calculus have been proposed by many scientists and
have been extensively utilized. Measurements are localized in physical
processes, and local fractional calculus is a useful tool for solving some
type of physical and engineering problems. In this article, we applied
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the local fractional Yang-Laplace variational for solving the local frac-
tional linear and nonlinear KdV equation on a Cantor set within local
fractional derivative. we emphasize on the LFYLVM method which is
a combination form of local fractional variational iteration method and
Yang-Laplace transform. The non-differentiable exact and approximate
solutions are obtained for kind of local fractional linear and nonlinear
KdV equations. Most of the solutions obtained from this method are
obtained in series form that converge rapidly in physical problems. Il-
lustrative examples are included to demonstrate the high accuracy and
convergence of this algorithm It is shown that the used method is an ef-
ficient and easy method to implement for linear and nonlinear problems
arising in science and engineering.

AMS Subject Classification: 35R11 Fractional Partial Differential
Equation

Keywords and Phrases:Local fractional KdV equation, Yang-Laplace
transform, Local fractional variational iteration method, Cantor sets.

1 Introduction

Fractional calculus is a field of applied mathematics that deals with
derivatives and integrals of arbitrary orders and has important applica-
tions in physics and engineering problems [18, 26, 8].

In dealing with some domains, it cannot be defined by smooth func-
tions; both the classical and fractional approaches based on Riemann-
Liouville (or Caputo) derivatives are unacceptable [31, 16]. In such cases,
the local fractional calculus is an efficient tool for modeling and solving
these problems. Local fractional calculus is a generalization of differenti-
ation and integration of the functions defined on fractal sets. The theory
of various versions of local fractional calculus considered to describe the
non-differentiable problems of local fractional PDEs in physics and fun-
damental science due to the surface and structure of materials, which
are so-called fractal [22]. A fractal phenomenon characterized by striking
irregularities, and described by a continuously non-differentiable func-
tion. After Mandelbrot [22] described the fractals, the fractional and
local fractional calculus used to real world problems based on them. For
example, Burgers’ equation (BE) [33], Parabolic Fokker-Planck equa-
tion (PFPE) [4], Oscillator equation (OE) [35], Diffusion equation (DE)
[32, 17], and others [27, 16].
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As long as the Cantor set is in some sense one of the best examples
of a fractal, it is usually used for local fractional calculus.

The mathematical model of shallow water waves, acquired by Boussi-
nesq [6], was rediscovered by Korteweg and de Vries [19]. It is commonly
known as Korteweg-de Vries equation (KdV): [19, 7]

∂

∂t
Φ (x, t) +

∂3

∂x3
Φ (x, t)− 6Φ (x, t)

∂

∂x
Φ (x, t) = 0. (1)

Recently, the fractional KdV equations have been studied by several
authors [24, 1]. Zhang [38] presented a formulation of the time fractional
generalized Korteweg-de Vries equation using the Euler -Lagrange vari-
ational technique in the Riemann-Liouville derivative sense and found
an approximate solitary wave solution.It is imperative to note that the
above mentioned works are based on the global fractional calculus of
differentiable functions. Yang et al. [34] have derived the local frac-
tional Korteweg-de Vries equation related to fractal waves on shallow
water surfaces from the local fractional calculus point of view. The local
fractional series expansion method is used to solve a kind of linear local
fractional KdV by Zhang et al. [39].

The main model of local fractional KdV equation is the following
mathematical model of shallow water waves

∂αu

∂tα
−Ru∂

αu

∂xα
+ S

∂3αu

∂x3α
+
∂αu

∂xα
= 0, (2)

where u (x, t) is a non-differentiable function and R and S are scalers.
On the case in equation (2) for R = 1, S = 1, we have a particular issue
of the local fractional Korteweg-de Vries equation.

In the present work, we investigate the application of local fractional
variational iteration transform method (LFVYTM) to solve the local
fractional Korteweg-de Vries equation related to the fractal waves on
shallow water surfaces from the local fractional calculus point of view
[34]. The main advantage of this method is its capability to combine
two powerful methods, namely the local fractional variational iteration
method and the Yang-Laplace transform for obtaining rapid convergent
series for fractional partial differential equations.

