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Abstract. Using the right tools to support decision-making for man-
agers is very important. Today, using mathematical methods to support
managers in making decisions is prevalent. Data envelopment analysis
is one of the mathematical methods used in the mentioned field. In
recent years, researchers in this field have developed data envelopment
analysis methods to a great extent. Many data organizations use to
evaluate performance and other purposes are imprecise and uncertain.
To solve this problem, one should use methods whose results are re-
liable. Stochastic, fuzzy-stochastic, fuzzy, robust, etc. models can be
mentioned among these methods. Among non-deterministic methods,
stochastic models are of particular importance. This article only reviews
the existing stochastic methods for dealing with non-deterministic data.
We have divided stochastic methods into four categories to understand
the subject better. Also, the fit between the models and the data has
been reviewed in the articles. The process mining method is suggested
to determine the appropriate model for the available data. Finally, the
weaknesses of some previous models have been introduced. Suggestions
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have been made to fix these weaknesses. The current research results
provide researchers in this field with appropriate information regarding
stochastic data envelopment analysis.
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1 Introduction

Data envelopment analysis is a non-parametric method used to eval-
uate organizational units’ efficiency and ranking. In recent years, the
use of stochastic modeling for real-world problems has become preva-
lent. To achieve more realistic results, researchers try to examine issues
under uncertainty. For this reason, non-deterministic models have re-
cently been widely used in new data envelopment analysis models.In
this article, only stochastic models have been investigated among non-
deterministic models. Banker (1986, 1993)[5][6] and Sengupta (1982,
1987)[43][44] first integrated statistical elements into DEA. Charnes and
Cooper (1961) investigated and presented deterministic equations for
stochastic models in the framework of chance constraints.The existence
of “deterministic equations” in the form of convex programming prob-
lems for a general class of linear decision rules is divided into three
categories: (1) maximum expected value (“E model”). (2) Minimum
variance (“model V”); and (3) maximum likelihood (T model). Finally,
various explanations and interpretations of these results and other as-
pects of constrained stochastic programming are presented. Sengupta
(1987) [43] used a data envelopment analysis model in the context of
chance constraint programming. In the research, each DMU has one
output and m inputs, and the optimal weight vector p form inputs is
determined from the DEA method, based on which each reference unit
can be compared in terms of efficiency. Also, the exponential probability
density function is used in the final linear model. Land et al. (1993)[33],
in order to provide a numerical illustration of the DEA chance con-
straints, first reviewed the DEA application of the ”Program Tracking”
study by Charnes et al. (1981). The proposed model assumes that the
standard probability distribution of all outputs is reasonable and uses a
geometric mean instead of an arithmetic mean.Cooper et al. (1995)[20]
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used a DEA model and stochastic frontier analysis for their assessments.
Also introduced a new performance measure as a set of concepts to ad-
vance the DEA. Cooper (1996) [21], examined Simon’s satisfactory mod-
els and developed Simon’s satisfactory method based on CCP models
(Chance Constrained Programming) and DEA concepts. In some model-
ing, the inputs and outputs are stochastic; in others, only the outputs are
stochastic.Sueyoshi (2000)[49] proposed a stochastic data envelopment
analysis model for the restructuring strategy planning of a Japanese oil
company. In this model, CCP (Chance Constraint Programming) and
PERT/CPM (Program Evaluation and Review Technique/Critical Path
Method) are used. Huang and Li (2001). [27] obtained deterministic
equations for both situations of multivariate symmetric random distur-
bances and one random factor in production relations. They believe that
using the single-factor assumption of the random variable has at least
two advantages: (1) the number of parameters is significantly reduced
compared to general stochastic models. (b) The dual form for the defi-
nite equivalent to and is explicitly formulated. Post (2001) [42] proposes
a mean-variance framework to control the uncertainty of inputs, outputs,
and risk aversion in DEA. Chen (2002)used chance-constrained data en-
velopment analysis (CCDEA) and stochastic border analysis (SFA) to
measure the technical performance of 39 banks in Taiwan.Cooper et
al.(2002). [23] introduced conventional DEA models with a stochastic
counterpart in a series of CCP(chance-constrained programming) mod-
els. They believe that these models can predict changes in efficient
and inefficient behaviors. In fact, instead of using data generated in
the past, these models help prevent dysfunctional behaviors by predict-
ing and generating data values for the future. Tsionas (2003)[53] used a
combination of stochastic frontier models and data envelopment analysis
methods to measure the efficiency of US airlines. The proposed model
uses the Bayesian theorem, and Monte Carlo methods have been de-
veloped to perform Bayesian experimental inference in the new model.
Gibbs sampling is also organized to reinforce the data. Cooper et al.
(2004) [22] described Congestion treatment models in data envelopment
analysis. They developed CCP-based models to solve this problem. Us-
ing statistically correct hypotheses, replaced the definite models with
random models. Olsen (2006) [37] compared two different models (LLT)
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and (OP) and developed a new hybrid model. The new model com-
bines the attractive features of each of the two models. This integrated
model can show the effect of the correlation between DMUs and the
correlation between inputs and outputs. In the global business envi-
ronment, which is full of threats from natural, political, economic, and
technical sources, enterprise risk management (ERM) is essential. ERM
has been developed in supply chain management by showing how to
use risk modeling. Choosing the right vendor is one of the most criti-
cal decisions in supply chain management. Internal errors in organiza-
tions include human error, fraud, system failure, production disruption,
and other errors. In risk management, they often look for methods to
control and identify risk caused by internal and external factors, and
systems are designed for this. These systems sometimes produce incor-
rect data for various reasons (Schaefer and Cassidy, (2006) [45]).In a
paper, Simar (2007) [47] first proposed a way to improve the perfor-
mance of DEA/FDH estimators for frontiers in the presence of noise.
The research used DEA/FDH methods for random frontier analysis in
the presence of statistical noises. Margari et al. (2007) [34] investigated
the impact of regulatory and environmental factors and statistical noise
on the efficiency of Italian public transportation systems. Indeed, the
factors mentioned above significantly affect the data produced by the de-
signed systems and cause ambiguity. They used a combined DEA-SFA
approach to decompose the desired criteria and determine the efficiency
frontier for the given data.Bruni et al. (2009)[14] propose a stochas-
tic data envelopment analysis model based on the theory of chance-
constrained programming, which can be used with general multivariate
distribution functions. The main assumption is that a discrete approx-
imation of a general non-normal multivariate continuous distribution is
available in the form of scenarios, which may be very specific in scope.
Tsionas and Papadakis (2009)[52] used a Bayesian approach to data
envelopment analysis to evaluate the performance of Greek banks. In
fact, the Bayesian approach has been used for statistical inference in
the random DEA. In a paper using a statistical simulation, Kao and Tai
Liu (2009)[31] examined how to obtain the efficiency distribution of each
DMU. They claim that the statistical simulations performed better than
the SDEA models. The statistical simulation will perform excellently if
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the data distribution function is suitable. Wu and Olson (2010). [56]
believe that the combination of stochastic data coverage analysis tech-
niques and value at risk (VaR) is a suitable tool to control the risk caused
by internal factors of the organization. Khodabakhshi (2010)[32] used
CCP approaches to develop an output-oriented super-efficiency model
in SDEA(stochastic data envelopment analysis). Wu et al. (2010)[57]
examined the issue of pricing of residential complexes in conditions of
uncertainty. This study’s data envelopment analysis model considers
random variables and ordinal data simultaneously. Simar and Zelenyuk
(2011). [46] developed the Simar model (J Product Ananl 28:183–201,
2007) to introduce noise in non-parametric frontier models. The new ap-
proach models multi-input-multi-output technologies without imposing
parametric assumptions on the production relationship. The proposed
