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1 Introduction

Fractional calculus (FC) is a field of mathematics that allows the order
of derivative and integral operators to be arbitrary. It is seen as a form
of extension of the classic derivative, which restricts the derivative and
integral order to integers. Practical results have proved time and again
that it is worth the effort to model real world phenomena using frac-
tional integral and differential equations compared to integer calculus.
There is a general consensus that this observation is wholly attributed
to fractional calculus’s ability to take into account the hereditary and
memory influence in predicting the future, a characteristic that the clas-
sic derivative does not possess. For a detailed discussion of fractional
calculus, particularly as introductory texts to the subject, we refer the
reader to [1, 2, 3]. More applications of FC in applied mathematics,
science, economics, engineering and other disciplines can be found in
[4, 5, 6, 7, 8, 9].
To gain maximum benefits from a good mathematical model, it is of
paramount importance that the methods of its solution be computation-
ally efficient, consistent and highly accurate. There are no methods that
are exclusively reserved for fractional calculus models. Any technique
that is applicable to an integer order differential and integral equation
will work perfectly in the fractional calculus setting.
However, there is no doubt that the accommodation of the fractional
order feature in fractional calculus increases the labour required to solve
fractional differential and integral equations. Thus, in solving these
kind equations, engaging a method of solution that is both computa-
tionally inexpensive and accurate is ideal, although it is a challenging
exercise to strike the balance. Common methods that have been applied
successfully to solve fractional calculus models include, homotopy anal-
ysis method [10], Adams-Bashforth method [8], homotopy perturbation
method [11], meshless method [12, 13], Adomian decomposition method
[14, 15], optimal homotopy asymptotic method [16], operational matrix
method [17, 18, 19].
During the last two decades, the theory of special functions and discrete
fractional calculus (DFC) have been gotten by to attract increasing at-
tention from the physical and mathematical communities. Specifically,
the strict correlation between these two models has been acting as the
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driving force for the most recent developments and generalizations in
the literature on these subjects. In 1974, Daiz et al. [20] introduced
the idea of DFC and composed it with an infinite sum. Later on, in
1988, Gray et al. [21] extended this concept and implemented it to the
finite sum. This concept is known as the nabla difference operator in
the literature. Atici and Eloe [22] proposed the theory of fractional dif-
ference equations, although the practical implementation is presented
in [23]. In [24], the Ulam-Hyers-Rassias stability of two structures of
discrete fractional three-point boundary value problems is discussed. In
2022, Alzabut et al. have considered a discrete time fractional order
host-immune-tumor cells interaction model [25].
This research paper aims to use a new form of ADM, that is discrete
ADM to solve a class of CDPs and FDPs.
The outline of our study is as follows. Preliminaries and notations of
discrete fractional calculus are recalled in Section 2. Section 3, we con-
struct a new version of ADM (discrete ADM). Our findings with some
graphs are illustrated in section 4. Section 5 contains final concluding
remarks.

2 Preliminaries and notations

In this section, we recall some basics concepts of discrete fractional cal-
culus (DF–calculus), which will be necessary in proceeding to obtain our
discrete results.

Definition 2.1 (See [26]). Get for a ∈ R,

Na := {a, a+ 1, a+ 2, · · · },

or for a, b ∈ R and b > a,

N b
a := {a, a+ 1, a+ 2, · · · , b}.

The forward difference operator △ and △2 are written as (1) if w : N b
a →

R:

△h(t) = h(t+ 1)− h(t), t ∈ N b−1
a ,

△2h(t) = h(t+ 2)− 2h(t+ 1) + h(t).
(1)



4 A. MOHSIEN ABED, H. JAFARI AND M. S. MECHEE

Theorem 2.2 (See [26]). Assume s1, s2, s3 are constants. Then the
following hold:∫

(t− s1)
s2 △t =

1

s2 + 1
(t− s1)

s2+1 + C, s2 ̸= −1,∫
st1 △t =

1

s1 − 1
st1 + C, s1 ̸= 1.

