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that dominates the solution is generated. Fliege and Svaiter in [4] have
presented a steepest descent method for solving multiobjective optimiza-
tion problems. Vieira et al [12] generalise those ideas in which Armijo
rule is replaced with a multiobjective golden section line search.
In [8] a trust region algorithm is presented for solving both smooth
and non-smooth multiobjective optimization. Our aim in this work is
to extend the result obtained in [8] for nonsmooth multiobjective prob-
lems. Moreover, we reduce the assumptions that have been introduced
in [8]. In this paper, we present a quasi-Newton method for finding the
critical solutions of non-smooth multiobjective optimization problems
(the Pareto optimal solutions)[9].
Indeed, we do not require the differentiability of the functions involved.
In this work, we uses the quasi-Newton method to approximate second
order information of each objective function, though the second deriva-
tive may not exist. Our algorithm replaces each objective function with
a quadratic model for each objective function until the critical point is
reached. This model improves the performance by constraining the de-
scent direction norms and a small positive scalar to control the descent
direction. For the new algorithm we propose global convergence result
under suitable assumptions.
The organization of this paper is as follows. In Section 2, we present some
preliminaries and introduce some notations. We studied the relation be-
tween critically and descent direction in the non-smooth case. The new
algorithm and its properties are described in Section 3. In Section 4,
the global convergence of the algorithm is obtained under some suitable
assumptions.

2. Preliminaries

We begin this section by introducing some notations. Let R be the set
of real numbers; R+ be the set of non-negative real numbers and R++

be the set of strictly positive real numbers.

For any u, v ∈ R
m, denote
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u � v ⇐⇒ v − u ∈ R
m
+ ⇐⇒ vj − uj � 0 j = 1, ...,m,

u < v ⇐⇒ v − u ∈ R
m
++ ⇐⇒ vj − uj > 0 j = 1, ...,m.

Given any open set X ⊂ R
n. A function h : X −→ R is said to be

Lipschitz of rank µ > 0 near x ∈ X if for some ε > 0

|h(y) − h(z)| � µ‖y − z‖ ∀y, z ∈ B(x, ε).

By h ∈ C0,1(Rn,R), we indicate that h is locally Lipschitz. For any
h ∈ C0,1(Rn,R), the classic directional derivative of h at x in direction
d is defined as

h′(x; d) = lim
α−→0

h(x+ αd) − h(x)
α

.

Let us recall some basic concepts and tools from nonsmooth analysis.
Most of the material included here can be found in [1].
Let h ∈ C0,1(Rn,R), the Clarke directional derivative of h at x in the
direction d, denoted h◦(x, d) is defined as follows

h◦(x; d) = lim sup
y−→x
α↓0

h(y + αd) − h(y)
α

.

The generalized gradient of h at x, denoted by ∂ch(x), is defined by

∂ch(x) := {ξ ∈ R
n : 〈ξ, d〉 � h0(x; v) ∀v ∈ R

n}.
It is well-known that ∂ch(x) is a nonempty convex compact set in R

n,
and the set-valued mapping x → ∂ch(x) is upper semicontinuous. It is
worth mentioning that for a convex function h, ∂ch(x) coincides with
the subdifferential ∂h(x), defined as follows:

∂cφ(x) :=
{
ξ ∈ R

n | φ(y) � φ(x) +
〈
ξ, y − x

〉 ∀ y ∈ R
n
}
.

We recall the following theorems from [1].

Theorem 2.1. Let ϕ and ψ are locally Lipschitz from R
n to R, and

x̂ ∈ dom(ϕ) ∩ dom(ψ). Then, the following properties hold:
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Let us recall some definitions from [8].

Definition 2.3. (i). A point x∗ ∈ S is said to be critical (or stationary)
for F , if

�(∂cF (x∗)) ∩ (−Rm
++) = ∅,

where �(∂ch(x)) denotes the range or image space of the generalized
Jacobian of h at x. (ii). A direction d ∈ R

n is said to be a descent
direction for F at x if for any j ∈ I, the directional derivative of the
corresponding componentwise function Fj in direction d satisfies the fol-
lowing condition:

F ′
j(x; d) < 0, (1)

where the directional derivative at x in the direction d is defined as

F ′
j(x; d) = lim

α−→0

Fj(x+ αd) − Fj(x)
α

. (2)

Let F ∈ C1(X,Rm), then it follow from (2.) that F ′
j(x; d) = ∇Fj(x)td.

The descent direction d will reduce every objective function value if it
is used to update the design x. It is easy to see by (8) and (2.), that d
is a descent direction for F at x if and only if

∇Fj(x)td < 0 ∀j ∈ I.