model uses non-parametric DEA and Free Disposal Hull (FDH) meth-
ods to analyze the random boundary, including outlier noises.One of the
major problems in many organizations is allocating part of their tasks
to individual units, which is called decentralization. These allocations
will have appropriate results if all the individuals perform efficiently.
Centralized resource allocation (CRA) is a method in which all efficient
DMUs are predicted by solving just one DEA model. CRA models have
been introduced in the DEA framework to allocate resources to the-
matic units optimally.Hosseinzadeh Lotfi et al. (2012)[25] provided a
random DEA framework for CRA. Assaf (2012)[4] presented an inno-
vative method based on the combination of random frontier and data
envelopment analysis in the Bayesian framework. Wu et al. (2013)[55]
examined and evaluated environmental performance in China. The re-
search presented a new model of data envelopment analysis to deal si-
multaneously with uncertain data and undesirable outputs. This model
is based on the definition of stochastic performance and the concept of
risk.Bruni et al. (2014)[15], In the context of stochastic programming,
used a stochastic data envelopment analysis model to predict the po-
tential financial problems of potential borrowers. Jin et al.(2014)[28]
presented a stochastic data envelopment analysis model to evaluate en-
vironmental performance with undesirable outputs. A new stochastic
DEA model has been developed to define stochastic performance based
on CCP and expected value. A stochastic net environmental perfor-
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mance index (SPEI) is defined based on the models. The proposed ran-
dom environmental DEA model was used to assess the environmental
performance of APEC members in 2010. In the framework of stochas-
tic programming, Beraldi and Bruni (2014) show the output parameters
by discrete randomly distributed random variables. They also offer two
different models based on a neutral and risk-averse perspective. Tavana
et al. (2014). [50] proposed a chance-constrained DEA model with bi-
random input and output data. They used a super-efficiency model with
bi-random constraints and a nonlinear deterministic equivalent model to
solve the super-efficiency model. Branda and Kopa (2014)[8] used two
data envelopment analysis (DEA), and second-order stochastic domi-
nance (SSD) approaches to evaluate portfolio performance and compare
them. Following Brenda and Kopa (2012a)[9], they also designed DEA
risk models based on classic DEA models in which CVaR is used as
input or output at some levels. The cumulative probabilities of the sce-
narios give CVaR levels. They enriched their models with more reward
criteria as output. In addition, they introduced a new VRS DEA risk
model based on input-output, which is equivalent to testing the per-
formance of a pairwise SSD portfolio. Unlike the DEA equivalent risk
models for convex SSD efficiency and SSD portfolio performance pre-
sented in Branda and Kopa (2012b)[10], the new DEA risk model allows
only binary weights. Sinuany-Stern and Friedman (2016)[48] examined
different statistical methods in the DEA. Branda et al. (2016)[12] intro-
duced data envelopment analysis (DEA) models equivalent to efficiency
tests concerning the N-th order stochastic dominance (NSD). Park et
al.(2017)[39]. Provided a new framework for evaluating vendors. This
method uses stochastic discrete simulation and DEA; each supply chain
is considered a vendor. Discrete stochastic simulation is used to simu-
late the supply chain and generate reliable data; then, a deterministic
DEA is used to evaluate vendors.Chen et al.(2017)[17] evaluated the
performance of 13 Chinese airlines from 2006 to 2014. This research
uses the DEA stochastic network (SNDEA) to calculate adverse random
outputs, flight delays, and CO2 emissions.Aleskerov et al. (2017)[1] re-
viewed the empirical research works evaluating the efficiency scores of
universities and their structural units of different levels (from faculties
to small groups and research programs).Zhou et al.(2017)[62] examined
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the performance of 16 commercial banks in China in a study. This
model proposes the possibility of random generation and network struc-
ture together.Nasseri et al. (2018)[36] proposed a fuzzy stochastic DEA
model with Undesirable outputs. Three fuzzy DEA models have been
applied according to the constraints of probability–possibility, proba-
bility–necessity, and probability–credibility. Wen et al. (2018)[59] pro-
posed a stochastic data envelopment analysis (DSEA) model to solve
the optimization problem of various spare parts in uncertain conditions.
Also, a factor system is proposed in the product life-cycle process, con-
taining five design indexes, four operation indexes, and five support
indexes.
In a study, Davtalab-Olyaie et al.(2019)[24] Presented models for com-
bining all the data in the ranking. They introduced two ranking meth-
ods, partial and linear, to evaluate performance in SDEA using the reli-
ability function of the scores. The proposed partial ranking is based on
random order, while the linear order is the weighted average of the relia-
bility of the performance scores. Hosseini et al. (2019)[26] developed the
Malmacquist index within the framework of the SNDEA(stochastic net-
work data envelopment analysis). They used it to examine the produc-
tivity changes of public network-generating units with stochastic data.
Kao and Liu (2019)[30] presented a stochastic data envelopment analysis
model for performance evaluation using correlated data. The presented
model uses a simulation technique to obtain a random efficiency distribu-
tion. They use the random number generation technique to generate and
simulate random data. The main idea of this model is to transform cor-
related random variables that follow a multivariate normal distribution
into a standard normal random variable. Jradi and Ruggiero (2019)[29]
introduced the concept of the most probable quantity. They also de-
veloped the Bunker Quantitative Random Data Envelopment Analysis
Model to find the most probable Quantum and a new stochastic data
envelopment analysis model to estimate production boundaries. Chen
and Zhou (2019)[18] investigated the computability of data envelopment
analysis models with chance constraints. Their main goal is to provide
equivalent simple and tractable models for stochastic models. In the
present study, chance-constrained DEA forms are first classified under
Gaussian distribution and uncorrelation assumptions, convex tractable
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optimization problems, and non-convex unsolvable optimization prob-
lems. Al-Khasawneh (2020)[2] examined the Total productivity and
cost efficiency dynamics of US merging banks from 1992 to 2003. This
study used the Malmacquist index’s development in the DEA frame-
work. They used statistical bootstrap to generate random data to over-
come the problem’s uncertainty. Mehdizadeh.S et al (2020)[35] proposed
a random network DEA model with a two-stage structure. This two-
stage stochastic network DEA model is formulated based on P-models of
chance constraint programming and leader-follower concepts. In addi-
tion, the relationship between the stages of the title of leader or follower
has been investigated.Beraldi and Bruni (2020)[13] propose a stochastic
DEA approach and calculate mean tail risk. A definite equivalent with
the assumption of discrete distributions is also presented. While the
expected value (E-model) or the most probable value (P-model) of the
efficiency level is commonly used in SDEA models, the proposed formula
includes a risk measurement. In an article, Tavassoli et al.(2020)[51]
Evaluated and measured suppliers’ sustainability. They claim this study
provides the first integrated approach and flexibility to assess supplier
sustainability in supply chain management. This research uses a fuzzy-
stochastic model for evaluation, and the alpha-cut method is used to
solve the fuzzy-stochastic model. Zhou et al. (2021)[63] used Stochas-
tic leader-follower DEA models to measure the performance of a set
of Chinese banks. Amirteimoori.A et al. (2022) measured value-based
scale elasticity (SE) using random data envelopment analysis. They in-
troduced a stochastic value-based efficiency measure in the chance con-
straint programming framework to develop a SE-based value measure.
In the next section (uncertainty), we tried to answer main questions 3,
4, and 5.

2 Review Methodology

This study is a systematic literature review investigating stochastic mod-
els in data envelopment analysis. In addition, the uncertainty space
investigation has been considered in the issues raised in the coverage
analysis of random data. The main purpose of the review is to answer
the following main questions:
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RQ1: stochastic DEA models are divided into how many categories?
RQ2: Is the fit between the data and the model presented in previous
research related to stochastic data envelopment analysis established?
RQ3: How to investigate the uncertainty of issues in the real world?
RQ4: How many categories are uncertainty data divided?
RQ5: On what basis is the type of data uncertainty determined?
In recent years, research on stochastic DEA has attracted the attention
of many researchers. To show the necessity of this article, after review-
ing the previous articles in this field, the main features of the articles
are presented in Tables 1 and 2.