The structure of the paper is as follows. In Section 2, we review the
concept of local fractional calculus and the theory of the Yang-Laplace
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transform. The local fractional variational iteration method and its
convergence are explained in section 3. Section 4 focuses on analysis of
the method which is used. Several illustrative examples are explained
in Section5. Finally, Section 6 assigned to the conclusion.

2 Preliminaries [31, 28]

In this part, we remind the fundamental theory of Local fractional op-
erators (LFO).

Definition 2.1. [31, 28] A function f(x) is said to be local fractional
continuous at x = x0 if for each positive ε > 0, there exists for δ > 0
such that

|f (x)− f(x0)| < εα, (3)

whenever |x− x0| < δ and 0 < α ≤ 1. It is written as

lim
x−→x0

f (x) = f (x0) . (4)

Definition 2.2. [31, 28] A non-differentiable function f : R → R, x →
f(x) is called to be local fractional continuous of order α, 0 < α ≤ 1,
when we have

f (x)− f (x0) = o ((x− x0)α) . (5)

Definition 2.3. [31, 28] A function f(x) belongs to the space Cα[a, b]
if and only if it can be written as (5) for any x0 ∈ Cα [a, b] , 0 < α ≤ 1
, and we now write f (x) ∈ Cα[a, b].

Definition 2.4. [31, 28] Suppose that f(x) ∈ Cα (a, b) and 0 < α ≤ 1.
For ε > 0 and

0 < |x− x0| < δ, the limit

Dα
xf (x0) =

dαf(x)

dxα

∣∣∣∣x=x0 = lim
x→x0

4α (f (x)− f(x0))

(x− x0)α
, (6)

exists and is finite, where4α (f (x)− f (x0)) ∼= Γ (α+ 1) (f (x)− f (x0)).
In this case, Dα

xf(x0) denotes for the local fractional derivative of f(x)
of order α at x = x0.



LOCAL FRACTIONAL YANG-LAPLACE VARIATIONAL ... 5

Definition 2.5. [31, 28] Suppose f (x) ∈ Cα [a, b]. Then, the local
fractional integral f(x) of order α (0 < α ≤ 1) is defined as follows:

aI
(α)
b f (x) =

1

Γ (1 + α)

∫ b

a
f (t) (dt)α =

1

Γ (α+ 1)
lim
4tk→0

N−1∑
k=0

f(tk)(4tk)α ,

(7)
where 4tk = tk+1 − tk with t0 = a < t1 < · · · < tN−1< tN = b.

Definition 2.6. [31, 28] The Mittag-Lefer function defined on the frac-
tal set is given by

Eα (xα) =

∞∑
k=0

xαk

Γ (1 + kα)
,

x∈ R, 0 < α ≤ 1.(8)

For more details on the relationship between LFOs and fractals, see
(for example [4, 17, 27, 29, 15, 20]).

The basic operators of several non-differentiable functions [31, 28]
defined on Cantor sets have been listed in Table 1.

Table 1: List of the operators of non-differentiable functions

dαf(x)
dxα 0I

(α)
x f (t) Notations

dα

dxαEα (xα) = Eα (xα) 0I
(α)
x Eα (tα) Eα (xα)

= Eα (xα)− 1 =
∑∞
k=0

xkα

Γ(1+kα)

dα

dxα

[
x(n+1)α

Γ(1+(n+1)α)

]
= xnα

Γ(1+nα) 0I
(α)
x

tnα

Γ(1+nα) xα is a Cantor function

= x(n+1)α

Γ(1+(n+1)α)
dαsinα(xα)

dxα = cosα (xα) 0I
(α)
x cosα (tα) sinα (xα)

= sinα (xα) =
∑∞
k=0

(−1)kx(2k+1)α

Γ(1+(2k+1)α)
dαcosα(xα)

dxα = −sinα (xα) 0I
(α)
x sinα (tα) cosα (xα)

= 1− cosα (xα) =
∑∞
k=0

(−1)αx2kα

Γ(1+2kα)

Definition 2.7. [31, 28] A generalized normed linear space on X of
fractional dimension α, is a mapping ‖‖α : X → Rα, if it satisfies the
following properties:

1. ‖xα‖α ≥ 0 , ‖xα‖α = 0 if and only if xα = 0α.
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2. ‖kαxα‖α = |kα| ‖xα‖α.