Definition 2.3 (See [26]). The falling function, ts, is given as follows:

i) for s ∈ N,

ts := t(t− 1)(t− 2) · · · (t− s+ 1), t0 = 1,

ii) for s ∈ R,

ts :=
Γ(t+ 1)

Γ(t− s+ 1)
, t ∈ R−

{
Z− ∪ {0}

}
, 00 = 0.

Lemma 2.4. Let 0 < ς < 1, then

t−ς∑
r=1−ς

(t− r − 1)ς−1 =
Γ(t+ ς)

ςΓ(t)
.

Proof. First, we can write

t−ς∑
r=1−ς

(t− r − 1)ς−1 =

t−ς∑
r=1−ς

Γ(t− r)

Γ(t− r − ς + 1)

=
t−ς−1∑
r=1−ς

Γ(t− r)

Γ(t− r − ς + 1)
+ Γ(ς).

Let t > r, t, r ∈ R, r > −1, t > −1, then [27]

Γ(t+ 1)

Γ(r + 1)Γ(t− r + 1)
=

Γ(t+ 2)

Γ(r + 2)Γ(t− r + 1)
− Γ(t+ 1)

Γ(r + 2)Γ(t− r)
,

that is
Γ(t+ 1)

Γ(t− r + 1)
=

1

r + 1

[
Γ(t+ 2)

Γ(t− r + 1)
− Γ(t+ 1)

Γ(t− r)

]
.
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Then

t−ς∑
r=1−ς

(t− r − 1)ς−1 =
t−ς−1∑
r=1−ς

1

ς

[
Γ(t− r + 1)

Γ(t− r − ς + 1)
− Γ(t− r)

Γ(t− r − ς)

]
+ Γ(ς)

=
1

ς

[
Γ(t+ ς)

Γ(t)
− Γ(t+ ς)

Γ(1)

]
+ Γ(ς)

=
Γ(t+ ς)

ςΓ(t)
.

□

Definition 2.5 (See [26, 28]). The fractional sum of order ς is defined
setting ς > 0 and w : Na → R as,

△−ς
a h(t) =

1

Γ(ς)

t−ς∑
r=a

(t− σ(r))ς−1 h(r), t ∈ Na+ς ,

where σ(r) = r + 1. Set h(t) = tγ , then

△−ς
a h(t) =

Γ(γ + 1)

Γ(ς + γ + 1)
tς+γ , γ ∈ R+.

Definition 2.6 (See [26, 28]). The Caputo delta difference is given
0 < ς < 1 and h : Na → R as,

C△
ς
ah(t) =

C△
−(1−ς)
a △ h(t) =

1

Γ(1− ς)

t+ς−1∑
r=a

(t−σ(r))−ς △ h(r), t ∈ Na−ς+1,

where σ(r) = r + 1.

3 Discrete ADM for CDPs and FDPs

In this section, we apply the discrete ADM to for CDPs and as well
as FDPs. Using this method, we can easily handle nonlinear problems
with the large order of non linearity [29]. Let us discuss a brief outline
of discrete ADM. Consider a general nonlinear difference equation in the
form

△ς h+ L(h) +N(h) = g, s− 1 < ς ≤ s, (2)
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where L and N are the linear and nonlinear difference operators respec-
tively. Also, g is the source term. Applying the operator △−ς (inverse of
△ς) on both sides of equation (2) and using the given initial conditions
gives us,

h =

s−1∑
r=0

ar
tr

r!
+ △−ς (g − L(h)−N(h)) .

where ar, r = 0, · · · , s−1 are constants of integration and can be found
form the boundary or initial conditions. In the Adomian decomposition
method, we assume the solution h can be expanded into an infinite series
as

h =
∞∑
i=0

hi. (3)

Also, the nonlinear term N(h) will be written as

N(h) =
∞∑
i=0

Ai, (4)

where Ai are called Adomain polynomials. By specified Ai, the next
component of can be determined:

hi+1 =△−ς
∞∑
i=0

Ai,

Finally, after some iterations and getting sufficient accuracy, the solution
of the equation can be expressed by equation (3). In equation (4), the
Adomian polynomials can be computed by several techniques. Here we
use the following recursive formula [14]:

Ai =
1

i!