2.1 Search strategy

The research conducted in this study is based on the main research ques-
tions. For this research, several databases have been used, including the
main academic and international databases. First, the main keywords
are searched. Keyword searches cover all subject areas without speci-
fying a course. Then, studies related to stochastic DEA are reviewed.
Mainly, the reviewed articles are published from 1963 to November 2022.
To achieve this goal, all relevant abstracts of relevant articles are re-
viewed and keywords are refined in terms of purpose and review.A large
volume of literature has been reviewed in order to achieve a deeper
understanding of uncertainty in data envelopment analysis. Many pub-
lished articles have dealt with the fields of fuzzy, robust, meta-heuristic,
and other non-deterministic models. A search was performed in well-
known academic databases, such as Elsevier, Springer, Emerald, and
IEEE Transactions. When searching for keywords, approximately 180
articles from different publishers were found. Out of 180 articles, 52
have dealt with methods and applications of stochastic DEA. Due to the
large volume of articles in non-deterministic data envelopment analysis
models, only random models have been reviewed. The search process
is applied in two dimensions. First, attention has been paid to investi-
gating the most well-known random data envelopment analysis models.
Second, different classes of stochastic DEA are identified in different
sources.
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3 Uncertainty

All kinds of activities in the organization are recorded by process-aware
information systems (PAISs). This information can be extracted from
PAIS as an event report or a database containing the digital process of
the performed operations and recorded as an event.[41] Event reports
can be different in form and contain different structured information de-
pending on the information system that implements the data collection
in the organization. Although many different event characteristics can
be recorded, it is generally assumed that three basic characteristics of an
event are included in the log: 1-The time in which the event occurred, 2-
the activity performed,3- the case identified to which the event belongs.
Uncertain events are recorded activities in a process accompanied by in-
dications of uncertainty in the event’s characteristics. Figure1 describes
the steps of the mining process in full.[41] There are several reasons for
uncertainty: [40][41]
Incorrectness: Occasionally, uncertainty is caused by errors that oc-
curred when the data was recorded.
Coarseness: Some information systems have limitations on how data can
be recorded, often related to factors such as the accuracy of the data
format, so event data can be considered imprecise. For example, con-
sider an information system that only records the date of an event but
not the time.
Ambiguity: Sometimes, the recorded data does not have a specific event
attribute identifier. In these cases, the data must be automatically or
manually interpreted to obtain a value for the event attribute. Un-
certainty may arise if the data is ambiguous and cannot be accurately
interpreted. For example, we can refer to images, text, or video data.
These factors cause implicit uncertainty in the event report, and uncer-
tain events produce uncertain data. Uncertain event data is generally
divided into two categories:
Strong uncertainty: The possible values for specific attributes are known,
but their probabilities are uncertain.
Strong uncertainty: The possible values for specific attributes are known,
but their probabilities are uncertain.
Weak uncertainty: An attribute’s possible values and associated proba-
bilities are known.
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Figure 1: The framework of the mining process on uncertain event data

In the case of a discrete attribute, the concept of strong uncertainty
includes the set of possible values assumed for the attribute. In this
case, the probability of each possible value is unknown. Conversely,
there is a discrete probability distribution over that set of values un-
der weak uncertainty. In the case of a continuous feature, the concept
of strong uncertainty can be represented by considering an interval for
the variable’s value. Note that an interval does not represent a uniform
distribution. There is no information about the probability of values
in it. Conversely, a probability density function is defined over a given
interval in weak uncertainty.We tried to answer questions 1 and 2 in the
following two sections

4 Basic Stochastic Models

This section gives some basic stochastic models in DEA to understand
the topic better and familiarize ourselves with stochastic modeling.Stochastic
programming models are divided into two categories, E-model and P-
model, based on the type of objective function.

4.1 E-model

Land et al.(1993)[33] first defined a model based on the concept of ex-
pected value.



12 S. FARZAM et al.

Definition 4.1. Expected Value represents the average outcome of a
series of random events with identical odds being repeated over a long
period.

Assume that there are n decision making units DMUj , (j = 1, ..., n)
which convert m inputs xij , (i = 1, ...,m) into s outputs yrj , (r = 1, ..., s)
and DMUo is an under evaluation DMU . Also, suppose that all inputs
and outputs are non-negative.Her θ represents the reduction ratio of unit
inputs under consideration to improve efficiency. Land et al. (1993)
defined the formal form of E-model on the CCR model as follows:

θ∗0 = minθ (1)

s.t. p{
n∑

j=1

λj x̃ij ≤ θx̃io} ≥ 1− α i = 1, ...,m

p{
n∑

j=1

λj ỹrj ≤ θỹro} ≥ 1− α r = 1, ..., s

λj ≥ 0 j = 1, ..., n

Where α ∈ [0, 1] is a predetermined value, in this case, the inputs and
outputs are considered random parameters, and by estimating the prob-
ability distribution governing them, the future efficiency is estimated.
Model (1) should be converted into a definite form. For this purpose,
the i-th probable constraint model is written as follows:

p{
n∑

j=1

λj x̃ij − θx̃io ≤ 0} ≥ 1− α i = 1, ...,m

By defining the external auxiliary variable(covariate) ηi ≥ 0, the above
inequality becomes the following equality:

p{
n∑

j=1

λj x̃ij − θx̃io ≤ 0} ≥ 1− α+ ηi i = 1, ...,m

By defining auxiliary variable s−i ≥ 0, the above inequality is written as
follows:

p{
n∑

j=1

λj x̃ij − θx̃io ≤ −s−i } ≥ 1− α+ ηi i = 1, ...,m
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Now, putting h̃i =
∑n

j=1 λj x̃ij − θx̃io and considering that every linear
combination of normal random variables has a normal distribution, we
have:
where in:

h̃i ∼ N(hi(σ
I
i (λ, θ))

2)

hi = E[h̃i] = E[
n∑

j=1

λj x̃ij − θx̃io] =
n∑

j=1

λjxij − θxio

(σI
i (λ, θ))

2 = V ar[h̃i] = var[
n∑

j=1

λj x̃ij − θx̃io]

= var[

n∑
j=1

λj x̃ij ] + var[θx̃io]− 2cov[h̃i] = var[

n∑
j=1

λj x̃ij − θx̃io]

=

n∑
j=1

n∑
k=1

λjλkcov(x̃ij , x̃ik) + θ2var(x̃io)− 2θ

n∑
j=1

λjcov(x̃ij , x̃io)

Therefore, relation (2) is written as follows:

P (h̃i ≤ −s−i ) = 1− α

Now, using the central limit theorem, we can write:

P (
h̃i − hi

σI
i (λ, θ)

≤
−s−i − hi

σI
i (λ, θ)

) = 1− α

By placing z̃i =
h̃i−hi

σI
i (λ,θ)

and considering that z̃i ∼ N(0, 1), we have:

P (z̃i ≤
−s−i − hi

σI
i (λ, θ)

) = 1− α

⇒ P (z̃i ≤
s−i + hi

σI
i (λ, θ)

) = α

⇒ ϕ(
s−i + hi

σI
i (λ, θ)

) = α
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In the above expression, ϕ is the standard normal cumulative distribu-
tion function, and according to its invertibility, we have:

s−i + hi

σI
i (λ, θ)

= ϕ−1(α)

⇒ s−i + hi − ϕ−1(α)σI
i (λ, θ) = 0

By inserting hi and sorting, the deterministic constraint of the ith input
becomes as follows.

n∑
j=1

λj x̃ij + s−i − ϕ−1(α)σI
i (λ, θ) = θx̃io

Similarly, the deterministic form of the rth probable output constraint
will be as follows:

n∑
j=1

λj ỹrj − s−r + ϕ−1(α)σo
r(λ) = ỹro

where in:

(σo
r(λ))

2 = V ar[h̃i] = var[

n∑
j=1

λj ỹrj ỹro]

=
n∑

j=1

n∑
k=1

λjλkcov(ỹrj , ỹrk) + var(ỹio)