3. ‖xα + yα‖α ≤ ‖xα‖α + ‖yα‖α, for xα, yα ∈ X and k ∈ R.

Definition 2.8 (Generalized Banach space). [40]
Let X be a generalized normed linear space. Because of the com-

pleteness of X, the Cauchy sequence {xαn}
∞
n=1 is convergent, i.e. ,for

every ε > 0, there exists a positive integer N such that [28, 40]

‖xαn − xαm‖α < εα, (9)

whenever m,n ≥ N . This is equivalent to the requirement that

lim
m,n−→∞

‖xαn − xαm‖α = 0. (10)

Theorem 2.9 (Generalized Contraction Mapping Theorem in General-
ized Banach Space). (for proof, see [40])

Suppose that T : X −→ X is a map on a generalized Banach space
X such that for some

m ≥ 1, Tm is a contraction, i.e

‖Tm (yα)− Tm (xα)‖α ≤ β
α‖xα − yα‖α , (11)

for all xα, yα ∈ X,β ∈ (0, 1), then T has a unique fixed point.

Definition 2.10. Let 1
Γ(α+1)

∫∞
0 |f (x)| (dx)α < k <∞. The Yang-Laplace

transform of f(x) is given by

Lα {f(x)} = fL.αs (s)

=
1

Γ (α+ 1)

∫ ∞
0

Eα (−sαxα) f (x) (dx)α, 0 < α ≤ 1. (12)

Definition 2.11. The inverse formula of the Yang-Laplace transforms
of f (x) is given by

L−1
α

{
fL.αs (s)

}
= f (x)

=
1

(2π)α

∫ β+iω

β−iω
Eα (sαxα) fL.αs (s) (ds)α 0 < α ≤ 1(13)

where sα = βα + iαωα, fractal imaginary unit iα and Re (s) = β > 0.
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Some Basic Properties of Local Fractional Laplace Trans-
form [31, 28]

Let Lα {f (x)} = fL,αs (s) and Lα {g(x)} = gL,αs , then we have the
following formula

Lα {af (x) + bg (x)} = afL,αs (s) + bgL,αs (14)

Lα {Eα (cαxα) f (x)} = fL,αs (s− c) (15)

Lα

{
f (α) (x)

}
= sαfL,αs (s)− f (0) (16)

Lα {Eα (aαxα)} =
1

sα − aα
(17)

Lα

{
xkα
}

=
Γ (1 + kα)

s(k+1)α
(18)

For more explanations and examples see ([31]).

3 Local Fractional Variational Iteration Method
[31, 28]

In this section, the variational iteration method of the local fractional
operator briefly introduce. In 1998, the variational iteration method has
been adopted to solve fractional differential equations for the first time
[12]. The variational iteration method of the local fractional operator
was employed to solve the local fractional partial differential equations
[27, 29, 13, 30, 24, 11].

Now, we consider a local fractional variational principle [31, 28] as
follows

I (y) = aI
(α)
b f (x, y (x) , yα (x)) , (19)

where yα (x) is local fractional differential operator on a ≤ x ≤ b.
The stationary condition of Eq. (19) reads [31, 28]

∂f

∂y
− dα

dxα

(
∂f

∂y(α)

)
= 0 (20)

Eq. (20) is useful for the identification of the Lagrange multiplier in the
local fractional variational iteration method.
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We suppose a public Nonlinear local fractional partial differential
equation:

L(mα) (x, t)+Rαu (x, t)+Nαu (x, t) = f (x, t) , t > 0, x ∈ R, 0 < α ≤ 1,
(21)

Where L(mα) = ∂(mα)

∂t(mα)
,m ∈ N and Rα is a linear local fractional oper-

ator, Nα indicates the general Nonlinear local fractional operator, and
f (x, t) is the source term.

