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Abstract. A group G is called capable if it is isomorphic to the
group of inner automorphisms of some group H. The notion of capable
groups was extended to capable pairs by G. Ellis, in 1996. Recently,
a classification of capable pairs of finite abelian groups was given by
A. Pourmirzaei, A. Hokmabadi and S. Kayvanfar. In this paper, we
give a different characterization of capable pairs of finite abelian groups
in terms of a condition on the lattice of subgroups.
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1. Introduction

A group G is called capable if it is isomorphic to the group of inner
automorphisms of another group, or equivalently G ∼= E/Z(E) for some
group E. As P. Hall [3] remarked, characterization of capable groups
are important in classifying groups of prime power order. The study of
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capable groups was started by R. Baer [1], who determined all capable
groups which are direct sums of cyclic groups. Consequently, all capable
finite abelian groups are characterized by R. Baer’s result. Recently,
Z. Sunic [5] provided a different characterization of capable finite abelian
groups by considering a condition on the lattice of subgroups. He proved
that a finite abelian group G is capable if and only if there exists a family
{Hi}i∈I of subgroups of G with trivial intersection such that the union
generates G, and all quotients G/Hi (i ∈ I) have the same exponent.
The theory of the capability of groups was extended in an interest-
ing way to a theory for pairs of groups, by G. Ellis [2]. By a pair of
groups we mean a group G with a normal subgroup N , and it is de-
noted by (G,N). Ellis [2] defined a capable pair of groups in terms of
a relative central extension. In 2011, A. Pourmirzaei, A. Hokmabadi
and S. Kayvanfar [4], determined all capable pairs of finitely generated
abelian groups as follows.

Theorem 1.1. ([4]) Let G be a finitely generated abelian group as fol-
lows:

G = 〈x1〉 ⊕ ...⊕ 〈xm〉 ⊕ 〈y1〉 ⊕ ...⊕ 〈yr〉,

where 〈xi〉 ∼= Z, for 1 6 i 6 m and o(yi) = di for 1 6 i 6 r, such that
di+1 | di. If N 6 G such that N = 〈xα1

1 〉⊕ ...⊕〈xαm
m 〉⊕〈yβ1

1 〉⊕ ...⊕〈y
βr
r 〉,

then (G,N) is capable if and only if

(i) m > 2, or

(ii) m = 0, r > 2 and d1 | [d2, β1],

in which [d2, β1] means the least common multiple of d2 and β1.

In this paper, we give a condition in terms of proper subgroups which is
equivalent to the capability of the pair (G,N), where G = 〈y1〉⊕. . .⊕〈yk〉
and N = 〈yβ1

1 〉 ⊕ . . . ⊕ 〈yβk−1

k−1 〉 ⊕ 〈yβk
k 〉, such that o(yβi

i ) | o(yβk
k−1) for

1 6 i 6 k − 2.

2. Main Result

The following lemmas are essential to prove the main result.
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Lemma 2.1. [5, Lemma 2] Let A = 〈a〉 ∼= Zn and B = 〈b〉 ∼= Zn,
where n > 1 and let C = AB be the direct product of A and B (written
internally). Let X be the set of elements of C of order n.

(a) aibj ∈ X if and only if the greatest common divisor of i, j and n is 1.

(b) For every x ∈ X there exists y ∈ X such that, C = 〈x〉〈y〉 as an
internal direct product.

(c) C = ∪x∈X〈x〉.

Lemma 2.2. Let G = 〈y1〉 ⊕ . . . ⊕ 〈yk〉 be a finite non trivial abelian
group such that o(yi) = ni (1 6 i 6 k) and ni−1|ni. Consider

N∗ = 〈yβ1
1 〉 ⊕ . . .⊕ 〈yβk−2

k−2 〉 ⊕ 〈y
βk
k−1〉 ⊕ 〈y

βk
k 〉

as a subgroup of G such that o(yβi
i )|o(yβk

k−1) (1 6 i 6 k−2). Suppose that
m = [nk, βk]/[nk−1, βk] and let pt be the highest power of prime number
p such that pt | m and Ap be the unique subgroup of Nk = 〈yβk

k 〉 of order
pt. Then for any subgroup H of N∗, Ap ⊆ H if and only if N∗/H has
exponent dividing [nk, βk]/βkp

t.

Proof. Assume that H is a subgroup of N∗ that contains Ap and sup-
pose that g ∈ N∗. Since o(yβi

i ) divides o(yβk
k−1) = [nk−1, βk]/βk, for all

1 6 i 6 k − 2, we have g[nk−1,βk]/βk ∈ Nk.
So (g[nk−1,βk]/βk)m/pt

= g[nk,βk]/βkpt ∈ Nk, and o(g[nk,βk]/βkpt
) | pt.