−2
n∑

j=1

λjcov(ỹrj , ỹro), r = 1, ..., s

As a result, the deterministic form of the input-oriented random CCR
model is as follows:

minθ

s.t.
n∑

j=1

λj x̃ij + s−i − ϕ−1(α)σI
i (λ, θ) = θx̃io

n∑
j=1

λj ỹrj − s−r + ϕ−1(α)σo
r(λ) = ỹro

s−i ≥ 0, s+r ≥ 0, λj ≥ 0

i = 1, ...,m, j = 1, ..., n, r = 1, ..., s
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which, by defining non-negative variables ur = σo
r(λ) and vi = σI

i (λ, θ),
turns into the following quadratic model:

minθ

s.t.
n∑

j=1

λj x̃ij + s−i − viϕ
−1(α) = θx̃io

n∑
j=1

λj ỹrj − s−r + urϕ
−1(α) = ỹro

vi =
n∑

j=1

n∑
k=1

λjλkcov(x̃ij , x̃ik) + θ2var(x̃io)

−2θ

n∑
j=1

λjcov(x̃ij , x̃io)

ur =

n∑
j=1

n∑
k=1

λjλkcov(ỹrj , ỹrk) + var(ỹio)

−2
n∑

j=1

λjcov(ỹrj , ỹro)

s−i ≥ 0, s+r ≥ 0, λj ≥ 0

ur, vi ≥ 0

i = 1, ...,m, j = 1, ..., n, r = 1, ..., s

Definition 4.2. DMUo is called stochastic efficiency in CCR input-
oriented stochastic model if and only if θ∗ = 1.

In this section, the random variable error structure, presented by
Cooper et al. (1998), is introduced to transform the problem with the
probable constraint into a deterministic linear form. Of course, Sharp
(1963) and Kahane (1977) used the single-factor assumption of variables
in economics and finance. Assume that the inputs and outputs have a
single-factor symmetric distribution as shown below.

x̃ij = xij + aij ξ̃ij (2)

ỹrj = yrj + brj ϵ̃rj
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Where brj , aij , yrj and xij are non-negative, and ξ̃ij and ϵ̃rj are inde-
pendent random variables with standard normal distribution, which are
called the error of input and output random variables. Due to the sym-
metric nature of the normal distribution, structure four is called a sym-
metric error structure. Also, xij and yrj are the expected value, and
aij and brj are the standard deviations of the random variables x̃ij and
ỹrj , respectively. Furthermore, assume that all inputs and outputs are
independent. That is, for each j ̸= k:

cov(x̃ij , x̃ik) = 0

cov(ỹrj , ỹrk) = 0

It follows from relation (2):

x̃ij ∼ N(xij , σ
2aij)

ỹrj ∼ N(yrj , σ
2brj)

Also suppose that ξ̃i = ξ̃ij , ϵ̃r = ϵ̃rj , j = 1, ..., n.
Now consider the probable input constraint of the model (1).

p{
n∑

j=1

λj x̃ij ≤ θx̃io} ≥ 1− α i = 1, ...,m

Now by placing h̃i =
∑n

j=1 λj x̃ij − θx̃io and considering the normal
distribution and error structure and assuming independence of inputs
and outputs, the result is:

h̃i = (

n∑
j=1

λj x̃ij − θãio)− ξ̃i(

n∑
j=1

λj ãij − θx̃io) i = 1, ...,m

So that:

h̃i ∼ ((
n∑

j=1

λj x̃ij − θãio), σ
2(

n∑
j=1

λj ãij − θx̃io)
2) i = 1, ...,m

According to (3) the constraint (3) turns into the following deterministic
form:

n∑
j=1

λj x̃ij − ϕ−1(α)σ|
n∑

j=1

λj ãij − θãio| ≤ θx̃io i = 1, ...,m
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Also, the probable constraint output of the model (1) becomes the fol-
lowing deterministic form:

n∑
j=1

λj ỹrj + ϕ−1(α)σ|
n∑

j=1

λj b̃rj − θb̃ro| ≥ ỹro r = 1, ..., s

As a result, model (1) becomes the following deterministic form:

minθ (3)

s.t.

n∑
j=1

λj x̃ij − ϕ−1(α)σ|
n∑

j=1

λj ãij − θãio| ≤ θx̃io i = 1, ...,m

n∑
j=1

λj ỹrj + ϕ−1(α)σ|
n∑

j=1

λj b̃rj − θb̃ro| ≥ ỹro r = 1, ..., s

λj ≥ 0 j = 1, ..., n

The above model is a non-linear model due to the existence of the abso-
lute value. To remove the absolute term, we use the ideal programming
presented by Charnes and Cooper (1961,1977). For this purpose, con-
sider the following transformations:

|
n∑

j=1

λj ãij − θãio| = p+i + p−i i = 1, ...,m

n∑
j=1

λj ãij − θãio = p+i + p−i i = 1, ...,m

p+i p
−
i = 0

|
n∑

j=1

λj b̃rj − θb̃ro| = q+r + q−r r = 1, ..., s

n∑
j=1

λj b̃rj − θb̃ro = q+r + q−r r = 1, ..., s

q+r q
−
r = 0

By placing the above transformations in problem (3), the resulting
model is a non-linear problem due to the existence of the p+i p

−
i = 0 and
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q+r q
−
r = 0 constraints. Since when the linear programming problem has

an optimal solution, this solution occurs at the vertex point. In this case,
for each i = 1, ...,m, at least one of the values of p+i or p−i and for each
r = 1, ..., s at least one of the values of q+r or q−r will be zero.because
their vector coefficients are linearly dependent and cannot be present
simultaneously in the basic matrix of the optimal solution. As a result,
by using the simplex algorithm, this optimal point can be calculated
and the constraints of p+i p

−
i = 0 and q+r q

−
r = 0 can be removed from the

problem.

minθ

s.t.

n∑
j=1

λjxij − ϕ−1(α)σ(p+i + p−i ) ≤ θxio i = 1, ...,m

n∑
j=1

λjaij − θaio = p+i − p−i i = 1, ...,m

n∑
j=1

λjbrj + ϕ−1(α)σ(q+r + q−r ) ≥ yro r = 1, ..., s

n∑
j=1

λjbrj − θbro = q+r − q−r r = 1, ..., s

λj ≥ 0 j = 1, ..., n

4.2 P-model

Here is a more general class that Charns and Cooper refer to as ”P-
Models.”These types of models are formulated based on the concept of
probability.

Definition 4.3. Probability measures how certain we are a particular
event will happen in a specific instance.

In the following, the general and basic form of the P-Model model is
introduced to adapt the usual definitions of ”DEA efficiency” to the field
of limited chance programming. In this model, the Chance Constrained
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framework is used for the multiple CCR model[21].

Maxp(

∑n
j=1 urỹro∑n
j=1 vix̃io

≥ 1) (4)

s.t. p(

∑n
j=1 urỹrj∑n
j=1 vix̃ij

≥ 1) ≥ 1− αj j = 1, ..., n

ur, vi ≥ 0 r = 1, ..., s, i = 1, ...,m

where P means the probability and vi, ur are the respective weights of
inputs and outputs which are obtained by solving the problem. Model
(4) for ur = 0 and vi > 0 is feasible for all i and r[16]. Therefore, for
any continuous probability distribution we can write:

p(

∑n
j=1 u

∗
r ỹro∑n

j=1 v
∗
i x̃io

≥ 1) + p(

∑n
j=1 u

∗
r ỹro∑n

j=1 v
∗
i x̃io

≤ 1) = 1

or

p(

∑n
j=1 u

∗
r ỹro∑n

j=1 v
∗
i x̃io

≤ 1) = 1− α∗ ≥ 1− αo

Here α∗is the optimal value of the model (4), so 1−α∗ is the probability
of achieving a value of at least unity choosing these optimal weights,
and therefore 1− α∗ is the probability of not achieving this value[58].