Let us suppose the Local fractional variational iteration algorithm
given in [31, 18, 37]

un+1 (x, t) = un +

∫ t

0

{
λα

Γ (α+ 1)
(L(mα)un (x, τ)

+Rαun (x, τ) +Nαun (x, τ)− f (x, τ))} (dτ)α. (22)

We can write the local fractional correction functional as

un+1 (x, t) = un (x, t) +

∫ t

0
{ λα

Γ (α+ 1)
(L(mα)un (x, τ) +Rαũn (x, τ)

+Nαũn (x, τ)− f (x, τ))}(dτ)α,

(23)

where ũn is a restricted local fractional variational and λα is a frac-
tal Lagrange multiplier. The determination of λα requires stationary
conditions of the functional, that is δαũn = 0 [31, 28, 37].

Extremizing the variation of the correction functional (23) leads to
the Lagrangian multiplier λα as follows:

λα = (−1)m
(τ − t)(m−1)α

Γ (1 + (m− 1)α)
(24)

Substitute, (24) in (23), we get

un+1 (x, t) = un (x, t) + 0I
(α)
t

{
(−1)m(τ − t)(m−1)α

Γ (1 + (m− 1)α)

(
L(mα)un (x, τ)

+Rαũn (x, τ) +Nαũn (x, τ)− f (x, τ))}

(25)
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The initial iteration u0 (x, t) can be used as the initial value u (x, 0). In
(25), we let →∞ , to get

u (x, t) = lim
n→∞

un (x, t). (26)

Convergence of The local fractional variational method [37]

Yang and Zhang [37] have proved Convergence of the local fractional
variational method based on the theory of the generalized Banach space.

Assume that X is a generalized Banach space, T : X → X is a
Nonlinear mapping, and suppose that

‖T (u)− T (u)‖α ≤ βα‖u− u‖α. (27)

For some constant 0 < β < 1. Then T has a unique fixed point.

Furthermore, we suppose that the sequence is

un+1 = T (un) . (28)

According to the above subject, we consider the Nonlinear mapping

un+1 (x, t) = T (un (x, t)) = un (x, t)+0I
(α)
t

{
(−1)m(τ−t)(m−1)α

Γ(1+(m−1)α)

(
L(mα)un (x, τ)

+Rαũn (x, τ) +Nαũn (x, τ)− f (x, τ))} .
To discuss the Nonlinear mapping, we let
u0 ∈ X, T (u0) = u1, u2 = T (u1) = T 2 (u0) ,
and, in general, un+1 = T (un) = Tn+1 (u0) .
We show that the sequence {un}∞n=1 is a Cauchy sequence.
Let n < m, then
‖T (um)− T (un)‖α = ‖Tm (u0)− Tn (u0)‖α
≤ βnα‖um−n − u0‖α ≤ βnα (‖u1 − u0‖α + ‖u2 − u1‖α + · · ·+ ‖um−n − um−n−1‖α)
≤ βnα‖u1 − u0‖α

(
1α + βα + · · ·+ β(m−n)α

)
≤ βnα

1α−βα ‖u1 − u0‖α.
Hence, we have un+1 = T (un), with an arbitrary choice of u0 converges
to the fixed point of T and
‖um+1 − un+1‖α = ‖T (um)− T (un)‖α ≤

βnα

1α−βα ‖u1 − u0‖α.
Here we have 0 < β < 1 and such that
limm,n→∞ ‖um+1 − un+1‖α ≤ limm,n→∞

βnα

1α−βα ‖u1 − u0‖α = 0.
Hence, we have



10 H. AFRAZ, et al.

u(x, t) = limn→∞ un (x, t).
The method creates the solution in the form of rapidly convergent se-
ries that lead to the exact solution in linear local fractional differential
equations and an efficient numerical solution with high accuracy for the
Nonlinear equations.

4 Analysis of Method

We consider a general Nonlinear local fractional partial differential equa-
tion:

Lαu (x, t) +Rαu (x, t) +Nαu (x, t) = f (x, t) , t > 0, x ∈ R, 0 < α ≤ 1,
(29)

Where Lα = ∂α

∂tα , Rα is a linear local fractional operator; Nα represents
the general Nonlinear local fractional operator and f (x, t) is the source
term.