Therefore g[nk,βk]/βkpt
belongs to Ap and (gH)[nk,βk]/βkpt

= 1N∗/H . This
implies that the exponent of N∗/H divides [nk, βk]/βkp

t.
For the converse, let H be a subgroup of N∗ and exp(N∗/H) divide
[nk, βk]/βkp

t. Put g = yβk
k . By the assumption we have g[nk,βk]/βkpt ∈ H.

On the other hand, one can see that g[nk,βk]/βkpt
is an element of Nk of

order pt. This implies that Ap ⊆ H and the assertion follows. �

Now we are ready to state and prove the main result.

Theorem 2.3. Let G = 〈y1〉 ⊕ . . . ⊕ 〈yk〉 be a finite non trivial abelian
group, where o(yi) = ni (1 6 i 6 k), such that ni−1|ni for i = 2, · · · , k
and N = 〈yβ1

1 〉 ⊕ . . . ⊕ 〈yβk−1

k−1 〉 ⊕ 〈yβk
k 〉 such that o(yβi

i )|o(yβk
k−1) , for
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1 6 i 6 k − 2. Put

N∗ = 〈yβ1
1 〉 ⊕ . . .⊕ 〈yβk−2

k−2 〉 ⊕ 〈y
βk
k−1〉 ⊕ 〈y

βk
k 〉.

Then the following conditions are equivalent.

(a) The pair (G,N) is capable.

(b) There exists a family of proper subgroups {Hi}i∈I of N∗ such that
(i) ∩i∈iHi = 1,
(ii) ∪i∈IHi = N∗,
(iii) (N∗/Hi) ∼= (N∗/Hj), for every i, j ∈ I,
(iv) Hi

∼= Hj, for every i, j ∈ I.

(c) There exists a family of subgroups {Hi}i∈I of N∗ such that
(i) ∩i∈iHi = 1,
(ii) 〈∪i∈IHi〉 = N∗,
(iii) exp(N∗/Hi) = exp(N∗/Hj), for every i, j ∈ I.

(d) There exists a family of subgroups {Hi}i∈I of N∗ such that
(i) ∩i∈iHi = 1,
(ii) 〈∪i∈IHi〉 = N∗,
(iii) exp(Hi) = exp(Hj), for every i, j ∈ I.

Proof. Let N ′, N1, . . . , Nk be subgroups of N∗ such that N ′ = 〈yβk
k−1〉 ∼=

Zm′
k−1

and Ni = 〈yβi
i 〉 ∼= Zmi (1 6 i 6 k). Then N∗ = N1 . . . Nk−2N

′Nk.
First we show that (a) implies (b). Let (G,N) be capable. Then in view
of Theorem 1.1, we have k > 2 and nk|[nk−1, βk]. Let for i = 1, . . . , k−2,

Hi = 〈yβ1
1 , . . . , y

βi−1

i−1 , y
βi
i y

βkmk/mi

k , y
βi+1

i+1 , . . . , y
βk
k−1〉,

Hk−1 = 〈yβ1
1 , . . . , y

βk−2

k−2 , y
βk
k−1y

βkmk/m′
k−1

k 〉,

and
Hk = 〈yβ1

1 , . . . , y
βk−2

k−2 , y
βk
k−1〉.

Step 1. Hi
∼= N1 . . . Nk−2N

′, for 1 6 i 6 k.

It is clear that, Hk
∼= N1 . . . Nk−2N

′. Also, since o(yβk
k−1y

βkmk/m′
k−1

k ) =

m′
k−1 and 〈yβk

k−1y
βkmk/m′

k−1

k 〉 ∩ 〈yβ1
1 , . . . , y

βk−2

k−2 〉 = 1, we have Hk−1
∼=
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N1 . . . Nk−2N
′.

Similarly, one can show that Hi
∼= N1 . . . Nk−2N

′, for 1 6 i 6 k − 2.

Step 2. N∗/Hi
∼= Nk, for i = 1, . . . , k − 2.

It is clear that N∗/Hk
∼= Nk. Using Dedekind’s Modular Law, we have

N∗

Hk−1

∼=
N ′Nk

〈yβk
k−1y

βkmk/m′
k−1

k 〉
.

On the other hand, since N ′Nk = 〈yβk
k−1y

βkmk/m′
k−1

k 〉Nk, we have

N∗/Hk−1
∼= Nk/〈yβk

k−1y
βkmk/m′

k−1

k 〉 ∩Nk.

Now it is enough to show that

〈yβk
k−1y

βkmk/m′
k−1

k 〉 ∩Nk = 1.

Assume that g = (yβk
k−1y

βkmk/m′
k−1

k )s ∈ Nk, for some integer s. Then
there exists an integer ` such that

g = (yβk
k−1)

s(y
βkmk/m′

k−1

k )s = yβk`
k .

Thus (yβk
k−1)

s ∈ N ′ ∩ Nk = 1 and so (yβk
k−1)

s = 1. Then m′
k−1 must

divide s. It follows that g = 1. Therefore N∗/Hk−1
∼= Nk.