Max p(

∑n
j=1 u

∗
r ỹro∑n

j=1 v
∗
i x̃io

≥ 1)

s.t. p(

∑n
j=1 u

∗
r ỹrj∑n

j=1 v
∗
i x̃ij

≥ 1) + p(

∑n
j=1 u

∗
r ỹrj∑n

j=1 v
∗
i x̃ij

≤ 1) ≥ 1 j = 1, ..., n

It should be noted that αo ≥ α∗ because 1− αo is always DMUofor the
constraint j = o as the probability of inefficiency. It is predetermined.
Therefore, we call DMUostochasticly efficient if and only if αo = α∗.
In programming models with probability constraints, it is assumed that
the stochastic variables are in a multivariate distribution. Therefore,
it is possible to examine the value of α∗ even before generating the
data. Charnes et al. (1958) related the programming with probability
constraints to the policies related to programming black oil production
for an oil company.This led to forming a risk assessment committee to
select the appropriate options for α∗.
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4.3 Satisfaction-model

The satisfaction model is a generalization of model (5), which is analyzed
further[21]:

Max p(

∑n
j=1 u

∗
r ỹro∑n

j=1 v
∗
i x̃io

≥ β0)

s.t. p(

∑n
j=1 u

∗
r ỹrj∑n

j=1 v
∗
i x̃ij

≤ βj) ≥ 1− αj j = 1, ..., n

p(

∑n
j=1 u

∗
r ỹrj∑n

j=1 v
∗
i x̃ij

≥ βj) ≥ 1− αj j = n, ..., n+ k

In model (5), βo is called the Aspiration level, whose value is imposed
by an external factor, such as the budget model of Estdari (1960), or
adopted by the manager for some activities, such as Simon’s concept of
satisfaction (1957). Aspirational level is the value of a target variable
that should be achieved or replaced by a satisfactory decision.
The above models are very general and are generally considered for con-
ceptual interpretation. In order to perform the calculations, one should
use their deterministic equivalent form. For this purpose, we assume that
all inputs and outputs are random variables with multivariate normal
distribution with specific parameters. Choosing a multivariate normal
distribution may be a bit limiting. But by using transformations, other
types of distributions can be converted almost into normal distribution
forms.
In the following, using Cooper et al.’s (1996) transformation, we trans-
form model (5) into a deterministic form.
According to the constraint of model (5), we can write:

p(
uT ỹj

vTxj ≤ βj
) = p(uT ỹj ≤ vTxjβj) (5)

= p(
uT ỹj − uT yj√

uTΣju
≤ −uT y − βjv

Txj√
uTΣju

)
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where yj = E[ỹj ], xj = E[x̃j ] and Σj = cov(ỹij , ỹkj): The stochastic
variable zj is defined as follows:

zj =
uT ỹj − uT yj√

uTΣju
, j = 1, ..., n.

so that zj has a standard normal distribution(zj ∼ (0, 1)). By inserting
(6) in (5), the relation (6) can be rewritten as follows:

p(zj ≤ −
uT yj − βjv

Txj√
uTΣju

) ≥ 1− αj

According to the standard normal distribution function and its invert-
ibility, (6) is written as follows:

−
uT yj − βjv

Txj√
uTΣju

≥ ϕ−1(1− αj)

Whereϕis the standard normal distribution function and ϕ−1 is its in-
verse.
Now, by introducing non-negative spacer variable ηj , which Charnes and
Cooper introduced (1963), relation (6) is replaced by the following two
inequalities:

uT yj − βjv
Txj − ηjϕ

−1(αj) ≤ 0 (6)

Cαj [η
2
j − uTΣju] ≥ 0

So that:

Cαj =


1 αj < 0.5

0 αj = 0.5

−1 αj > 0.5

By placing the deterministic constraints (6), instead of the probabilistic
constraint of model (5), model (7) is obtained.

Max p(
uT ỹo
vTxo

≥ βo) (7)

s.t. uT yj − βjv
Txj − ηjϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [η
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, η ≥ 0
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Due to random variables x̃o and ỹo in the objective function, problem (7)
has not yet turned into a deterministic form. For this purpose, consider
problem (8), which is equivalent to problem (7).

Max γ (8)

s.t. p(
uT ỹo
vTxo

≥ βo) ≥ γ

uT yj − βjv
Txj − ηjϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [η
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, η ≥ 0

Now, the first constraint of the model (8), like the previous constraints,
turns into a deterministic form.

p(
−uT ỹo
vTxo

≥ βo) = p(−uT ỹo ≤ vTxoβo)

= p(
−uT ỹo + uT yo√

uTΣou
≤ −vTxoβo − uT yo√

uTΣou
)

= p(z̃o ≤ −vTxoβo − uT yo√
uTΣou

)

The first constraint of model(8)can be written as follows:

p(z̃o ≤ −vTxoβo − uT yo√
uTΣou

) ≥ γ.

Which is equivalent to:

uT yo − vTxoβo√
uTΣou

≥ ϕ−1(γ)

Now the model (8) can be rewritten as below:

Max γ (9)

s.t.
uT yo − vTxoβo√

uTΣou
≥ ϕ−1(γ)

uT yj − βjv
Txj − ηjϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [η
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, η ≥ 0
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Although problem (9) is deterministic, it is non-convex because of the
fractional constraint.To solve this problem, consider the following:

Max ξ (10)

s.t.
uT yo − vTxoβo√

uTΣou
≥ ξ

uT yj − βjv
Txj − ηiϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [η
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, η ≥ 0

As shown in (9), ϕ−1(γ) is a strictly increasing function of γ. (9) and (10)
have the same solution structure and in each pair of optimal solutions
for these two problems, we have:

ξ∗ = ϕ−1(γ∗)

Here * is to represent the optimal value. Now it is easy to see that (10)
is equivalent to the following problem:

Max
uT yo − vTxoβo√

uTΣou
(11)

s.t. uT yj − βjv
Txj − ηjϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [η
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, η ≥ 0

Consider the positive variable ω as follows:

ω =
√
uTΣou

(11) can be rewritten as follows:

Max
uT yo − vTxoβo

ω
(12)

s.t. uTΣou− ω2 ≥ 0

uT yj − βjv
Txj − ηjϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [η
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, η ≥ 0
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This problem (12) includes a fractional function in the objective func-
tion. Hence, the Charnes-Cooper transformation(CharnesandCooper(1962))can
be used:
Considering t := 1

ω , µ := tu , ν := tv andζ := tη problem (12) can be
written as the following quadratic programming problem.

Max uT yo − vTxoβo (13)

s.t. uTΣou ≥ 1

uT yj − βjv
Txj − ζjϕ

−1(αj) ≤ 0 j = 1, ..., n

Cαj [ζ
2
j − uTΣju] ≥ 0 j = 1, ..., n

u, v, ζ ≥ 0

Theorem 4.4. Let (µ∗, ν∗, ζ∗) and (u∗, v∗) be optimal solutions of (13)
and (5), respectively; then

ϕ(µ∗T yo − βoν
∗Txo) = p(

u∗T yo
v∗Txo

≥ βo)

Furthermore, DMUo is stochastically efficient if and only if ϕ(µ∗T yo −
βoν

∗Txo) = αo.

Proof. in Cooper(1996)[21] □ Now assume more specifically that
the output components are related only through some basic underlying
factors. In the sense that this factor solely determines all components
of each output. More precisely,

Max µT ỹo − βoν
Txo (14)

s.t. µT bo = 1

Bjν
Txj − µT yj ≥ ϕ−1(1− αj)µ

T bj j = 1, ..., n

µ ≥ 0, ν ≥ 0
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The dual of (14) is as follows:

Min − θ (15)

s.t.
n∑

j=1

λj [yj + ϕ−1(1− αjbj)] ≥ yo + θbo

n∑
j=1

λjβjxj ≤ βoxo

λ ≥ 0

Deterministic equivalents under the assumption that outputs and inputs
are both stochastic
The dual of (15) is as follows:

Max µT yo − βoν
Txo (16)

s.t. µTΣoo
o µ− 2βoµ

TΣoI
o ν + β2

oν
TΣII

o ν ≥ 1

µT yj − βjµ
Txj − ϕ−1(αjζj) ≤ 0 j = 1, ..., n

Cαj [muTΣoo
j µ− 2βjµ

TΣoI
j ν + β2

j ν
TΣII

j ν − ζ2j ] ≤ 0 j = 1, ..., n

µ ≥ 0, ν ≥ 0, ζ ≥ 0, j = 1, ..., n.