Applying the Yang-Laplace transform (denoted in this paper by Lα)
on both sides of (29), we get

Lα {Lαu (x, t)}+ Lα {Rαu (x, t)}+ Lα {Nαu (x, t)} = Lα {f (x, t)} .
(30)

Using the property of the Yang-Laplace transform, we have

sαLα {u (x, t)}−u (x, 0) = Lα {f (x, t)}−Lα {Rαu (x, t)}−Lα {Nαu (x, t)} ,
(31)

or

Lα {u (x, t)} =
1

sα
u (x, 0) +

1

sα
(Lα {f (x, t)}

− Lα {Rαu (x, t)} − Lα {Nαu (x, t)}). (32)

Operating with the Yang-Laplace inverse on both sides of (31) yield,

u (x, t) = u (x, 0) + L−1
α

(
1

sα
Lα {f (x, t)−Rαu (x, t)−Nαu (x, t)}

)
.

(33)
Taking derivative ∂α

∂tα from sides of (33), we have

uαt (x, t)− ∂α

∂tα
L−1
α

(
1

sα
Lα {f (x, t)−Rαu (x, t)−Nαu (x, t)}

)
= 0.

(34)
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By the correction function of the variational method

un+1 (x, t) =un (x, t)− 1

Γ (α+ 1)

∫ t

0
((un)αξ (x, ξ)

− ∂α

∂ξα
L−1
α (

1

sα
Lα{f (x, ξ)−Rαun (x, ξ)

−Nαun (x, ξ)}))(dξ)α. (35)

Finally, the solution u (x, t) is given by

u (x, t) = lim
n→∞

un (x, t). (36)

5 Illustrative Examples

In this part two examples for the KdV equation on Cantor sets are
offered to demonstrate the convenience and the performance of the above
method.

Example 5.1. We consider the following linear KdV equation on Cantor
sets with the local fractional operator

∂αu

∂tα
+
∂3αu

∂x3α
+
∂αu

∂xα
= 0, u (x, 0) = Eα (xα) . (37)

Now we use the algorithm of Yang-Laplace transform on equation (37),
we have

sαLα {u (x, t)} − u (x, 0) = −Lα
{
∂3αu (x, t)

∂x3α
+
∂αu (x, t)

∂xα

}
. (38)

Using the given initial condition on Eq. (38), we obtain

Lα {u (x, t)} =
1

sα
Eα (xα)− 1

sα
Lα
{
∂3αu (x, t)

∂x3α
+
∂αu (x, t)

∂xα

}
. (39)

Next apply the inverse Laplace transform to Eq. (39), we get

u (x, t) = Eα (x, t)− L−1
α

{
1

sα
Lα
{
∂3αu (x, t)

∂xα
+
∂αu (x, t)

∂xα

}}
(40)
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Taking derivative ∂α

∂tα from both sides of (40), we find

∂αu(x, t)

∂tα
+
∂α

∂tα

[
L−1
α

{
1

sα
Lα
{
∂3α u(x, t)

∂x3α
+
∂αu(x, t)

∂xα

}}]
= 0. (41)

The correction function using (41) in to (25), yields,

un+1 (x, t) =un (x, t)− 1

Γ (α+ 1)

∫ t

0
[(un)αξ (x, ξ)

+
∂α

∂ξα
{L−1

α (
1

sα
Lα{

∂3αun (x, ξ)

∂x3α
+

∂αun (x, ξ)

∂xα
})}](dξ)α. (42)

We can use the initial condition in (42), u0 (x, t) = u (x, 0) = Eα (xα).
Now by using this selection into the correction function gives the follow-
ing successive approximations

u0 (x, t) = Eα (xα) (43)

u1 (x, t) =u0 (x, t)− 1

Γ (α+ 1)

∫ t

0
[(u0)αξ (x, ξ)

+
∂α

∂ξα

{
L−1
α

(
1

sα
Lα
{
∂3αu0 (x, ξ)

∂x3α
+
∂αu0 (x, ξ)

∂xα

})}
](dξ)α

Therefore, we select

u1 (x, t) = Eα (xα)− 2
Eα (xα)

Γ (α+ 1)

∫ t

0

∂α

∂ξα

(
L−1
α

(
1

s2α

))
(dξ)α

= Eα (xα)

(
1− 2tα

Γ (α+ 1)