Definition 2.3 means that if x∗ ∈ X is critical for F , then there does not
exist a descent direction at x∗.
We now make a basic assumption.
(A1) For any x ∈ X and d ∈ R

n the function F is regular at x, this
means that the directional derivatives F ′(x, d) at x for all d exists and

F ◦(x, d) = F ′(x, d).

Under this assumption, we obtain the following conclusion for the critical
points.

Lemma 2.4. Suppose that assumption (A1) holds, then x∗ ∈ S is critical
if and only if either one of the following two conditions is satisfied
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(a). There does not exist a descent direction at x∗ for F .

(b). In the special case, there exists at least one j0 ∈ I such that 0 ∈
∂cFj0(x

∗).

Proof. (a). It follows from (A1) that directional derivative F ′
j(x, d) exists

and is equal to F ◦
j (x, d) i.e.

F ◦(x; d) = F ′(x; d).

Now if x∗ ∈ X is a critical point for F ; we have

�(∂cF (x∗)) ∩ (−Rm
++) = ∅,

Therefore for every d ∈ R
n, there exists at least one j0 = j0(d) ∈ I such

that F ◦
j0

(x, d) � 0. Therefore, (a) hold. Obviously (b) is a especial case
of (a).

On the other hand, if either one of (a) and (b) is satisfied. Then

∃j0 = j0(d) ∈ I, F ◦
j0(x

∗; d) � 0.

By using (A1) we have F ′
j0

(x∗; d) � 0, then from Definition 2.3. it follows
that x∗ is critical for F . �

It is worth to mention that, in general efficiency is not equivalent to
critically and they are related as follows.

Theorem 2.5. Suppose assumption (A1) holds.

(a). If x∗ ∈ X is a locally weak Pareto optimal, then x∗ is a critical
point for F .

(b). If X is convex, F is R
m − convex and x∗ ∈ X is critical for F ,

then x∗ is weak Pareto optimal.

(c). If X is convex, F is strictly R
m − convex and x∗ ∈ X is critical for

F , then x∗ is Pareto optimal.

Proof. (a). Suppose that x∗ ∈ X is locally weak Pareto optimal. There-
fore, it is sufficient to prove x∗ ∈ X is a critical point. This can be proved
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by contradiction i.e. suppose that x∗ ∈ X is not critical, therefore

�(∂cF (x∗)) ∩ (−Rm
++) �= ∅.

Then,

∃ d ∈ R
n s.t. F ◦

j (x∗; d) < 0 ∀j ∈ I.

By using (A1), we get

F ′
j(x

∗; d) = F ◦
j (x∗; d) < 0.

Hence,

∃ α > 0 s.t. α ∈ (0, α] Fj(x∗ + αd) < Fj(x∗),

This contradicts that x∗ ∈ X is locally weak Pareto optimal.
To prove part (b), take any x ∈ X. We can set d = x − x∗. Since
x∗ ∈ X is critical, it follows that there exists j0 = j0(d) ∈ I such that
F ◦

j0
(x; d) = F ′

j0
(x; d) exists and non-negative.

On the other hand, by the convexity of Fj0 we obtain

Fj0(x) − Fj0(x
∗ + αd) � ξt(x− x∗ − αd) ∀ξ ∈ ∂cFj0(x

∗ + αd)

= ξt

(
x− x∗ − α(x− x∗)

)

= (1 − α)ξt(x− x∗).

Hence,

Fj0(x) − Fj0(x
∗ + αd) � (1 − α)ξt(x− x∗) ∀ξ ∈ ∂cFj0(x

∗ + αd).

Let α −→ 0, then according to the continuity of Fj0 we have

Fj0(x) − Fj0(x
∗) � F ◦

j0(x;x− x∗) � 0,

This mean that x∗ is weak Pareto optimal.
To prove part (c), take any x ∈ X. From the strict convexity of F , the
inequality holds strictly for any x �= x∗. Then

Fj0(x) − Fj0(x
∗) > F ◦

j0(x;x− x∗) � 0.

Then the conclusion immediately follows. �
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and

F ◦
j (x; dε(x)) +

1
2
dε(x)t Bj(x) dε(x) � t � −ε < 0 ∀j ∈ I,

From the positivity of Bj(x), we have

F ◦
j (x; dε(x)) < −1

2
dε(x)t Bj(x) dε(x) � 0 ∀j ∈ I.

Hence,

F ′
j(x; d) = F ◦

j (x; d) < 0 ∀j ∈ I.

This means dε(x) is a descent direction for F and therefore x is noncrit-
ical.
Now suppose that the feasible set of NSPε(x) is empty. Then we should
show that x is a good approximate of critical point. This can be proved
by contradiction i.e. suppose that there exists a descent direction d ∈ R

n

such that

F ′
j(x; d) < 0 ∀j ∈ I,

By Assumption (A1), we have F ′
j(x; d) = F ◦

j (x; d) < 0. It follows that
there exists a positive scalar α > 0, such that for any α ∈ (0, α]

F ◦
j (x;αd) +

1
2
α2 d

t
Bj(x)d < 0 j ∈ I.