Σoo
j = (cov(ỹij , ỹkj))s×s

ΣoI
j = (cov(ỹij , x̃kj))s×m

ΣII
j = (cov(x̃ij , x̃kj))m×m

j = 1, ..., n.

Now the previous theorems and definitions for stochastic efficiency can
be expanded as follows:

Theorem 4.5. Let (µ∗, ν∗, ζ∗) and (u∗, v∗) be optimal solutions of (16)
and (5), respectively; then:

ϕ(µ∗T yo − βoν
∗Txo) = p(

u∗T ỹo
v∗T x̃o

≥ βo)

Furthermore,DMUo is called stochastic efficient if and only if : ϕ(µ∗T yo−
βoν

∗Txo) = αo.
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As in the previous section, assume that the input and output com-
ponents are related only through a basic factor:

x̃ij = xij + aijξ

ỹrj = yrj + brjξ

Using the same analysis as before, we have:

Max µT yo − βoν
Txo (17)

s.t. |βoνTao − µT bo| ≥ 1

βjν
Txj − µT yj ≥ ϕ−1(1− αj)|βjνTaj − µT bj | j = 1, ..., n

µ ≥ 0, ν ≥ 0

The presence of absolute values in the constraints makes problem (17) no
longer an ordinary linear programming problem.The goal programming
theory developed by Charnes and Cooper (1961, 1977) can be used to
transform problem (17) into a quadratic programming problem.
Consider the expression|βjνTaj − µT bj |. if βjν

Taj − µT bj ≥ 0,letη+j =

βjν
Taj − µT bjotherwise η−j = −(βjν

Taj − µT bj) Hence:

(βjν
Taj − µT bj) = η+j − η−j ,

η+j η
−
j = 0, η+j ≥ 0, η−j ≥ 0

Due to the nature of goal programming, inequalities must be satisfied
in any solution. So:

η+o + η−o ≥ 1

(βoν
Tao − µT bo) = η+o − η−o

η+o η
−
o = 0, η+o ≥ 0, η−o ≥ 0

to replace the first constraint in (17), and use

(βoν
Tao − µT bo) = η+o − η−o

(βjν
Taj − µT bj) = η+j − η−j ,

η+j η
−
j = 0

η+j ≥ 0, η−j ≥ 0
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to replace the second constraint in (17) for eachj.[21]

Max µT yo − βoν
Txo (18)

s.t. η+o η
−
o ≥ 1

βjν
Txj − µT yj ≥ ϕ−1(1− αj)(η

+
j η

−
j ) j = 1, ..., n

βjν
Taj − µT bj = η+j − η−j , j = 1, ..., n

η+j η
−
j = 0 j = 1, ..., n

µ ≥ 0, ν ≥ 0, η+j ≥ 0, η−j ≥ 0 j = 1, ..., n.

Problem (18) is referred to as in efficiency analysis form with the max-
imization directed to the choices of z and v, which yield the largest
value of a satisfactory probability of achieving an aspiration ratio level
of weighted outputs to weighted inputs allowed by the constraints. In
this way, we retain contact with the earlier discussion of both ”satisfic-
ing” concepts and DEA frontiers.

5 Detailed Analyses of The Literature

In this section, the stochastic models presented in the literature have
been analyzed in detail. Some structural features of the stochastic mod-
els presented so far are listed in Tables (1) and Table (2). In table (1), in
the CRS and VRS columns, the type of return to scale of the preceding
models is determined.In 18 articles, variable return to scale is consid-
ered; in 34 articles, constant return to scale efficiency is considered. In
the black box and network columns, the type and structure of the prob-
lem are determined in previous articles.Stochastic network models are
used in 8 articles, and black box structure is used in 44 articles to solve
the problem. In the model type column, the stochastic structure of the
preceding models is specified. The Undesirable Data column applies to
those problems for which undesirable data is used.In four articles, mod-
eling in the presence of undesirable outputs has been done. The envelope
or multiple types of the presented models are specified in the last two
columns. Table (2) shows the application of stochastic DEA models in
the past. Also, the inputs, outputs, and nature of the data used (deter-
ministic, stochastic, and descriptive) have been determined in previous
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research. In some research, a numerical example has been used to vali-
date the model.In the surveys conducted (Table 2), we have categorized
the types of data into three categories: deterministic, stochastic, and
descriptive. In some articles, the data used are not mentioned, which
are not mentioned in table (2). By using tables (1) and (2), comprehen-
sive information can be obtained about the research done in the past (in
the field of stochastic data Envelopment analysis ).
Stochastic data envelopment analysis models are divided into four cat-
egories as follows.
Chance Constraint Programming: Chance Constraint Program-
ming accepts stochastic changes in data and allows constraints to be
violated up to a given probability.
Fuzzy Stochastic: It is similar to Chance Constraint Programming
except that the data set is treated as fuzzy.
Statistical Analysis: In this method, by designing an algorithm and
using the relationships governing statistics and probabilities, and using
statistical software, after choosing the appropriate distribution, they pro-
duce reliable random data. In the end, they analyze the sensitivity of the
presented model.
DEA and SFA: The DEA method is more flexible in the case of multi-
ple inputs and outputs but cannot effectively deal with measurement error
in the data, while stochastic frontier analysis(SFA) is more effective in
the presence of noise. SFA is also a method to determine the efficiency
frontier in the presence of noise.
Therefore, the round combination of methods for solving problems shows
a suitable performance. The strengths of one approach can cover the
weaknesses of another approach. The purpose of using DEA is to im-
prove the accuracy of SFA efficiency estimates.
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Table 1: Structural characteristics of previous non-deterministic models in
data envelopment analysis.
Legend:(BB: Black Box), (N: Network), (VRS: Variable Returns to Scale),
(CRS: Constant Returns to Scale), (MT: Model Type), (UD: Undesirable Out-
put), (MF: Multiple Form), (EF; Envelopment Form)

Author MT BB N VRS CRS UD MF EF

Amirteimoori
et al. (2023)

P-Model, linear * * *

Zhou et al.
(2021)

P-Model, linear * * *

Tavassoli et
al.(2020)

fractional, Non-
linear

* * *

Wanke et
al.(2020)

dynamic network
DEA,SFA

* * *

Al-
Khasawneh
et al. (2020)

non-parametric
bootstrapped
analysis

* * *

Beraldi
and Bruni.
(2020)

E-Model, Nonlin-
ear

* * *

Mehdizadeh
et al. (2020)

P-Model, linear * * *

Davtalab et
al. (2019)

mean and median
ordering in
SDEA, partial
and linear

* * *

Jradi and
Ruggiero.
(2019)

Combination
of a quantil-
eregression and
DEA

* * *

Hosseini et
al. (2019)

P-Model, Nonlin-
ear

* * *

Chen and
Zhu. (2019)

P-Model, Nonlin-
ear

* * *

Kao and Liu.
(2019)

Mean-Var, linear * * *

Park et al.
(2018)

Discrete event
simulation
(PS-DE) and
SDEA

*

Wen et al.
(2018)

P-Model, based
on Additive
model,linear

* *

Nasseri et al.
(2018)

Fuzzy Stochastic
Data Envelop-
ment Analysis

* * * *

Aleskerov et
al. (2017)

combination of
DEA and SFA

* * *
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Chen et al.
(2017)

A combination
including non-
linear, linear
and statistical
simulation

* * * *

Zhou et al.
(2017)

P-Model, linear * * *

Aleskerov et
al. (2017)

combination of
DEA and SFA

*

Branda and
Kopa. (2016)

P-model, linear * * *

Sinuany-
Stern and
Friedman.
(2016,
February)