Similarly one can show that N∗/Hi
∼= Nk, for i = 1, . . . , k − 2.

Step 3. ∩k
i=1Hi = 1.

Let g = (yβ1
1 )s1 . . . (yβk

k−1)
sk−1(yβk

k )sk be an arbitrary element in ∩k
i=1Hi,

such that 0 6 si < mi, for i = 1, . . . , k. Since g ∈ Hk, we have sk = 0.
Also for 1 6 i 6 k − 2, g ∈ Hi implies that

g = (yβ1
1 )s1 . . . (yβk

k−1)
sk−1 = (yβ1

1 )r1 . . . (yβi
i )ri(yβkmk/mi

k )ri . . . (yβk
k−1)

rk−1 ,

for some integers r1, . . . , rk−1. Then we have sj = rj , for all 1 6 j 6 k−1,
and (yβk

k )mkri/mi = 1. Therefore mk divides mkri/mi = mksi/mi and so
mi | si, for i = 1, . . . , k − 1. This implies that g = 1.

Step 4. N∗ = 〈∪i∈IHi〉.
By hypothesis, nk|[nk−1, βk]. It implies thatm′

k−1 = mk and so yβk
k−1y

βk
k ∈
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Hk−1. On the other hand, yβ1
1 , . . . , y

βk−2

k−2 , y
βk
k−1 ∈ ∪

k
i=1Hi. Therefore we

have N∗ ⊆ 〈∪i∈IHi〉.
Now the family H = {Hi}ki=1 satisfies the conditions (ii), (iii), (iv) of
(b), but this family is not enough for condition (i). Therefore we need
to extend this family to a larger family of subgroups such that all con-
ditions hold.
Since m′

k−1 = mk, we can consider nk−1/(nk−1, βk) = nk/(nk, βk) = m.
Put X = {x ∈ N ′Nk|o(x) = m}. Assume that Hx = N1 . . . Nk−2〈x〉,
for all x ∈ X. It is clear that, Hx

∼= N1 . . . Nk−2N
′. Also by part (b) of

Lemma 2.1, N ′Nk = 〈x〉〈y〉, for some y ∈ X. Then we have

N∗

Hx

∼=
N1 . . . Nk−2N

′Nk

N1 . . . Nk−2〈x〉
∼=
N ′Nk

〈x〉
∼=
〈x〉〈y〉
〈x〉

∼= 〈y〉 ∼= Nk.

Also in view of part (c) of Lemma 2.1,

∪x∈XHx = ∪x∈XN1 . . . Nk−2〈x〉
= N1 . . . Nk−2 ∪x∈X 〈x〉
= N1 . . . Nk−2N

′Nk

= N∗.

Now the union of families {Hi}16i6k and {Hx}x∈X satisfies the condition
(i), (ii), (iii) and (iv) and the result holds.
Clearly (b) implies (c) and (d).
Now, we show that (c) implies (a). By Theorem 1.1, it is enough to
show that k > 2 and nk|[nk−1, βk].

Step 1. k > 2.
By the method of reductio ad absurdum, suppose that k = 1 and G

is a cyclic group. Then for every subgroup Hi (i ∈ I) of N∗, we have
exp(N∗/Hi) = |N∗|/|Hi|. Then condition (iii) implies that |N∗|/|Hi| =
|N∗|/|Hj | and thus |Hi| = |Hj | = d, for all i, j ∈ I. Since N∗ is cyclic,
it has a unique subgroup of order d. Hence the family {Hi}i∈I contains
only one subgroup which is a contradiction. Therefore k > 2.

Step 2. nk|[nk−1, βk].
By the method of reductio ad absurdum, suppose that nk does not di-
vide [nk−1, βk]. Then m = [nk, βk]/[nk−1, βk] > 1. Assume that p is a
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prime number which divides m and Ap is the unique subgroup of Nk

of order pt, where pt is the highest power of p such that pt | m. Also,
let pT be the highest power of p such that pT |[nk, βk]/βk. On the other
hand, exp(N∗) = [nk, βk]/βk and also N∗ = 〈∪i∈IHi〉 by condition (ii)
of (c). Hence there exists at least one subgroup in the family {Hi}i∈I

whose exponent is divisible by pT . Let Hj be such a subgroup with
pT | exp(Hj). Since Hj is abelian, so it contains an element h of order
pT . Then hpT−t

is an element of Nk of order pt, and so hpT−t
gener-

ates Ap. This implies that Ap ⊆ Hj . Then using Lemma 2.2, one can
see that exp(N∗/Hj)|[nk, βk]/βkp

t. Hence by condition (iii), we have
exp(N∗/Hi)|[nk, βk]/pt, for all i ∈ I. Therefore in view of Lemma 2.2,
every subgroup Hi in the family of {Hi}i∈I should contain Ap and so
Ap ⊆ ∩i∈IHi which is a contradiction.
Using a similar method one can see that (d) implies (a) and hence the
proof is completed.
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