[
di

dλi
N

( ∞∑
i=0

λihi

)]
λ=0

, i ≥ 0.

Since the method does not resort to linearization or assumption of weak
nonlinearity, the solution generated is in general more realistic than
those achieved by simplifying the model of the physical problem.
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4 Test problems

This section includes two subsections, Test CDPs and Test FDPs. In
these subsections, a few problems are solved and tested to illustrate
ability and reliability of ADM technique.

4.1 Test CDPs

Example 4.1. Consider the following CDP{
△h(t)− h(t) = 0,

h(0) = a.

Since ς = 1, we apply the operator △−1 on both sides of the above
equation and using the given initial condition leads us,{

h0(t) = a,

hn+1(t) =△−1 hn(t),

therefore

h1(t) =△−1 h0(t) = at1, h2(t) =△−1 h1(t) = a t2

2! ,

h3(t) =△−1 h2(t) = a t3

3! , h4(t) =△−1 h3(t) = a t4

4! ,
...

then, yields

h(t) =
∞∑
i=0

hi(t) = h0(t) + h1(t) + h2(t) + h3(t) + h4(t) + · · ·

= a+ a
t1

1!
+ a

t2

2!
+ a

t3

3!
+ a

t4

4!
+ · · · = a

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
= a

∞∑
i=0

ti

i!
= a.2t.

Example 4.2. Consider the following CDP{
△h(t)− h(t) = 22t+1,

h(0) = 2.
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By applying ADM on the above equation, yields{
h0(t) =

2
3 .4

t + 4
3 ,

hn+1(t) =△−1 hn(t),

therefore

h1(t) =△−1 h0(t) =
2

32
4t +

4

3
t1 − 2

32
,

h2(t) =△−1 h1(t) =
2

33
4t +

4

3

t2

2!
− 2

32
t1 − 2

33
,

h3(t) =△−1 h2(t) =
2

34
4t +

4

3

t3

3!
+− 2

32
t2

2!
− 2

33
t1 − 2

34
,

h4(t) =△−1 h3(t) =
2

35
4t +

4

3

t4

4!
− 2

32
t3

3!
− 2

33
t2

2!
− 2

34
t1 − 2

35
,

...

then, yields

h(t) =

∞∑
i=0

hi(t) = h0(t) + h1(t) + h2(t) + h3(t) + h4(t) + · · ·

=

(
2

3
.4t +

4

3

)
+

(
2

32
4t +

4

3
t1 − 2

32

)
+

(
2

33
4t +

4

3

t2

2!
− 2

32
t1 − 2

33

)
+

(
2

34
4t +

4

3

t3

3!
− 2

32
t2

2!
− 2

33
t1 − 2

34

)
+

(
2

35
4t +

4

3

t4

4!
− 2

32
t3

3!
− 2

33
t2

2!
− 2

34
t1 − 2

35

)
=

2

3
.4t
(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)
︸ ︷︷ ︸

3
2

+
4

3

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
︸ ︷︷ ︸

2t

− 2

32

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
︸ ︷︷ ︸

2t

− 2

33

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
︸ ︷︷ ︸

2t

− 2

34

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
︸ ︷︷ ︸

2t

− 2

35

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
︸ ︷︷ ︸

2t

+ · · ·

= 4t +
4

3
.2t − 2

32
.2t
(
1 +

1

3
+

1

32
+

1

33
+ · · ·

)
= 4t + 2t.
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Example 4.3. Consider the following CDP{
△2h(t)− h(t) = 0,

h(0) = 1, △ h(0) = 1.

We apply the operator △−2 on both sides of the above equation, after
that, by using the given initial conditions, we have{

h0(t) = 1 + t1,

hn+1(t) =△−2 hn(t),

therefore

h1(t) =△−2 h0(t) =
t2

2! +
t3

3! , h2(t) =△−2 h1(t) =
t4

4! +
t5

5! ,

h3(t) =△−2 h2(t) =
t6

6! +
t7

7! , h4(t) =△−2 h3(t) =
t8

8! +
t9

9! ,
...

then, yields

h(t) =
∞∑
i=0

hi(t) = h0(t) + h1(t) + h2(t) + h3(t) + h4(t) + · · ·

=
(
1 + t1

)
+

(
t2

2!
+

t3

3!