Statistical Analy-
sis in the DEA
Context

Mitropoulos
et al. (2015)

P-Model and
Bayesian analy-
sis, Nonlinear

* * *

Jin et al.
(2014)

E-Model, linear * * * *

Branda and
Kopa. (2014)

Conditional
Value at
Risk(CVaR)

* * * *

Wei et al.
(2014)

P-Model, linear * * *

Tavana et al.
(2014)

P-Model, Nonlin-
ear

* * *

Wu et al.
(2013)

P-model * * * *

Assaf, A. G.
(2012)

A Bayesian com-
bination of DEA
and SFA

*

Hosseinzadeh
Lotfi et al.
(2012)

P-Model, Nonlin-
ear, Stochastic
centralized re-
source allocation
(SCRA)

* * *

Beraldi
and Bruni.
(2012)

Conditional
Value at
Risk(CVaR)

* * *

Simar and
Zelenyuk.
(2011)

Stochastic
FDH/DEA (SFA)

* * *

Tsionas and
Papadakis.
(2010)

P-Model and
Bayesian analy-
sis, Nonlinear

* * *

Wu and Ol-
son. (2010)

P-Model (DEA
VaR), Nonlinear

* * *

Khodabakhshi.
(2010)

P-Model, Nonlin-
ear

* * *
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Barnum et
al. (2010)

DEA and statis-
tical Panel Data
Analysis (PDA)

* * *

Bruni et al.
(2009)

P-Model (LLT-
model (Land
etal.,1993)),
Nonlinear

* * *

Simar, L.
(2007)

Stochastic
FDH/DEA (SFA)

* * *

Margari et
al. (2007)

combination of
DEA and SFA

* * *

Olesen, O. B.
(2006)

P-Model, Nonlin-
ear

* * *

Cooper et al.
(2004)

P-Model, Nonlin-
ear

* * *

Tsionas, E.
G. (2003)

A Bayesian com-
bination of DEA
and SFA

*

Cooper et al.
(2002)

P-Model, Nonlin-
ear

* * *

Chen. (2002) P-Model, Nonlin-
ear

* * *

Post. (2001) Mean-Var, linear * * *

Huang and
Li. (2001)

P-Model, linear * * *

Sueyoshi, T.
(2000)

E-Model, Nonlin-
ear

* * *

Cooper et al.
(1996)

P-Model, Nonlin-
ear

*

Cooper et al.
(1995)

combination of
DEA and SFA

* * *

Olesen and
Petersen.
(1995)

P-Model, Nonlin-
ear

* * *

Land et al.
(1993)

E-Model, Nonlin-
ear

* * *

Sengupta, J.
K. (1987)

P-Model, Nonlin-
ear

* * *

Charnes
and Cooper.
(1963)

P-Model and E-
Model, Nonlinear

* * *
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Table 2: Input, output and type of data used in previous studies

Author case study (applica-
tion)

data type output Input

Amirteimoori
et al. (2023)

A comparison of
inferences about the
scale characteristics of
a manufacturing firm in
48 states in the United
States

deterministi
Stochastic
Descriptive

1- the gross value of pro-
duction

1-production labor
measured in terms of the
number of hours worked,
2-non-production labor
3-capital 4- energy 5-
and materials

Zhou et al.
(2021)

In this application, 16
commercial banks in
China are included in
evaluation.

deterministic,
Stochastic

1-loan, 2-profit 1-employee, 2-fixed as-
sets, 3-and expenses

Tavassoli et
al.(2020)

Choosing the most suit-
able supplier in the sup-
ply chain of Sapco Com-
pany, a subsidiary of Iran
Khodro (the data is re-
lated to 2017)

Deterministic
Descriptive
Stochastic

1-Efficiency of energy
consumption 2-Supplier
experience 3-Product
quality

1-Number of delayed
days 2-Offered price
from suppliers 3-
Shipping cost 4-Total
annual cost of electricity
5-Cost of work safety
and labor health

Wanke et
al.(2020)

An efficiency comparison
in OECD banking

Stochastic 1-Net Interest Margin
(NIM) – Shared 2-Total
Equity 3-Net Income

1-Net Loans 2-Personnel
Expenses 3-Total Earn-
ing Assets 4-Fixed As-
sets 5-Loan Loss Reserve
6-Costs

Beraldi
and Bruni.
(2020)

Numerical examples deterministic
Stochastic

1-earnings before inter-
est, 2- taxes, 3- deprecia-
tion and amortization, 4-
cash flow

total liabilities

Mehdizadeh
et al. (2020)

Performance evaluation
of 16 commercial banks
in China has been con-
ducted to verify the ap-
plicability of the pro-
posed approaches at dif-
ferent levels.

deterministic
Stochastic

Stage 1 : 1-product De-
posits 2- Interbank De-
posits Stage 2: Loan and
Prot as - nal outputs

Stage 1 : 1-consume Em-
ployee, 2-Fixed assets, 3-
Expenses Stage 2: the
productions of stage 1 as
inputs

Davtalab et
al. (2019)

Performance evaluation
and ratings of 10 com-
panies from Grundfeld-
green

Stochastic 1- gross investment 1-market value of the
firm at the end of the
previous year, 2- value of
the stock of plant and
equipment at the end of
the previous year

Jradi and
Ruggiero.
(2019)

Using simulated data, we
compare the model to
the econometric stochas-
tic frontier model un-
der different distribu-
tional assumptions.

Not deter-
mined.

Not determined. .

Hosseini et
al. (2019)

productivity evaluation
of branches of a univer-
sity system (An empir-
ical application on edu-
cation institutes for MPI
evaluation with stochas-
tic data)

Stochastic
deterministic

1-Number of publi-
cations 2- Number of
graduate students 3-
Earnings (in billion
Rials)

1-Number of academic
staff 2-Number of non-
academic staff for teach-
ing office 3- other costs
(in billion Rials) 4- Num-
ber of laboratories, stu-
dios, and libraries 5-
Number of non-academic
personnel for graduate
office
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Chen and
Zhu. (2019)

Efficiency measurement
in nine airline companies
namely Alaska Airlines,
Air Canada, Delta,
Hawaiian Airlines,
Jet Blue, Southwest
Airlines, United Conti-
nental, Spirit Airlines,
and Allegiant.

deterministic
Stochastic

1-passenger revenue 2-
return on equity

1-operating cost per
available seat mile
(exclud- ing fuel costs),
2-employees 3- fuel cost
per available seat mile,.

Kao and Liu.
(2019)

Efficiencies of Taiwanese
commercial banks

deterministic
Stochastic

1-deposits 2-short-term
loans 3- medium-and-
long-term loans

1-labor 2-physical
capita, 3-and purchased
funds

Park et al.
(2018)

Evaluating vendor per-
formance in the supply
chain

Not deter-
mined

Not determined Not determined

Nasseri et al.
(2018)

evaluate the performance
some of commercial bank
branches in Iran

deterministic
Stochastic
Descriptive

1-received interest, 2-fee,
3- nonperforming loans
(NPAs) (delay in deliver-
ing loans and other facil-
ities) as undesirable out-
put.

1-personnel rate
(weighted combination
of personal quali-
fications, quantity,
education and others),
2-total of deposits
(TDs) (of current,
short duration and long
duration accounts).

Aleskerov et
al. (2017)

evaluate the performance
the universities

deterministic
Stochastic

1- Number of under-
graduates 2-Number of
taught postgraduates 3-
Number of postgradu-
ates 4-Research income
5-Four dummy variables
that assess department’s
performance

1-General expenditures
2-Equipment expen-
ditures 3-Research
income

Mitropoulos
et al. (2015)

The paper discusses the
statistical advantages
of this method using
cross-sectional data from
asample of 117 Greek
public hospitals. (An
application to Greek
public chospitals)

Stochastic
deterministic

1-Inpatient admissions,
2-Outpatient visits

1-Doctors, 2-Other
personnel, 3-Beds,
4-Operating cost

Jin et al.
(2014)

The proposed model has
been applied to evaluate
the environmental per-
formance of Asia- Pa-
cific Economic Coopera-
tion (APEC) economies
in 2010.