)
(44)
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u2(x, t) = u1(x, t)− 1

Γ(α+ 1)

∫ t

0
[(u1)αξ (x, ξ)

+
∂α

∂ξα
{L−1

α (
1

sα
Lα{

∂3αu1(x, ξ)

∂x3α
+
∂αu1(x, ξ)

∂xα
})}](dξ)α

= Eα(xα)[(1− 2tα

Γ(α+ 1)
) +

2

Γ (α+ 1)

∫ t

0
(1−

∂α

∂ξα
{L−1

α (
1

sα
Lα(1− 2ξα

Γ(α+ 1)
))})(dξ)α]

= Eα(xα)[1− 2tα

Γ(α+ 1)
+

2

Γ(α+ 1)

∫ t

0
(1−

∂α

∂ξα
[L−1
α (

1

s2α
− 2

s3α
)])(dξ)α]

= Eα(xα)[1− 2tα

Γ(α+ 1)
+

2

Γ(α+ 1)

∫ t

0
(1−

∂α

∂ξα
[

ξα

Γ(α+ 1)
− 2ξ2α

Γ(2α+ 1)
])(dξ)α].

u2(x, t) = Eα(xα)

[
1− 2tα

Γ(α+ 1)
+

4t2α

Γ(1 + 2α)

]
. (45)

By continuing this process, we find the non-differentiable solution of
Eq.(37) in the following

un (x, t) = Eα (xα)

n∑
k=0

(−2)k
tkα

Γ (1 + kα)
. (46)

Finally, the answer is

u (x, t) = lim
n→∞

un (x, t) = Eα (xα)

∞∑
k=0

(−2)k
tkα

Γ (1 + kα)

= Eα (xα)Eα (−2tα) = Eα ((x− 2t)α)), (47)

which is the exact solution of Eq.(37).

Example 5.2. Let us consider the following Nonlinear Kdv equation
on Cantor sets with the local fractional operator

∂αu

∂tα
− u∂

αu

∂xα
+
∂3αu

∂x3α
+
∂αu

∂xα
= 0, (48)
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and subject to the initial condition

u (x, 0) =
xα

Γ (α+ 1)
. (49)

Applying the algorithm of Yang-Laplace transform on equation (48), we
have

sαL {u(x, t)} − u (x, 0) = Lα
{
u
∂αu (x, t)

∂xα
− ∂3αu (x, t)

∂x3α
− ∂αu (x, t)

∂xα

}
.

(50)
Using the given initial condition on Eq. (50), we get

Lα {u (x, t)} =
1

sα
xα

Γ (α+ 1)

+
1

sα
Lα
{
u (x, t)

∂αu (x, t)

∂xα
− ∂3αu (x, t)

∂x3α
− ∂αu (x, t)

∂xα

}
. (51)

Next, apply the inverse Laplace transform to Eq. (51), yields

u (x, t) =
xα

Γ (α+ 1)

+ L−1
α

{
1

sα
Lα
[
u (x, t)

∂αu (x, t)

∂xα
− ∂3αu (x, t)

∂x3α
− ∂αu (x, t)

∂xα

]}
. (52)

Taking derivative ∂α

∂tα from both sides of (52), we find

∂αu(x, t)

∂tα
− ∂α

∂tα
[L−1
α {

1

sα
Lα[u(x, t)

∂αu(x, t)

∂xα

− ∂3αu(x, t)

∂x3α
− ∂αu(x, t)

∂xα
]}] = 0. (53)

The correction function using (53) into (25), yields,

un+1 (x, t) = un (x, t)− 1

Γ (α+ 1)

∫ t

0
{(un)αξ (x, ξ)

− ∂α

∂ξα
[L−1
α (

1

sα
Lα[u (x, ξ)

∂αu (x, ξ)

∂xα

− ∂3αu (x, ξ)

∂x3α
− ∂αu (x, ξ)

∂xα
])]}(dξ)α. (54)
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We can use the initial condition to select u0 (x, t) = u (x, 0) = xα

Γ(α+1) .
Now, using this selection to the correction function gives the following
successive approximations

u0 (x, t) =
xα

Γ (α+ 1)
, (55)

u1(x, t) = u0(x, t)− 1

Γ(α+ 1)