)
+

(
t4

4!
+

t5

5!

)
+

(
t6

6!
+

t7

7!

)
+

(
t8

8!
+

t9

9!

)
+ · · ·

= 2t.

Example 4.4. Consider the following CDP{
△2h(t)− h(t) = 3t+1,

h(0) = 1, △ h(0) = 2.

By applying ADM and the similar process, gets{
h0(t) =

3
4 .3

t + 1
2 t

1 + 1
4 ,

hn+1(t) =△−2 hn(t),
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therefore

h1(t) =△−2 h0(t) =
3

42
3t +

1

2

t3

3!
+

1

4

t2

2!
− 3

23
t1 − 3

42
,

h2(t) =△−2 h1(t) =
3

43
3t +

1

2

t5

5!
+

1

4

t4

4!
− 3

23
t3

3!
− 3

42
t2

2!
− 3

25
t1 − 3

43
,

h3(t) =△−2 h2(t) =
3

44
3t +

1

2

t7

7!
+

1

4

t6

6!
− 3

23
t5

5!
− 3

42
t4

4!
− 3

25
t3

3!
− 3

43
t2

2!
− 3

27
t1 − 3

44
,

...

then, yields

h(t) =
∞∑
i=0

hi(t) = h0(t) + h1(t) + h2(t) + h3(t) + · · ·

=

(
3

4
.3t +

1

2
t1 +

1

4

)
+

(
3

42
3t +

1

2

t3

3!
+

1

4

t2

2!
− 3

23
t1 − 3

42

)
+

(
3

43
3t +

1

2

t5

5!
+

1

4

t4

4!
− 3

23
t3

3!
− 3

42
t2

2!
− 3

25
t1 − 3

43

)
+

(
3

44
3t +

1

2

t7

7!
+

1

4

t6

6!
− 3

23
t5

5!
− 3

42
t4

4!
− 3

25
t3

3!
− 3

43
t2

2!
− 3

27
t1 − 3

44

)
+ · · · ,

then,

h(t) =
3

4
.3t
(
1 +

1

4
+

1

42
+

1

43
+ · · ·

)
︸ ︷︷ ︸

4
3

+
1

4

(
1 +

t2

2!
+

t4

4!
+ · · ·

)

+
1

2

(
t1

1!
+

t3

3!
+

t5

5!
+ · · ·

)
− 3

23

(
t1

1!
+

t3

3!
+

t5

5!
+ · · ·

)
− 3

42

(
1 +

t2

2!
+

t4

4!
+ · · ·

)
− 3

25

(
t1

1!
+

t3

3!
+

t5

5!
+ · · ·

)
+ · · ·

= 3t.

Example 4.5. Given the following CDE,{
△t h(x, t) =

1
2 △2

x h(x, t) + h(x, t),

h(x, 0) = x,
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its exact solution is h(x, t) = x.2t. To access the solution, we must apply
operator △−1

t on the above equation, this yields,

h(x, t) = h(x, 0)+ △−1
t

(
1

2
△2
x h(x, t) + h(x, t)

)
. (5)

Therefore the equation (5) can be rewritten as

h(x, t) = h(x, 0)+ △−1
t

(
1

2
h(x+ 2, t)− h(x+ 1, t) +

3

2
h(x, t)

)
.

Now, let h(x, t) = hx,t =
∞∑
n=0

hxn,t and by substituting in the above

equation, we get

∞∑
n=0

hxn,t = hx0,t+ △−1
t

(
1

2

∞∑
n=0

hxn+2,t −
∞∑
n=0

hxn+1,t +
3

2

∞∑
n=0

hxn,t

)
.