Stochastic
deterministic

1-GDP (billion 2005 US
in PPP) as the desirable
output 2-CO2 emissions
(Mt) as the undesirable
output

1-total energy consump-
tion (Mtoe) 2-labor force
(thousand)

Wei et al.
(2014)

evaluate the performance
of a subset of the se-
lected gas stations in
Tokyo

deterministic
Stochastic

1-sales of gasoline 2-
sales of petrol

1-number of employees,
2- the space size of a
gas station, 3-and the
monthly operational cost

Wu et al.
(2013)

evaluate the Chinese
provincial environment
efficiency

Stochastic 1-GDP as the desirable
output, 2-total industrial
emission of waste water,
waste gas, as well as
waste solids as undesir-
able output

1-total energy assump-
tion, 2total population
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Assaf, A. G.
(2012)

measures and compares
the efficiency of leading
tour operator and hotel
companies across several
Asia Pacific countries

deterministic
Stochastic

total revenues 1-Number of rooms”
(proxy for fixed
capital), 2-Number
of FTE” (full time
equivalent employees),3-
Other operational
costs(administrative
costs, costs of utilities
and rent)

Hosseinzadeh
Lotfi et al.
(2012)

car factory which wants
to allocate a portion of
its producible parts to its
ten subject firms

deterministic
Stochastic

1-cost of parts, 2-amount
of produced parts

1-marginal prices, 2-
machinery maintenance
expenses

Beraldi
and Bruni.
(2012)

A sample of 20 Italian
firms

deterministic
Stochastic

1-earnings before inter-
est, 2-taxes, deprecia-
tion and amortization, 3-
cash flow

1-liabilities, 2-average
duration of accounts
receivable

Tsionas and
Papadakis.
(2010)

efficiency analysis of
the Greek banking
system for the period
1993–1999.

Stochastic 1-Loans, 2-Investments,
3-liquid assets

1-Labor, 2-Capital, 3-
deposits

Khodabakhshi.
(2010)

As an empirical example,
the proposed method is
applied using some ac-
tual data of year 2000 to
Iranian electricity distri-
bution units.

deterministic
Stochastic

1-units of energy delivere
2- number of customers
3- size service area

1-Operating costs 2-
number of employees
transformer capacity 3-
network length

Bruni et al.
(2009)

exhaustive and system-
atic efficiency evaluation
of screening units in
Italy

deterministic
Stochastic

1-number of screening
performed (Scr), 2-true
positive (TP), 3-true
negative (TN)

1-average monthly cost
for administrative and
medical staff (AvSC), 2-
average monthly costs
for materials and equip-
ments (AvPC)

Margari et
al. (2007)

evaluate the perfor-
mance of 42 Italian
public-owned LPT
companies from 1993 to
1999

deterministic
Stochastic

1-kilometers supplied,
2-total number of,
3-workers rolling stock
size

1-fuel consumption, 2-
total operating costs

Tsionas, E.
G. (2003)

efficiency measurement
in US airlines

deterministic
Stochastic

1-Labor, 2-Fuel, 3-Flight
equipment, 4-ground
property materials

Chen. (2002) measure the technical ef-
ficiency of 39 banks in
Taiwan

deterministic
Stochastic

1-Loans, 2-Investments,
3-non-interest revenue,
4-interest revenue

1-Labour, 2-Assets, 3-
Deposits, 4-Branches

Post. (2001) Efficiency measurement
of 49 large Indonesian
banks

deterministic
Stochastic

1-total net loans (TNL),
2-interest income,
3-Other income OI.

1-customer deposits CD,
2-interest expenses (IE),
3-other expenses (OE)

Sueyoshi, T.
(2000)

This research applies
the proposed approach
to plan the restructure
strategy of a Japanese
petroleum company

Stochastic
deterministic

1-Gasoline, 2-Petrol 1-No. of employees, 2-
Size of gas station, 3-
Operation cost
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Cooper et al.
(1995)

Using data from Chi-
nese sources, this pa-
per reports results from
a study of the impact
of the 1978 economic
reforms for the period
1966-88 on the Textiles,
Chemicals and Metallur-
gical Industries.

deterministic
Stochastic

Income(Yuan) 1-Labor, 2-Capital

Land et al.
(1993)

analyzed the results
from 49 school sites
enrolled in the Pro-
gram Follow Through
experiment, and 21
‘Non-Follow Through’
sites.

Stochastic
Descriptive

1-total reading scores, 2-
total math scores, 3- to-
tal Coopersmith scores
(an index of a child self-
esteem)

1-education level of
mother, 2- parent
occupation index, 3-
parental visit index,
4- counseling index 5,-
number of teachers

Sengupta, J.
K. (1987)

Efficiency measurement
of public elementary
schools in California for
the year 1977-1978.

Stochastic
Descriptive

1- achievement scores of
sixth grade elementary
school pupils

1-teacher salary, 2- av-
erage class size, 3- pro-
portion of minority stu-
dents, 4- proxy variable
indicating student qual-
ity

6 Discovering the Research Gap

In all the Stochastic network DEA models that have been presented so
far, the distribution of data in all stages has been considered the same
[63][60][62][17][39][26].This is while the distribution of data can be dif-
ferent in each stage. In stochastic models based on statistical simulation
for stochastic data generation, the distribution of data is considered the
same in each period[7][48][39][17][2].
In terms of the nature of the data type, in some articles, the data are not
homogeneous but are considered homogeneous. In other words, there are
different types of problem data. In this category of articles, a suitable
model is not used to solve the problems. Also, a method for homogeniz-
ing the type of uncertainty in the data is not provided.[51][56][33][43][36][3].
In some other articles, several models have been used to cover all types
of data[51].
One of the appropriate methods for modeling problems with descriptive
data, which have inherent uncertainty, is the theory of possibility. This
method has not been used in the reviewed articles.
In none of the articles the type of uncertainty space is not specified.
According to the definitions of probability and expected value, it can
be said that in problems with a strong uncertainty space, the concept
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of probability (P-Model) should be used, and in problems with a weak
uncertainty space, the concept of expected value (E-Model) should be
used.
In some articles, due to the existence of undesirable outputs, an inap-
propriate model has been used for the problem. Because by writing a
dual model, undesirable outputs appear as model inputs [17][28][36] .
The empty place of the mining process is quite evident in the research
done to determine the type of data uncertainty.

7 Conclusion

In this article, stochastic data envelopment analysis models have been
investigated.The main purpose of this article is to answer the main ques-
tions of the research. In order to answer the research questions, the arti-
cles were examined in two functional and structural dimensions.Due to
the large volume of articles on the non-deterministic DEA, only articles
including stochastic models were reviewed. Stochastic DEA models were
divided into four categories:1-Chance Constraint Programming, 2-Fuzzy
Stochastic, 3-Statistical Analysis, 4-DEA and SFA
The importance of understanding the real-world problem-solving en-
vironment is clear to everyone. Process mining methods can help to
understand the environment and produce data appropriate to the prob-
lem.In order to compare deterministic and non-deterministic models for
a problem in the presence of uncertainty and non-deterministic data,
process mining must be performed because by performing the mining
process, data corresponding to the uncertainty space of the problem will
be produced.After generating data and knowing the type of uncertainty
space, the suitable model is selected for the problem. After generating
suitable data and solving the problem, the non-deterministic model can
be compared with the deterministic model.
After a careful review of the literature, some research gaps were identi-
fied. Following research on stochastic data envelopment analysis models,
suggestions have been made for future research, including:
In the following, suggestions are provided to solve the research gap dis-
covered in previous studies:
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1- In future research in voice, it is possible to use different distributions
in the network DEA model.
2- The mining process should be used to better understand the problem
space and the type of data.
3- Found an answer to this question: Is there a way to homogenize the
uncertainty in the data?
4- It is suggested to use the concepts of possibility theory in problems
with descriptive data.
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