∫ t

0
{(u0)αξ (x, ξ)− ∂α

∂ξα
[L−1
α (

1

sα
Lα

[u0(x, ξ)
∂αu0(x, ξ)

∂xα
− ∂3αu0(x, ξ)

∂x3α
− ∂αu0(x, ξ)

∂xα
])]}(dξ)α

=
xα

Γ(α+ 1)
+

1

Γ(α+ 1)

∫ t

0

∂α

∂ξα
[L−1
α (

1

sα
Lα[

xα

Γ(α+ 1)
− 1])](dξ)α

u1(x, t) =
xα

Γ(α+ 1)
+ (

xα

Γ(α+ 1)
− 1)

tα

Γ(α+ 1)
. (56)

u2(x, t) = u1(x, t)− 1

Γ(α+ 1)

∫ t

0
{(u1)αξ (x, ξ)− ∂α

∂ξα
[L−1
α (

1

sα
Lα

[u1(x, ξ)
∂αu1(x, ξ)

∂xα
− ∂3αu1(x, ξ)

∂x3α
− ∂αu1(x, ξ)

∂xα
])]}(dξ)α

=
xα

Γ(1 + α)
+ (

xα

Γ(1 + α)
− 1)

tα

Γ(1 + α)
− 1

Γ(1 + α)∫ t

0
[(

xα

Γ(1 + α)
− 1)− ∂α

∂ξα
{L−1

α (
1

sα
Lα[(

xα

Γ(1 + α)
+

(
xα

Γ(1 + α)
− 1)

tα

Γ(1 + α)
− 1)(1 +

tα

Γ(1 + α)
)])}](dξ)α

u2(x, t) =
xα

Γ(1 + α)
+ (

xα

Γ(1 + α)
− 1)(

tα

Γ(1 + α)
+

2t2α

Γ(1 + 2α)

+
t3α

Γ(1 + 3α)

Γ(1 + 2α)

Γ2(1 + α)
). (57)
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Similarly, we can obtain the solution u3 (x, t) as follows

u3 (x, t) =
xα

Γ (1 + α)
+

(
xα

Γ (1 + α)
− 1

)
(

tα

Γ (1 + α)
+

2t2α

Γ (1 + 2α)
+

t3α

Γ (1 + 3α)

[
4 +

Γ (1 + 2α)

Γ2 (1 + α)

]
+

(
2t4α

Γ (1 + 4α) Γ (1 + α)

)(
Γ (1 + 2α)

Γ (1 + α)
+

2Γ (1 + 3α)

Γ (1 + 2α)

)
+

(
2Γ (1 + 4α) t5α

Γ (1 + 5α) Γ (1 + α)

)
(

2

Γ (1 + 2α)

+
Γ (1 + 2α)

Γ (1 + 3α) Γ3 (1 + α)
) +

4t6α

Γ (1 + 6α)

Γ (1 + 5α)

Γ (1 + 3α) Γ2 (1 + α)

+
Γ (1 + 6α) t7α

Γ (1 + 7α)

Γ (1 + 2α)

Γ (1 + 3α) Γ (1 + α)
). (58)

By continuing this process, we can find the other terms of this se-
quence. By the convergence of the local fractional variational method,
as n→∞ , the sequence approaches the exact solution of the equation
(48) on the Cantor set.

6 Conclusions

Local fractional calculus is created on fractal, and the local fractional
variational iteration transform method is derived from local fractional
calculus. This method is efficacious for the applied Sciences to solve dif-
ferential and integral equations involving the local fractional operators.

In this paper, it is applied the local fractional differential operators
in an equation (2). In the procedure, it is considered the linear and
Nonlinear local fractional KdV equation. Based on the local fractional
variational iteration transform method, the solutions of the KdV equa-
tions were offered. The iteration functions, which are local fractional
continuous, are obtained easily within the fractal Lagrange multipliers,
which can be optimally specified by the local fractional variational the-
ory [31, 28].

The results show that the presented method is a strong mathematical
tool for finding other numerical and exact solutions to many linear and
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Nonlinear local fractional differential equations with initial and bound-
ary conditions.
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