Therefore, we infer that the first term and the recursive formula series
are as,

hx0,t = x,

hxn+1,t =△−1
t

(
1
2

∞∑
n=0

hxn+2,t −
∞∑
n=0

hxn+1,t +
3

2

∞∑
n=0

hxn,t

)
,

then, we get

hx1,t =△−1
t

(
1

2
hx0+2,t − hx0+1,t +

3

2
hx0,t

)
=△−1

t

(
1

2
(x+ 2)− (x+ 1) +

3

2
x

)
= x

t1

1!
,

hx2,t =△−1
t

(
1

2
hx1+2,t − hx1+1,t +

3

2
hx1,t

)
=△−1

t

(
1

2
(x+ 2)− (x+ 1) +

3

2
x

)
= x

t2

2!
,

hx3,t =△−1
t

(
1

2
hx2+2,t − hx2+1,t +

3

2
hx1,t

)
=△−1

t

(
1

2
(x+ 2)− (x+ 1) +

3

2
x

)
= x

t3

3!
,
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hx4,t =△−1
t

(
1

2
hx3+2,t − hx3+1,t +

3

2
hx3,t

)
=△−1

t

(
1

2
(x+ 2)− (x+ 1) +

3

2
x

)
= x

t4

4!
,

...

then, we can write

h(x, t) = hx,t =
∞∑
n=0

hxn,t = hx0,t + hx1,t + hx2,t + hx3,t + hx4,t + · · ·

= x+ x
t1

1!
+ x

t2

2!
+ x

t3

3!
+ x

t4

4!
+ · · · = x

(
1 +

t1

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
= x.2t.

4.2 Test FDPs

Example 4.6. Consider the following FDP{
△ςh(t) = h(t+ ς − 1), 0 < ς ≤ 1,

y(0) = a.

By applying operator △−ς on the above equation, this yields,{
h0(t) = a,

hn+1(t) =△−ςhn(t+ ς − 1),

therefore

h1(t) =△−ςh0(t+ ς − 1) = a (t+ς−1)ς

Γ(ς+1) , h2(t) =△−ςh1(t+ ς − 1) = a (t+2ς−2)2ς

Γ(2ς+1) ,

h3(t) =△−ςh2(t+ ς − 1) = a (t+3ς−3)3ς

Γ(3ς+1) , h4(t) =△−ςh3(t+ ς − 1) = a (t+4ς−4)4ς

Γ(4ς+1) ,
...

then, yields

h(t) =
∞∑
i=0

hi(t) = h0(t) + h1(t) + h2(t) + h3(t) + · · ·

= a+ a
(t+ ς − 1)ς

Γ(ς + 1)
+ a

(t+ 2ς − 2)2ς

Γ(2ς + 1)
+ a

(t+ 3ς − 3)3ς

Γ(3ς + 1)
+ a

(t+ 4ς − 4)4ς

Γ(4ς + 1)
+ · · ·

= a

∞∑
i=0

(t+ i(ς − 1))iς

Γ(iς + 1)
.
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The approximation solutions h(t) considering the first five and ten
terms for different ς are shown in Figure 1. We can see the different
behaviors of the discrete FDE with different fractional parameters. It is
clear when ς is close to 1 the approximation solution tends to the exact
solution.
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Figure 1: (Example 4.6) The approximation solution h(x, t) with set-
ting a = 2 (a) The first five terms (b) The first ten terms (c) The first
five terms (d) The first ten terms.

In this example, let ς = 1, then{
h0(t) = a,

hn+1(t) =△−1 hn(t),

therefore

h1(t) = a t1

1! , h2(t) = a t2

2! ,

h3(t) = a t3

3! , h4(t) = a t4

4! ,
...
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then, yields

h(t) =
∞∑
i=0

hi(t) = a.2t.

Example 4.7. Given the following FDP,{
△ς
t h(x, t) =△2

x h(x, t), 0 < ς ≤ 1,

h(x, 0) = 2x,
(6)

its exact solution is h(x, t) = 2x+t when ς = 1. To find the solution, we
apply operator 1−ς△

−ς
t on both sides of the above equation, this yields,

h(x, t) = h(x, 0) + 1−ς△
−ς
t

(
△2
x h(x, t)

)
. (7)

Therefore the equation (7) can be rewritten as

h(x, t) = h(x, 0) + 1−ς△
−ς
t (h(x+ 2, t)− 2h(x+ 1, t) + h(x, t)) .