If for any α ∈ (0, α], we define −ε = F ◦
j (x;αd)+ 1

2 α
2 d

t
Bj(x)d, then αd

is a feasible point to NSPε(x). This contradicts that the feasible set of
NSPε(x) is empty. Therefore x is a good approximate critical point for
F . �

Based on the above lemma, we now state the following algorithm.

Algorithm 3.2. Quasi-Newton Algorithm

Step 0: Let x0 ∈ X be the initial point. Given a sufficient small positive
scalar ε > 0 and the positive initial matrix Bj(x0) for j ∈ I. Set k := 0.
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Step 1: Generate NSPε(x);
If the feasible set is empty stop and xk is a good approximate critical
point. Else solve subproblem NSPε(xk) and compute d(xk) that is the
optimal solution of NSPε(xk).

Step 2: Choose step size αk by Armijo-like rule such that xk+1 = xk +
αkd(xk) ∈ X.

Step 3: Update positive definite matrix Bj(xk+1) for j ∈ I. Set k :=
k + 1. Go to step 1.

In step 3, we use BFGS update criterion to update Bj(xk+1) similar to
the update in [7].

4. Global Convergence

First we make some basic assumptions. Then we prove the global con-
vergence of Algorithm 1.
(A2). Assume that the level set L0 = {x ∈ R

n : F (x) � F (x0)} is
bounded.
(A3). Assume that the step-length αk = 1 is accepted for any sufficient
large K.
Now define

π(x) := sup
‖d‖�1

min
j∈I

{−F ◦
j (x; d)}.

• If x ∈ X is noncritical. we have

�(∂cF (x∗)) ∩ (−Rm
++) �= ∅.

Therefore,
π(x) = sup

‖d‖�1
min
j∈I

{−F ◦
j (x; d)} > 0

• If x ∈ X is critical. we have

�(∂cF (x∗)) ∩ (−Rm
++) = ∅.

Thus,
∃j0 ∈ I, F ◦

j0(x; d) � 0
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Therefore

min
j∈I

{−F ◦
j (x; d)} � 0

sup
‖d‖�1

min
j∈I

{−F ◦
j (x; d)} = 0

π(x) = 0.

So for every x ∈ X, π(x) � 0 and x is critical for F if and only if
π(x) = 0.

Theorem 4.1. Suppose assumptions (A1), (A2) and (A3) hold, then
every accumulation point of the sequence {xk} is critical point for F .

Proof. Based on the above discussions, it suffices to show that any
accumulation point of {xk} is the solution of π(.) = 0. Let x∗ be an ac-
cumulation point of {xk}. Without any loss of generality we may assume
that the subsequence {xk}k∈κ converges to x∗.
Suppose that dk is the optimal solution of NSPε(xk). By Theorem 2.5
in [1] we have

Fj(xk) − Fj(xk+1) �< ξ, xk − xk+1 > −o(‖αkdk‖)2,

so

Fj(xk) − Fj(xk+1) �< ξ,−αkdk > −o(‖xk − xk+1‖)2.

Therefore, from Assumption (A3)

Fj(xk) − Fj(xk+1) � − < ξ, dk > .

By using Theorem 2.1 for all j ∈ I , we have

F ◦
j (xk; dk) � < ξ, dk > ∀ ξ ∈ ∂cFj(xk).

Therefore, we have

−F ◦
j (xk; dk) � − < ξ, dk >� Fj(xk) − Fj(xk+1)
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Thus,

−F ◦
j (xk; dk) � Fj(xk) − Fj(xk+1) =⇒

min
j∈I

{−F ◦
j (xk; dk)} � min

j∈I
{Fj(xk) − Fj(xk+1)}.

Therefore

π(xk) � min
j∈I

{Fj(xk) − Fj(xk+1)}.

By using Assumption (A2)
∑

k−→∞
k∈κ

π(xk) �
∑

k−→∞
k∈κ

min
j∈I

{Fj(xk) − Fj(xk+1)}

� min
j∈I

{Fj(x0) − Fj(x∗)}
� M. (3)

Next we prove π(x∗) = 0 by contradiction i.e. assume π(x∗) > 0, which
implies there are β > 0 and ε0 > 0 such that

∀ 0 < ε < ε0, ‖xk − x∗‖ � ε, π(xk) � β > 0.

This means that
∑

k−→∞
k∈κ

π(xk) �
∑

k−→∞
k∈κ

β = ∞.

This contradicts (3). Therefore we have π(x∗) = 0 and x∗ is critical point
for F . �
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