Now, let h(x, t) = hx,t =

∞∑
n=0

hxn,t and by substituting in the above

equation, we get

∞∑
n=0

hxn,t = hx0,t + 1−ς△
−ς
t

( ∞∑
n=0

hxn+2,t − 2

∞∑
n=0

wxn+1,t +

∞∑
n=0

wxn,t

)
.

Therefore, we infer that the first term and the recursive formula series
are as,

hx0,t = 2x,

hxn+1,t = 1−ς△
−ς
t

( ∞∑
n=0

hxn+2,t − 2

∞∑
n=0

hxn+1,t +

∞∑
n=0

hxn,t

)
,

then, we get

hx1,t = 1−ς△
−ς
t (hx0+2,t − 2hx0+1,t + hx0,t) = 1−ς△

−ς
t

(
2x+2 − 2.2x+1 + 2x

)
= 2x

(t+ ς − 1)ς

Γ(ς + 1)
,
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hx2,t = 1−ς△
−ς
t (hx1+2,t − 2hx1+1,t + hx1,t) = 2x

(
1−ς△

−ς
t

(t+ ς − 1)ς

Γ(ς + 1)

)
= 2x

(t+ 2ς − 2)2ς

Γ(2ς + 1)
,

hx3,t = 1−ς△
−ς
t (hx2+2,t − 2hx2+1,t + hx2,t) = 2x

(
1−ς△

−ς
t

(t+ 2ς − 2)2ς

Γ(2ς + 1)

)
= 2x

(t+ 3ς − 3)3ς

Γ(3ς + 1)
,

hx4,t = 1−ς△
−ς
t (hx3+2,t − 2hx3+1,t + hx3,t) = 2x

(
1−ς△

−ς
t

(t+ 3ς − 3)3ς

Γ(3ς + 1)

)
= 2x

(t+ 4ς − 4)4ς

Γ(4ς + 1)
,

...

then, we can write

h(x, t) = hx,t =
∞∑
n=0

hxn,t = hx0,t + hx1,t + hx2,t + hx3,t + hx4,t + · · ·

= 2x + 2x
(t+ ς − 1)ς

Γ(ς + 1)
+ 2x

(t+ 2ς − 2)2ς

Γ(2ς + 1)
+ 2x

(t+ 3ς − 3)3ς

Γ(3ς + 1)
+ 2x

(t+ 4ς − 4)4ς

Γ(4ς + 1)
+ · · ·

= 2x
(
1 +

(t+ ς − 1)ς

Γ(ς + 1)
+

(t+ 2ς − 2)2ς

Γ(2ς + 1)
+

(t+ 3ς − 3)3ς

Γ(3ς + 1)
+

(t+ 4ς − 4)4ς

Γ(4ς + 1)
+ · · ·

)
= 2x

∞∑
n=0

(t+ n(ς − 1))nς

Γ(nς + 1)
.

When ς = 1, then

h(x, t) = 2x+t.

Figures 2 and 3 show the approximation solutions h(x, t) consider-
ing the first five and ten terms for different values of ς. We can see the
different behaviors of the discrete FDE with different fractional param-
eters. It is clear when ς tends to 1 the approximation solution tends to
the exact solution.

Example 4.8. Given the following FDE,{
△ς
t h(x, t) =

1
2 △2

x h(x, t) + w(x, t), 0 < ς ≤ 1,

h(x, 0) = x,
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Figure 2: (Example 4.7) The approximation solution h(x, t) when x =
1 and considering (a) The first five terms (b) The first ten terms (c) The
first five terms (d) The first ten terms.

its exact solution is h(x, t) = x 2t when ς = 1. To access the solution,
we must apply operator 1−ς△

−ς
t on the above equation, this yields,

h(x, t) = h(x, 0) + 1−ς△
−ς
t

(
1

2
△2
x h(x, t) + h(x, t)

)
. (8)

Therefore the equation (8) can be rewritten as

h(x, t) = hw(x, 0) + 1−ς△
−ς
t

(
1

2
h(x+ 2, t)− h(x+ 1, t) +

3

2
h(x, t)

)
.

Now, let h(x, t) = hx,t =

∞∑
n=0

hxn,t and by substituting in the above

equation, we get

∞∑
n=0

hwxn,t = hx0,t + 1−ς△
−ς
t

(
1

2

∞∑
n=0

hxn+2,t −
∞∑
n=0

hxn+1,t +
3

2

∞∑
n=0

hxn,t

)
.
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Figure 3: (Example 4.7) The approximation solution h(x, t) when t = 1
and considering (a) The first five terms (b) The first ten terms (c) The
first five sentences (d) The first ten terms.

Therefore, we infer that the first term and the recursive formula series
are as,


hx0,t = x,

hxn+1,t = 1−ς△
−ς
t

(
1
2

∞∑
n=0

hxn+2,t −
∞∑
n=0

hxn+1,t +
3

2

∞∑
n=0

hxn,t

)
,
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then, we get

hx1,t = 1−ς△
−ς
t

(
1

2
hx0+2,t − hx0+1,t +

3

2
hx0,t

)
= 1−ς△

−ς
t

(
1

2
(x+ 2)− (x+ 1) +

3

2
x

)
= x

(t+ ς − 1)ς

Γ(ς + 1)
,

hx2,t = 1−ς△
−ς
t

(
1

2
hx1+2,t − hx1+1,t +

3

2
hx1,t

)
= x

(
1−ς△

−ς
t

(t+ ς − 1)ς

Γ(ς + 1)

)
= x

(t+ 2ς − 2)2ς

Γ(2ς + 1)
,

hx3,t = 1−ς△
−ς
t

(
1

2
hx2+2,t − hx2+1,t +

3

2
hx2,t

)
= x

(
1−ς△

−ς
t

(t+ 2ς − 2)2ς

Γ(2ς + 1)

)
= x

(t+ 3ς − 3)3ς

Γ(3ς + 1)
,

hx4,t = 1−ς△
−ς
t

(
1

2
hx3+2,t − hx3+1,t +

3

2
hx3,t

)
= x

(
1−ς△

−ς
t

(t+ 3ς − 3)3ς

Γ(3ς + 1)

)
= x

(t+ 4ς − 4)4ς

Γ(4ς + 1)
,

...

then, we can write

h(x, t) = hx,t =
∞∑
n=0

hxn,t = hx0,t + hx1,t + hx2,t + hx3,t + hx4,t + · · ·

= x+ x
(t+ ς − 1)ς

Γ(ς + 1)
+ x

(t+ 2ς − 2)2ς

Γ(2ς + 1)
+ x

(t+ 3ς − 3)3ς

Γ(3ς + 1)
+ x

(t+ 4ς − 4)4ς

Γ(4ς + 1)
+ · · ·

= x

(
1 +

(t+ ς − 1)ς

Γ(ς + 1)
+

(t+ 2ς − 2)2ς

Γ(2ς + 1)
+

(t+ 3ς − 3)3ς

Γ(3ς + 1)
+

(t+ 4ς − 4)4ς

Γ(4ς + 1)
+ · · ·

)
= x

∞∑
n=0

(t+ n(ς − 1))nς

Γ(nς + 1)
.

When ς = 1, then

h(x, t) = x 2t.
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We set the first five and ten terms of h(x, t), then the numerical
results are plotted in Figures 4 and 5. The different behaviors of the
discrete FDE with different fractional parameters observe in this Figure.
Also, in this Figure, we can see the approximation solution tends to the
exact solution when ς is close to 1.
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Figure 4: (Example 4.8) The approximation solution h(x, t) when x =
1 and considering (a) The first five terms (b) The first ten terms (c) The
first five terms (d) The first ten terms.

5 Conclusion

This paper was based on a new version of the Adomian decomposition
method (ADM), which is called the discrete ADM. This technique helps
us to obtain a recursive formulation. Using this recursive formulation,
we can achieve the solutions of linear and nonlinear classic and frac-
tional difference problems (CDPs and FDPs). Finally, several practice
problems are solved to show the accuracy of the discrete ADM approach.
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Figure 5: (Example 4.8) The approximation solution h(x, t) when t = 1
and considering (a) The first five terms (b) The first ten terms (c) The
first five terms (d) The first ten terms.
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